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This study examines gravity waves that develop at the boundary-layer capping inversion

in the lee of a mountain ridge. By comparing different linear wave theories, we show

that lee waves that form under these conditions are most accurately described as

forced interfacial waves. Perturbations in this type of flow can be studied with a linear

two-dimensional model with constant wind speed and a sharp density discontinuity

separating two layers, a neutral one below and a stable one above. Defining the model

parameters on the basis of observations taken in the Madeira archipelago, we highlight

the impact of upper-level stability on interfacial waves. We demonstrate that stable

stratification aloft limits the possible range of lee wavelengths and modulates the length

of the stationary wave mode. Finally, we show that the stable stratification aloft strongly

constrains the validity of the shallow-water (or long-wave) approximation by permitting

only short-wave modes to be trapped at the interface.

Keywords: trapped lee waves, water waves, boundary layer, inversion layer, stratified flow

1. INTRODUCTION

Trapped lee waves can be generated in the atmosphere when a mountain perturbs stratified airflow.
Unlike other types of mountain waves, trapped waves propagate horizontally (Smith, 1979): their
phase lines are vertical and multiple wave crests can extend over several hundreds of kilometers
downstream of an obstacle. If the atmosphere contains sufficient moisture, clouds may form at the
wave crests (Houze, 2014) and give rise to a characteristic stripe pattern, frequently observed in
satellite images close to mountainous areas, e.g., the Alps (Doyle et al., 2002), Pyrenees (Georgelin
and Lott, 2001), Rocky Mountains (Ralph et al., 1997), and Pennines (Vosper et al., 2012).

Trapped lee waves can be expected to develop if the atmospheric structure promotes vertical
trapping and horizontal propagation of wave energy. This occurs either when the Scorer parameter

l2 = N2

U2 − 1
U

d2U
dz2

(where N is the buoyancy frequency and U the wind speed) decreases with
height (Scorer, 1949), or along a density discontinuity, e.g., a temperature inversion. Both of
these conditions lead to horizontal propagation of wave energy. In the former case, this happens
through wave reflection and superposition in a wave duct; in the latter case, through adjustment
to horizontal pressure gradients generated by the deflection of the discontinuity. These two
mechanisms have traditionally been regarded as distinct and unrelated. The former has often been
highlighted as the primary mechanism that gives rise to trapped lee waves in the atmosphere (e.g.,
Durran, 1986b; Wurtele et al., 1996; Teixeira, 2014), while the latter has been emphasized mostly in
oceanographic investigations, for instance to explain surface water waves and the phenomenon of
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dead water (Gill, 1982). In what follows, we refer to the theories
that describe these two processes, respectively, as the internal
wave theory and the interfacial wave theory1.

The internal gravity wave framework, where density is
assumed to be a continuous function of height, was used by
Scorer (1949) to develop a theory for lee waves in a two-
layer atmosphere. Scorer attributed the origin of trapped lee
waves to a discontinuity in the parameter l2, defined above.
For l higher in the lower layer, horizontal wave propagation
results from the linear superposition of two internal gravity wave
modes, an upward-propagating one, excited by the flow over
the mountain, and a downward-propagating one arising through
wave reflection at the interface between the two layers.

Scorer (1949) also applied interfacial wave theory to
atmospheric lee waves that form on a density discontinuity.
However, that part of his work has received only little attention.
After Scorer’s, probably the first study explicitly addressing
interfacial lee waves was made by Vosper (2004). Seeking for
the most favorable environment for the formation of lee-wave
rotors and low-level hydraulic jumps, Vosper (2004) analyzed
the conditions that lead to wave trapping at a boundary-layer
inversion underneath a continuously-stratified atmosphere. For
such a density profile, interfacial waves along the inversion
and vertically-propagating wave modes in the free atmosphere
may occur at the same time. Teixeira et al. (2013) investigated
the magnitude of wave drag, generated by both interfacial and
vertically propagating waves in this scenario, and determined the
state of maximum total drag. Although these two studies shed
light on important aspects of interfacial lee waves, an assessment
of how their wavelength (themost striking and immediate feature
of the phenomenon, as visible in satellite images) depends on
the environmental conditions in the free atmosphere still seems
to be lacking. Therefore, the first objective of this paper is
to improve the current understanding of the impact of the
stratified free atmosphere on the dynamics—and the wavelength
in particular—of interfacial lee waves that form at the boundary-
layer inversion.

A related theme is the applicability of hydraulic analogies to
the quantitative description of layered atmospheric flows. The
possibility of a hydraulic-type response in two-layer mountain
flow (with discontinuous l2) was first demonstrated by Durran
(1986a), who suggested that transition to supercritical flow at
the top of a mountain is an effective mechanism to generate
downslope windstorms. The applicability of hydraulic theory,
however, depends on stratification in the free atmosphere, which
affects the validity of two of the basic assumptions, namely:
(i) the presence of a passive upper layer, i.e., one that causes
no horizontal pressure gradient force on the lower layer (Jiang
and Smith, 2001), and (ii) hydrostatic conditions, which imply
the validity of the shallow-water (long-wave) approximation.
Relationships between free-atmospheric stratification and the
validity of the passive layer assumption have been explored
by Jiang (2014). A similar study focusing on the long-wave

1Interfacial wave theory is in turn related to hydraulic theory. Hydraulic theory is

based on the analogy between the flow of a compressible gas and the flow of a

shallow liquid, and is inherently hydrostatic. In contrast, no a priori assumption

about hydrostaticity is made in interfacial wave theory.

approximation, however, still seems to be lacking. Hence, the
second aim of this study is to explain how static stability in the
free atmosphere affects the accuracy of the shallow-water theory
when applied to low-level flow below an inversion.

We begin by reviewing the existing theories of trapped lee
waves in Section 2. By taking representative values of free-
atmospheric stability and inversion strength from an observed
lee-wave event (Section 3), we describe how different linear
analytical models lead to different estimates of lee wavelength
for the same conditions (Section 4). Recognizing the important
role played by free-atmospheric stratification, in Section 5 we
discuss its impact on lee wavelength and on the applicability of
shallow-water theory. Conclusions are drawn in Section 6.

2. REVIEW OF LEE WAVE THEORIES

As briefly discussed in the Introduction, the simplest models of
trapped lee waves consider uniform wind speed and a vertical
discontinuity, either in the Scorer parameter l or in potential
temperature θ . Such discontinuities are responsible for different
wave-trapping mechanisms, which may co-exist for a vertical
potential temperature profile like the one shown in Figure 1.
The defining parameters of this type of flow are the buoyancy
frequencies in the lower and upper layer (N1 andN2 respectively),
the potential temperature jump across the interface (1θ), the
potential temperature at the ground (θ0) and the height of the
lower layer (h1).

In general, the dynamics of wave propagation can be concisely
described by a frequency dispersion relationship (FDR), i.e., a
relation between the intrinsic frequency of the wave, �, and the
wavenumber, k. For simplicity, we focus on flows with uniform
background wind speed U. The Scorer parameter simplifies to

l2 = N2

U2 in this case. Since lee waves are typically stationary,
we consider only wave modes that do not move in a reference
frame attached to the mountain, thus �/k − U = 0. All wave
modes k that satisfy this relation are stationary with respect to
the mountain.

For the stability profile in Figure 1, the FDR of trapped lee
waves can be derived by assuming that wavelike solutions to
the governing equations exist in each of the two layers. The
derivation, presented in the Appendix, leads to:

U2 = g′

im1 coth
(

im1h1
)

− im2
. (1)

Here, h1 is the finite thickness of the lower layer (the upper one
being instead infinitely deep), g′ = g · 1θ/θ0 is the reduced
gravity at the interface and m1,2 = (l21,2 − k2)1/2 are the vertical
wave-numbers in the lower (subscript 1) and in the upper layer
(subscript 2) respectively.

Equation (1) summarizes the behavior of four wave types that
may occur in common atmospheric conditions:

– Internal interface waves, developing at a density discontinuity
between two neutrally stratified fluid layers (1θ 6= 0,
N1,2 = 0).
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FIGURE 1 | Vertical potential temperature (θ ) profile of a generic

two-layer flow with a density interface. The wind profile U(z) is assumed to

be constant with height (not shown).

– Free interface waves, propagating along a density discontinuity
between a lower neutral layer and an upper stably stratified
passive layer (1θ 6= 0, N1 = 0,m2 = 0).

– Forced interface waves, similar to the previous case, but with an
upper stably stratified active layer (1θ 6= 0, N1 = 0,m2 6= 0).

– Resonant trapped waves, developing at a discontinuity in the
Scorer parameter (1θ = 0, N1 > N2 > 0).

These wave types, and the conditions under which they may
form, are described in greater detail in what follows.

2.1. Internal Interface Waves
If both fluid layers are neutrally stratified, wave energy is
concentrated at the density discontinuity between them, because
all wave modes are evanescent below and above it (m2

1,2 < 0).
If the source of the wave energy is at the surface, as is the case
with mountain waves, higher altitudes of the interface will result
in lower lee wave amplitudes. This happens because evanescent
wavemodes decay with increasing distance from the wave source.
Assuming N1,2 = 0 in Equation (1), the FDR of stationary
interfacial waves becomes (Turner, 1973):

U2 = g′

k coth(kh1)+ k
. (2)

The coth
(

kh1
)

term in Equation (2) is non-periodic in k, because
the argument is a real number. Thus, only a single stationary
wave mode can exist on the density discontinuity. The FDR in
Equation (2) describes interfacial waves at internal boundaries
with a non-passive upper layer, which is the case for relatively

short wave modes (∂p′2/∂x 6= 0 if k > 0, p′2 being the pressure
perturbation in the upper layer; see e.g., Nappo, 2012).

Equation (2) is well-known in its long-wave approximation
form, where the condition kh1 ≪ 1 leads to the non-dispersive
FDR:

U = (g′h1)
1/2 . (3)

Another limiting case of Equation (2), that gained less attention
in meteorological literature, can be derived by adopting the
short-wave approximation, kh1 ≫ 1:

U = (g′/2k)1/2 . (4)

Unlike Equation (3), Equation (4) retains the dispersive character
of Equation (2) and can be solved for k to estimate the wavelength
of a stationary internal interface wave. The FDRs in Equations (3)
and (4) are similar to those of shallow- and deep-water external
waves, which correspond to the limit g′ → g. However, since
Equations (3) and (4) apply to flows where the upper layer has
non-negligible density, they still describe internal interface wave
modes.

2.2. Free Interface Waves
Interfaces that are not subject to stress exerted by the upper fluid
are referred to as free surfaces. The passive layer assumption,
∂p′2/∂x = 0, applies in this case. Special cases of free surfaces are
those where the density difference between the two fluid layers is
very large, e.g., between water and air. The corresponding theory
was developed by Airy (1841), who firstly derived the universal
FDR of (external) water waves (Craik, 2004):

U2 = g

k coth(kh1)
. (5)

This equation is not generally valid in atmospheric flows, which
are typically characterized by very small density discontinuities.
However, even in the atmosphere it is possible for a density
discontinuity (e.g., the capping inversion of the convective
boundary layer) to act as a free surface. This is the case if N1 = 0
and m2 = 0. The second constraint means that any internal
gravity wave mode in the stably-stratified upper layer must have
vertical phase lines at the interface. In this case, Equation (1)
becomes:

U2 = g′

k coth(kh1)
. (6)

Although this wave type occurs in the interior of a fluid,
the interface behaves as a free surface. The upper layer is
passive because of the condition m2 = 0, which implies that
wave perturbations in the pressure field, and consequently the
horizontal pressure gradient, must vanish therein, as can be
demonstrated from the polarization relationships of internal
gravity waves (see, e.g., Nappo, 2012). The same applies to wave
perturbations in the horizontal wind speed. The FDR of these
(internal) free interface waves is similar to that of (external) water
waves in Equation (5), except for reduced gravity g′ instead of g.
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2.3. Forced Interface Waves
Interfacial waves conform to Equation (6) only when their
horizontal wavenumber is equal to the Scorer parameter in the
atmosphere aloft (in fact, m2 = 0 implies k = l2). In general,
however, k 6= l2. In this case the upper layer is not passive,
i.e., waves propagating along the interface are subject to forcing
from internal waves above. The FDR describing these (internal)
forced interface waves is obtained from Equation (1) by requiring
N1 = 0 and maintaining a wave-permitting layer with N2 > 0
aloft (Scorer, 1997):

U2 = g′

k coth
(

kh1
)

+
√

k2 − l22

. (7)

Equation (7) is the general form of the FDR considered by Vosper
(2004), which is the corresponding short-wavelength (kh1 ≫ 1)
approximation. All wave modes satisfying k2 < l22 (m2

2 > 0)
can propagate into the upper stratified layer, hence they are
not trapped at the interface. Consequently, the condition k2 =
l22 defines a critical wavenumber, i.e., the lowest wavenumber
(longest wavelength) for which wave trapping is possible. This
condition transforms Equation (7) into Equation (6), i.e., into the
special case of a free interfacial wave (Section 2.2), and generates
the maximum total wave drag (Teixeira et al., 2013).

Equation (7) shows that, given N2 and U, the critical
wavenumber depends on the inversion strength 1θ (through g′)
and on the lower layer depth h1. Critical values for 1θ and h1
can be determined inserting k = l2 = N2/U into Equation (7).
Solving for 1θ or h1 then gives:

1θcrit =
N2 U θ0

g
· coth

(

N2h1

U

)

(8)

h1crit =
U

N2
· acoth

(

g′

N2U

)

(9)

Inversions with strength 1θ ≥ 1θcrit , or located at height h1 ≥
h1crit , cause wave trapping because they make stationary waves
become evanescent in the layer aloft.

2.4. Resonant Trapped Waves (g′
= 0)

Setting g′ = 0 (that is, 1θ = 0) in Equation (1) simplifies it to
(Scorer, 1949):

coth
(

im1h1
)

=
√

l22 − k2

l21 − k2
. (10)

Therefore, wave trapping occurs even in absence of a density
discontinuity if a wave mode k that satisfies Equation (10) exists.
Scorer (1949) showed that this is the case if

l21 > k2 > l22 (11)

l21 − l22 >
π2

4h21
. (12)

In these conditions, an internal gravity wave mode that
propagates vertically in the lower layer is reflected at the

discontinuity of l2, above which it becomes evanescent. The
superposition of the reflected and primary mode generates a
stationary wave with vertical phase lines, trapped in the layer
below the interface. We refer to this wave type as a resonant
trapped wave. In contrast to the FDRs for interfacial waves
[Equations (2), (6), and (7)], the argument of the cotangent
function in Equation (10) is imaginary. Since the roots of
coth

(

im1h1
)

are periodic, multiple resonant modes may exist.
The amplitude of these modes depends essentially on the
interface height and on the mountain shape. In general, the
mode with the wavelength closest to the mountain half-width L
is dominant.

2.5. Bridging the Theories of Interfacial and
Resonant Trapped Lee Waves
Wave propagation in stratified fluids with a more complex
vertical structure, i.e., withmore than two layers, has been studied
with analytical models in the past. For instance, Baines (1995, p.
189) formulated a non-hydrostatic three-layer model, that can be
used to estimate the horizontal wavenumber of a lee wave trapped
along a finite-thickness inversion. In this case, the wavenumber k
satisfies the following FDR:

[

tan(m1h1)−
im1

m2

]

(m2 −m3) = e−2im2d

[

tan(m1h1)+
im1

m2

]

(m2 +m3) . (13)

Here, subscripts j = 1, 2, 3 denote the fluid layers, numbered

from below; mj =
(

N2
j /U

2 − k2
)1/2

is the vertical wavenumber

in each of the layers; h1 is the thickness of the lowest layer and
d that of the middle one (the inversion layer). The third layer
represents the free atmosphere, which is assumed to be infinitely
deep. Equation (13) is transcendental, because it has no closed-
form solutions for k. Moreover, it remains transcendental even
after adopting the long- (kh1 ≪ 1) or short-wave (kh1 ≫ 1)
approximations, in contrast to the two-layer models introduced
in Sections 2.1–2.3 above.

In the strict limit of the middle layer depth being zero (d =
0), the inversion disappears and the FDR in Equation (13)
approaches the FDR for resonant waves (Equation 10). This is
to be expected as the Baines (1995) model assumes a continuous
density profile.

For small but finite values of the inversion depth and the finite
value of 1θ across the inversion, one would expect the solution
of Equation (13) to converge to that of the most general two-
layer model (Equation 1), assuming that all other parameters
are the same. We show this to be true in the following section
by numerically solving Equation (13) for a specific case (cf.
Figure 3).

3. WAVES ALONG THE BOUNDARY-LAYER
INVERSION

The typical thermal structure of the convective boundary layer
(N1 ≈ 0,N2 > 0,1θ > 0) is such that it supports forced
interface waves (Section 2.3). Since similar conditions are often
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present above ocean surfaces, or at daytime during the warm
season over land, it is likely that wave trapping at the boundary
layer inversion is a common mechanism for lee waves.

To confirm this hypothesis, we study a lee wave event that
occurred on 24 December 2013 downstream of the Desertas
islands. These islands are part of theMadeira archipelago, located
in the subtropical Atlantic ∼800 km south-west of mainland
Portugal. The Desertas are elongated in the N-S direction and
reach an altitude of 300 m MSL. Sufficient data is available
in this area to estimate the wavelength (from high-resolution
satellite images) and the vertical structure of the atmosphere
(from operational radiosonde observations in Funchal, Madeira’s
capital).

The satellite image in Figure 2A shows a characteristic cloud-
stripe pattern, generated by a trapped wave leeward of the
Desertas islands. The lee wave train is not visibly influenced
by the prominent wake of Madeira (Grubišić et al., 2015) and
extends over a distance of 40 km with approximately nine wave
crests, hence λ ≈ 4.4 km.

The vertical structure of the atmosphere during this event, as
measured in nearby Funchal, is shown in Figure 2B. It consists
of a neutrally stratified lower layer (N1 = 0) with θ0 = 291 K,
a boundary-layer inversion with 1θ = 8 K at h1 = 1100 m and
a continuously stratified free atmosphere with N2 = 0.010 s−1

aloft. The flow is westerly with almost no directional shear. A
representative value of U = 10 m s−1 for the wind speed is
determined from the wind profile in Figure 2C as the average
in the layer below z = 2h1. The altitude of the inversion
coincides with the layer of largest relative humidity (gray shading,
RH = 97% at h1 = 1100 m), implying that the cloud pattern
in Figure 2A likely corresponds to an interfacial wave. Further

evidence for the interfacial wave character of the disturbance
is provided by the Scorer parameter profiles in Figure 2D. The
observed wave mode (dashed black) is evanescent (k2 > l2)
below and above the inversion, indicating that the disturbance
can only propagate along it. The flow configuration determined
from Figure 2B is similar to that causing forced interfacial waves
(Section 2.3).

Given its small thickness, the inversion layer can be
approximated as a density discontinuity. This is supported
by a comparison between the solutions of Equation (1),
which is derived from the discontinuous two-layer model, and
Equation (13), which is derived from the continuous three-
layer model introduced in Section 2.5. Both equations are solved
numerically for λ = 2π/k, imposing the sounding parameters
presented above and letting d in the three-layer model vary in
the range between 0 and 1000 m. The results in Figure 3 reveal
a difference of ∼5% in the wavelength estimates for d = 150 m,
which corresponds to the observed profile. This level of accuracy
is sufficient for our needs. Hence, from now on, we only consider
two-layer models, with the benefit that an analytical solution for
k is possible (if the short-wave approximation is adopted).

In what follows, we use observations from the Desertas islands
to provide numerical values for the parameters of the linear
models described in Section 2, and thereby explore the impact
of free-atmospheric stratification on interfacial waves.

4. LINEAR THEORY RESULTS

Our two-dimensional, two-layer linear model is described in
detail in the Appendix. We solve it for the perturbation velocity
fields u′(x, z) and w′(x, z) as a function of the flow profile

FIGURE 2 | (A) MODIS Terra visible satellite image on 24 December 2013, showing signature of trapped lee waves downwind of the Desertas islands in the Madeira

archipelago. Coastlines are shown with solid white-black contours. The location of the sounding site (Funchal) is marked with a black dot. Flow is from left to right.

Satellite image from NASA Earthdata and SRTM topography data from Jarvis et al. (2008). (B–D) Funchal operational sounding at 1200 UTC 24 December 2013. The

panels show vertical profiles of (B) potential temperature, (C) wind speed projected in lee wave direction and (D) Scorer parameter l2 ≈ [N/U(z)]2 (black), l2 ≈ [N/U]2

with U = 10 m s−1(gray) and observed wavenumber k2 (dashed). The solid black lines in (B,C) show the approximated idealized sounding that defines the

parameters listed in Table 1. Gray shaded areas in (B) indicate regions where relative humidity RH > 90%.
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TABLE 1 | Flow parameters determined from the sounding in Figure 2.

FIW IIW Free IIW

N1 0 0 0 s−1

N2 0.010 0 0.010 s−1

1θ 8 8 1θcrit = 3.7 K

h1 1100 1100 1100 m

U 10 10 10 m s−1

FIW (forced interface wave) represents the observed flow configuration, IIW (internal

interface wave) assumes N2 = 0 and Free IIW (free internal interface wave) assumes

1θ = 1θcrit.

FIGURE 3 | Comparison of the wavelength λ estimated from the FDR of

forced interfacial waves (Equation 7, dashed) and from the Baines

(1995) three-layer model (Equation 13, solid).

(N1,N2,U,1θ, h1) and the topography h0(x). The latter is
specified with a cosine function, in analogy to Vosper (2004):

h0(x) =
{

H/2+H/2 · cos
[

π
L (x− x0)

]

if x0 − L < x < x0 + L
0 elsewhere

Here, H = 300 m denotes the mountain height and L = 2
km its half-width, while x0 is the location of the mountain top.
The model parameters (N1,N2,U,1θ, h1) are estimated from
the idealized sounding in Figures 2B,C and are listed in Table 1.

Figure 4 shows the wave field predicted by linear theory
in two-layer flow over the mountain for two combinations of
parameters, one reflecting the observations (N2 = 0.010 s−1,
Figures 4A,D) and the other disregarding stratification in the
free atmosphere (N2 = 0, Figures 4B,E). For completeness, in
Figures 4C,F we also show the wave field for the special case
1θ = 1θcrit , i.e., when the interface acts as a free surface (Section
2.2).

Two wave branches are evident in the wave perturbations u′

and w′ in Figures 4A,D: a vertically propagating internal gravity
wave and an interfacial wave. Themountain wave branch consists
of those wave modes that can propagate into the continuously
stratified upper layer (k2 < l22). The interfacial disturbance, in
contrast, consists of a single stationary wave mode, described

by Equation (7). The wavelength of this stationary mode (λ =
4.2 km) is close to the observations (λ = 4.4 km) in the
satellite image in Figure 2A. Both u′ andw′ reach their maximum
amplitude at the interface height. While w′ is continuous
across the interface, u′ is discontinuous and changes sign as a
consequence of the incompressibility constraint.

The wave structure in flow with a neutral upper layer in
Figures 4B,E is different. As expected, the wave branch in the
upper layer vanishes due to the absence of stratification in
the free atmosphere. The wavelength of the disturbance (λ =
5.0 km), determined from Equation (2), increases slightly (by
19%) compared to that in Figure 4A. This suggests that free-
atmospheric stratification does not impact the lee wavelength
significantly for the case examined in this paper. This aspect is
discussed in more detail in Section 5.

In the special case where 1θ = 1θcrit , the wave field consists
of a free interfacial disturbance with a wavelength of λ = 2π/l2
(Figures 4C,F). In this case, the perturbations u′ necessarily
vanish right above the inversion, as discussed in Section 2.2. In
fact, u′ is confined entirely in the layer below the inversion in
Figure 4F, similarly to what happens in water waves. The vertical
wind speedw′, in contrast to u′, is continuous across the interface.
In this case, λ = 6.3 km.

Given the relatively good agreement between observations
and linear model results in the Desertas lee-wave case, we use
linear theory to explore the dependence of the lee wavelength
(λ = 2π/k) on the flow parameters (1θ, h1,N2,U). We impose
N1 = 0, because convective boundary layers are typically
neutrally stratified.

We proceed by solving the FDRs of internal interface
waves (IIW, Equation 2) and of forced interface waves (FIW,
Equation 7), varying systematically one of the four parameters
mentioned above while keeping all others unchanged. We
consider the IIW (N2 = 0) and FIW (N2 6= 0) flow models
because the difference between their solutions allows us to
appreciate the impact of free-atmospheric stratification on the
lee wavelength. The lee wavelengths, λIIW and λFIW , are obtained
numerically, because the FDRs are transcendental and cannot be
solved analytically.

The results of this elaboration are shown in the four panels of
Figure 5, which consider 1θ ∈ [0, 15] K, h1 ∈ [0, 5000] m, N2 ∈
[0, 0.03] s−1, and U ∈ [0, 15] m s−1; λIIW and λFIW are shown
in all panels as dashed and solid lines respectively. White dots
in Figures 5A,B mark the critical values 1θcrit (Equation 8) and
h1crit (Equation 9). The behavior of λIIW and λFIW is generally
similar: they increase with increasing wind speed U, while they
decrease with increasing 1θ and h1. While λFIW decreases with
N2, λIIW is inherently independent of it, because N2 = 0 in the
IIW model.

Since N2 is the only parameter that differs between the IIW
(N2 = 0) and the FIW model (N2 6= 0), large differences
between λIIW and λFIW indicate that interfacial waves are heavily
affected by the free-atmospheric stratification. This is the case
for: weak inversions (Figure 5A, maximum deviation 38%),
high wind speeds (Figure 5D, maximum deviation 27%) and
for strong stratification (Figure 5C, maximum deviation 117%).
Conversely, λIIW and λFIW both become independent of the layer
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FIGURE 4 | Wave perturbations w′

1,2
(top) and u′

1,2
(bottom) determined from linear model solutions (Equations A2 and A3). Model parameters are listed

in Table 1 and correspond respectively to: (A–D) forced interface waves; (B–E) internal interface waves; (C–F) free interface waves. Red and blue shading denote

respectively positive and negative areas. The contour interval is 0.5 m s−1.

height h1 for values beyond h1 > 1100 m (Figure 5B). This
indicates that the short-wave (or deep-water) approximation is
valid for the Desertas lee-wave case examined (the FDR is then
independent of h1, see Equation 4).

5. DISCUSSION

The results described in Section 4 suggest that stratification
in the free atmosphere can indeed have a significant influence
on the length of interfacial trapped lee waves. In Section 5.1
below, we determine this impact more precisely after simplifying
the FDRs of the FIW and IIW models with the short-wave
approximation.

Besides controlling lee wavelength, a continuously-stratified
free atmosphere limits the range of possible trapped modes on
the interface, because it allows the longest ones to propagate
vertically through it (as shown in Section 2). This circumstance
can impact the validity of the shallow-water approximation,
which is inherently applicable only for long wave modes. We
discuss this aspect in Section 5.2.

5.1. Impact of Free-atmospheric
Stratification on Lee Wavelength
The results shown in Figure 5 suggest that differences between
IIW and FIW predictions depend mostly on g′, N2, and U.

The relative difference between λIIW and λFIW cannot be
derived analytically from the corresponding FDRs, Equations (2)
and (7), because these equations are transcendental with respect
to k. Therefore, we simplify them adopting the short-wave
approximation coth(kh1) ≈ 1 (when kh1 ≫ 1) to obtain
analytical expressions for the wave number k. Equations (2) and
(7) simplify to:

kIIW = g′

2U2
(14)

kFIW = g′

2U2
+ N2

2

2g′
. (15)

Clearly, the second term on the right-hand side in Equation (15)
represents the influence of free-atmospheric stratification on
interfacial waves. The relative magnitude of the second term in
Equation (15) can be expressed as:

σ = kFIW − kIIW

kIIW
= N2

2

2g′

/ g′

2U2
=

(

l2

/ g′

U2

)2

=
(

N2U

g′

)2

.

(16)
The parameter σ is the ratio between the Scorer parameter
in the free atmosphere, l2, and the coefficient g′/U2, which
quantifies the strength of the BL inversion and appears in the
dynamic boundary condition imposed at that interface (see
Appendix). According to Jiang (2014),

√
σ represents the ratio
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FIGURE 5 | Dependence of the lee wavelength λ on: (A) inversion strength, 1θ ; (B) inversion height, h1; (C) free-atmospheric stratification, N2; and (D)

wind speed, U. Solid and dashed lines correspond respectively to λFIW and λIIW . Black dots represent the wavelength estimated from the observed flow profile (see

Figure 2); gray dots indicate the corresponding wavelength when N2 = 0; and white dots mark the critical values 1θcrit and h1crit at the corresponding wavelength

λ = 2πU/N2. Shaded areas indicate the propagating regime in the upper layer, i.e., where wave trapping on the interface is not possible.

between the perturbation pressure associated with waves above
the inversion (proportional to N2U) and the density jump across
the inversion (proportional to g′). If σ is small, inversion effects
dominate over those introduced by the wave-permitting layer
above, and interfacial waves are unaffected by stratification aloft.
The passive layer assumption can then be applied if the flow is
hydrostatic (Jiang, 2014). However, it generally does not hold
for non-hydrostatic flow, even when σ = 0. This is because
interfacial trapped waves excite evanescent short-wavelength
pressure perturbations p′2 into the upper layer, consequently
∂p′2/∂x 6= 0 (Section 2.1). The dependence of σ on l2 and g′/U2

is shown in Figure 6: σ increases with increasing l2, but decreases
with increasing g′. This behavior is consistent with the curves
representing the full FDRs in Figure 5.

The considerations expressed above are rigorously valid only if
kh1≫1. If this condition applies, then σ (and hence the difference
between λIIW and λFIW) is independent of the layer depth h1.
However, this is not the case if the layer depth is relatively shallow
(Figure 5B).

For the case in exam here, the layer depth can be shown
to have only a marginal impact on the lee wavelength. With
the deep-water approximation (that is, neglecting the influence
of the lower layer depth), Equation (16) leads to σ = 0.14.
Without the deep-water approximation (that is, preserving the
influence of the lower layer depth), σ can be estimated on the
basis of the relative difference between λIIW and λFIW from any
panel in Figure 5: σ = (λIIW − λFIW)/λFIW ≈ 0.8/4.2 =
0.19. This means that the wavenumber of the interfacial wave
increases due to stratification in the free atmosphere by 19%
(white dot in Figure 6). The close agreement with the estimate
from Equation (16) (σ = 14%) indicates that the deep-water
approximation is valid in this case.

Given the good agreement between wavelength estimates
that are subject to and independent of the short-wavelength
approximation, we expect that using σ to assess the importance
of stratification effects on interfacial waves beneath the stable
layer will give accurate results for most interfacial lee wave
observations.
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FIGURE 6 | Estimation of the stratification impact on interfacial

deep-water waves. Gray shading represents the values of σ =
[

l2/(g′/U2 )
]2

.

The white dot shows the flow configuration of the observed lee wave case.

5.2. Impact of Free-atmospheric
Stratification on the Shallow-water
Approximation
Mountains excite a continuous spectrum of vertically-
propagating wave modes if the atmosphere is continuously
stratified. In two-layer flow, as shown above, part of these modes
become trapped at the interface between the fluid layers. In
particular, only relatively short modes satisfying k > l2 are
trapped. In what follows, we use this trapping criterion to
investigate the validity of the long-wave approximation, which
is a fundamental assumption in shallow-water theory, in the
presence of a stably stratified upper layer.

Multiplying the terms in the inequality above by h1 yields
kh1 > l2h1. On the other hand, the long-wave (or shallow-water)
approximation, coth(kh1) ≈ (kh1)

−1, is only valid when kh1≪ 1.
Scale analysis suggests that the two conditions kh1 > l2h1 (under
which interfacial waves exist) and kh1 ≪ 1 (under which they
can be treated with the shallow-water approximation) can be
incompatible.

Typical values for the order of magnitude of the Scorer
parameter and the layer depth are respectively O(l2) = 10−3

and O(h1) = 103, hence O(l2h1) = 1. In this case, the shallow-
water approximation is clearly inappropriate. The range of values
of l2 and h1 for which the approximation remains valid can
be estimated from the ratio between the transcendental term
in Equation (7), coth(kh1), and its shallow-water approximation
form, (kh1)

−1. This ratio is equal to unity if the approximation
is accurate. The inaccuracy is hence quantified by the deviation
of the ratio from unity, considering the longest possible trapped
mode (k = l2):

ǫ = 1− (l2h1) · coth(l2h1) . (17)

The dependence of ǫ on l2 and h1 is shown in Figure 7. Clearly,
stratification aloft (l2) can cause large deviations from ideal

FIGURE 7 | Estimation of the error due to stratification effects in the

shallow-water approximation. Gray shading and contours represent the

values of ǫ = 1− (l2h1 ) · coth(l2h1 ). The white dot shows the flow configuration

of the observed lee wave case.

shallow-water behavior, easily exceeding ǫ = 50% for fairly
typical atmospheric conditions. For the Desertas case, ǫ ≈
30%. We conclude that the non-hydrostatic linear frameworks
presented in Section 2 are far more accurate than the shallow-
water framework in describing the propagation properties of
interfacial waves. This is especially the case, when the overlying
free atmosphere is stably stratified.

6. SUMMARY AND CONCLUSIONS

Lee-wave cloud patterns, frequently observed downstream of
islands, are often attributed to the presence of resonant gravity
waves. Rigorously, resonant waves are expected to develop if
the potential temperature profile is continuous and includes a
stable layer below a neutral (or less stable) one. In the case of
the marine boundary layer, one instead finds a nearly neutral
layer capped by a sharp inversion, which can be thought of as
a discontinuity in the potential temperature profile. Lee waves
may be more appropriately interpreted as interfacial waves in
this case.

Using the results of a linear two-layer flow model to
explain the lee wavelength in observations taken in the Madeira
archipelago, we highlight the large impact that free-atmospheric
stability has on interfacial waves at the boundary-layer capping
inversion. Through use of linear theory, we demonstrate that
interfacial waves are affected by stable stratification aloft (i.e., by
an overlying wave-permitting layer) in two ways:

- First, stratification in the upper layer limits the possible range
of lee wavelengths. This happens because wave modes with
k2 < l22 propagate vertically in the upper layer, without being
trapped at the interface (Vosper, 2004). From this criterion,
we derived the critical (minimum) values of inversion strength
(1θcrit , Equation 8) and height (h1crit , Equation 9) for wave
trapping. We showed that waves on an inversion where 1θ =
1θcrit , or equivalently h1 = h1crit , are dynamically identical to
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surface water waves (see Section 2.2), i.e., they are described
by identical FDRs. This equivalence is only possible if the
atmosphere above the inversion is stably stratified.

- Second, the wavelength of interfacial disturbances decreases
with increasing stratification in the upper layer. In the

short-wave limit (kh1 ≫ 1), the parameter σ =
[

l2/(g
′/U2)

]2

quantifies the relative difference between the length of
interfacial waves in flow with a neutral and a stratified upper
layer. If σ is small, stratification in the free atmosphere has
a negligible impact on interfacial waves riding along the
inversion.

Furthermore, we show that the shallow-water (or long-wave)
approximation (kh1 ≪ 1) may give an inaccurate description
of interfacial waves in atmospheric flows when the upper layer
is stably stratified. This is because inversions only trap short
wave modes (k2 > l22). In fact, the two criteria k2 > l22 and
kh1 ≪ 1 are generally incompatible for typical values of h1
and l2 in the atmosphere. Conversely, interfacial waves in such
conditions are more properly described with the non-hydrostatic
linear frameworks presented in Section 2. The deep-water
approximation is more appropriate in this case.

A major limitation of this study is that it is restricted
to flows with constant background wind speed U. Vertical
variability in the horizontal wind profile is known to affect
wave propagation by creating wave ducts in regions with high
curvature, (1/U)(d2U/dz2), which typically coincide with jets.
Furthermore, sharp wind speed gradients, typically occurring
across temperature inversions, favor the onset of shear instability
(e.g., Kelvin-Helmholtz billows). We note here that the FDR of
Kelvin-Helmholtz waves in a two-layer discontinuous density
profile (see, e.g., Nappo, 2012) converges to that of internal
interface waves (Equation 2), for vanishing wind speed difference
across the interface. An accurate investigation of the impact of
wind speed variability on interfacial waves is, however, outside
the scope of this work, and is left for future investigation.
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APPENDIX

Frequency Dispersion Relationship for
Trapped Lee Waves
The Taylor-Goldstein equation can be derived from the
two-dimensional Euler equations (subject to the Boussinesq
approximation), the first law of thermodynamics and the
incompressible mass continuity equation after linearization and
by postulating the existence of wavelike solutions (see, e.g.,
Nappo, 2012):

d2ŵ

dz2
+

[

l2 − k2
]

ŵ = 0 . (A1)

We solve this equation in two fluid layers by assuming that wave
solutions are stationary in both the lower (subscript 1) and the
upper one (subscript 2):

ŵ1 = A1e
im1z

′ + B1e
−im1z

′
(A2)

ŵ2 = A2e
im2z

′ + B2e
−im2z

′
. (A3)

Here ŵ = [ρs/ρ0(z)]
−1/2 · w̃, where w̃ denotes a Fourier

component of the vertical wind speed perturbation, and ρs
and ρ0 the surface density and the unperturbed density profile
respectively; z′ = z − h1, where h1 is the thickness of the lower
layer.

Four boundary conditions (BCs) are required to close the
system. The first two are the parallel flow condition at the surface
and a radiation condition in the upper layer. For simplicity,
we assume flat terrain with constant interface height (z′ = 0),
a realistic scenario for a lee wave that propagates above a flat
surface after being excited by a mountain. The corresponding
BCs become then

ŵ1(z
′ = −h1) = 0 (A4)

B2 = 0 . (A5)

The other two conditions are the kinematic and the dynamic BC
at the interface (z′ = 0), which consists of a potential temperature
jump with reduced gravity g′ = g · 1θ/θ0. The former condition
ensures continuous vertical wind speed, while the latter requires
continuous pressure across the θ discontinuity. Following Klemp
and Lilly (1975) and Vosper (2004), the kinematic and dynamic
BCs are respectively:

ŵ1 = ŵ2 (A6)

dŵ1

dz
− ŵ1

g′

U2
= dŵ2

dz
. (A7)

Imposing the constraints (A4)–(A7) on Equations (A2) and (A3)
and solving for A1 and B1 leads to:

A1 =
A2

1− e−2im1h1
(A8)

B1 =
A2

1− e2im1h1
. (A9)

Both coefficients depend on the amplitude A2 of the interfacial
disturbance. Substituting Equations (A5)–(A9) in Equations (A2)
and (A3) and eliminating A2 results finally in a condition that
relates the wind speed with the vertical wave numbersm1,2

U2 = g′

im1 coth
(

im1h1
)

− im2
. (A10)

Equation (A10) is the frequency dispersion relationship that
describes interfacial waves on an inversion between two
continuously stratified fluid layers.

Two-dimensional Trapped Lee Wave Model
The two-dimensional wave fields in Figure 4 are obtained by
determining the coefficients A1,A2,B1 and B2 in Equations
(A2) and (A3) after imposing a parallel flow condition along
topography. Equation (A4) is therefore replaced by:

ŵ1(z
′ = −h1) = U

dH

dx
= iĥkUeikx , (A11)

where H is the height and ĥ is the Fourier-series expansion
of the terrain profile. Using again (A5)–(A7), and (A11) in
Equations (A2) and (A3) yields:

A1 = ŵ1(z′=−h1)e
im1h1 − B1e

2im1h1 (A12)

B1 = ŵ1(z′=−h1)
α · eim1h1

β + α · e2im1h1
(A13)

where α = i (m1 −m2) − g′

U2 and β = i (m1 +m2) + g′

U2 . In the
upper layer,

A2 = ŵ1(z′=−h1) · eim1h1 + B1 · (1− e2im1h1 ) (A14)

B2 = 0 . (A15)

The full solution in a domain of n horizontal grid points and
a length D = n1x is computed independently at each level by
summing up all Fourier components:

w′
1,2(x, z) = [ρs/ρ0(z)]

1/2 · Re





1

n

k=2π/D
∑

k=0

ŵ1,2(x, z)



 . (A16)

Horizontal wind speed perturbations u′1,2 are determined in a
similar fashion, using the incompressibility constraint û1,2 =
−(m1,2/k) · ŵ1,2.

Since the model described above is solved numerically in
spectral space, the boundary conditions are necessarily periodic.
This is a critical aspect for trapped lee wave solutions, which are
asymmetric with respect to the mountain and do not decay with
distance downstream of it. We solve this problem by including an
artificial ghost-mountain in the domain, downstream of the first.
The distance between the two mountains is set so as to achieve
complete destructive interference of the lee wave train. The flow
field becomes then symmetric. Figure 4 only shows the left half
of the domain.

Frontiers in Earth Science | www.frontiersin.org 11 November 2015 | Volume 3 | Article 70

http://www.frontiersin.org/Earth_Science
http://www.frontiersin.org
http://www.frontiersin.org/Earth_Science/archive

	Lee Waves on the Boundary-Layer Inversion and Their Dependence on Free-Atmospheric Stability
	1. Introduction
	2. Review of Lee Wave Theories
	2.1. Internal Interface Waves
	2.2. Free Interface Waves
	2.3. Forced Interface Waves
	2.4. Resonant Trapped Waves (g'=0)
	2.5. Bridging the Theories of Interfacial and Resonant Trapped Lee Waves

	3. Waves Along The Boundary-layer Inversion
	4. Linear Theory Results
	5. Discussion
	5.1. Impact of Free-atmospheric Stratification on Lee Wavelength
	5.2. Impact of Free-atmospheric Stratification on the Shallow-water Approximation

	6. Summary and Conclusions
	Acknowledgments
	References
	Appendix
	Frequency Dispersion Relationship for Trapped Lee Waves
	Two-dimensional Trapped Lee Wave Model



