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Terrestrial laser scanning was used to measure snow thickness changes (perpendicular

to the surface) in a rock face. The aim was to investigate the accumulation and

redistribution of snow in extremely steep terrain (>60◦). The north-east face of the

Chlein Schiahorn in the region of Davos in eastern Switzerland was scanned before

and several times after a snowfall event. A summer scan without snow was acquired to

calculate the total snow thickness. An improved postprocessing procedure is introduced.

The data quality could be increased by using snow thickness instead of snow depth

(measured vertically) and by consistently applying Multi Station Adjustment to improve

the registration. More snow was deposited in the flatter, smoother areas of the rock

face. The spatial variability of the snow thickness change was high. The spatial patterns

of the total snow thickness were similar to those of the snow thickness change. The

correlation coefficient between them was 0.86. The fresh snow was partly redistributed

from extremely steep to flatter terrain, presumably mostly through avalanching. The

redistribution started during the snowfall and ended several days later. Snow was able to

accumulate permanently at every slope angle. The amount of snow in extremely steep

terrain was limited but not negligible. Areas steeper than 60◦ received 15% of the snowfall

and contained 10% of the total amount of snow.

Keywords: snow, rock face, steep terrain, accumulation, redistribution, snowfall, terrestrial laser scanning, TLS

1. INTRODUCTION

Snow in rock faces influences the occurrence of permafrost and thus affects the stability of steep
slopes and rockfall danger (Gruber et al., 2004; Luetschg et al., 2008; Haberkorn et al., 2015). Snow
in very steep slopes is important for avalanche danger forecasting because snow avalanches often
form in steep terrain interspersed with rock (Schweizer et al., 2003) and it contributes to runoff in
spring (Anderton et al., 2002; Lehning et al., 2006). Studying snow in rock faces can also increase
understanding of snow and precipitation distributions in general, e.g., altitudinal gradients of snow
amounts (Grünewald and Lehning, 2011).

Many studies suggest that the amount of snow is inversely proportional to the slope angle and
that no snow accumulates (permanently) above a certain critical angle. Blöschl and Kirnbauer
(1992) observed that snow covered area (SCA) decreased with increasing slope angle and that
terrain steeper than 60◦ was usually snow-free due to gravitational effects (avalanching) and wind.
Winstral et al. (2002) and Gruber Schmid and Sardemann (2003) assumed that slopes steeper than
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50◦ accumulate little or no snow. Machguth et al. (2006) modeled
avalanching by removing most snow from areas steeper than
60◦. Blöschl et al. (1991) reported critical angles between 45 and
70◦ and attributed the large scatter to differences in climatic
conditions. In an older study concerning the Swiss Alps, a critical
angle of 50◦ was observed (Witmer, 1984). The spatial resolution,
i.e., the grid size of the digital elevation model, in these studies
varied between 5 and 90 m. Generally, it appears that the critical
angle increases with decreasing grid size. However, Blöschl et al.
(1991) maintain that the effect of climate is more important than
that of the grid size.

TLS, i.e., terrestrial laser scanning (Heritage and Large, 2009),
was first used to acquire snow depth data by Prokop (2008)
and Prokop et al. (2008). Wirz et al. (2011) used TLS to study
the distribution of snow in a rock face. They measured the
snow depth and snow depth changes with a spatial resolution
of 1 m and compared the results to measurements in gentler
terrain in the vicinity. The snow depth and SCA were lower
in the rock face than in the gentler, flatter terrain. The spatial
pattern of snow depth was consistent in time while patterns of
snow depth changes depended to some degree on the weather
conditions during the snowfalls. Terrain-wind interactions were
hypothesized to be primarily responsible for the observed
snow depth distribution. The influence of slope angle remained
unclear. The correlations between steepness and snow depth
and between steepness and snow depth change were weak,
there was no general decrease of snow depth with increasing
slope angle. Snow was observed to accumulate in areas up
to 80◦ steep. Haberkorn et al. (2015) measured the snow
distribution in two extremely steep rock faces with a resolution
of 0.2m. Their focus was on the influence of the snow cover
on the thermal regime of rock. They observed no decrease of
snow depth with increasing slope angle in terrain up to 70◦

steep.
Wirz et al. (2011) studied the evolution of the snow cover

in the rock face over a complete winter at a time scale (time
interval between TLS measurements) of one to several weeks.
In contrast, we concentrated on a single snowfall event and
captured it with a very high spatial and temporal resolution (time
scale: days). Furthermore, the quality of the snow depth data
in the study of Wirz et al. (2011) was significantly lower than
the quality achieved in gentle terrain. Grünewald et al. (2010)
compared the TLS snow depth data to tachymetry measurements
(= accuracy) and found a standard deviation of less than 5 cm.
Wirz et al. (2011), on the other hand, quantified the precision.
Repeatability measurements showed a standard deviation of
around 20 cm, reproducibility tests had standard deviations of
about 38 cm. The aims of this study are therefore twofold: first, to
improve data quality by specifically adapting the postprocessing
procedure to rock faces and second, to obtain information on
the accumulation and redistribution of snow in extremely steep
terrain.

Section 2 describes the acquisition and postprocessing of the
data and ends with a subsection on data quality. The results
are presented and interpreted in Section 3 and are discussed in
Section 4.

FIGURE 1 | (A) Map of the measurement location showing the rock face, the

scan position and the reflector locations. The map also shows the location of

the meteorological reference station Weissfluhjoch (WFJ). (B) View of the rock

face from the scan position. The extent of the area of interest is sketched in

approximately. The Schiahorn is located in eastern Switzerland just to the north

of Davos. Base map reproduced by permission of swisstopo (JA100118).

2. ACQUISITION AND PROCESSING OF
DATA

2.1. Measurement Location
The north-east face of the Chlein Schiahorn (henceforth just
called Schiahorn) is very steep and rough. The average slope angle
is 50◦. More than 25% of the area is steeper than 60◦ and 11%
is steeper than 70◦. The elevation of the rock face ranges from
2300 to 2600m a.s.l. (Figure 1). The scan position was chosen
in consideration of the range, the view direction and avalanche
danger. The range to the rock face should be as small as possible
and the view direction should be as close to perpendicular to
the rock face as possible. The chosen position is easily accessible
by ski due to the proximity of the Parsenn skiing area. The
range varies between 200 and 600 m. The four reflectors (circular,
reflective foil targets) were installed on fixed structures and rocks.
They were used to georeference (register) the scans (El khrachy,
2008; Revuelto et al., 2014a).

2.2. Data Collection
The data acquisition closely followed the procedure described by
Wirz et al. (2011) and Grünewald et al. (2010) and was carried
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out with the same terrestrial laser scanner (Riegl LPM-321). An
important instrument property is the beam divergence (0.8 mrad
for the LPM-321). This angle describes how the diameter of
the laser beam increases with distance and influences the size
of the laser footprints on the rock face (Deems et al., 2013).
The beam divergence limits the angular resolution. Lichti and
Jamtsho (2006) derived the optimal sampling interval to be
86% of the beam divergence. El khrachy (2008), on the other
hand, suggests to avoid footprint overlap. This infers an optimal
sampling interval equal to the beam divergence. We used an
angular increment of 0.045◦, which is slightly smaller than the
beam divergence. The reflectors were rescanned approximately
every hour to account for the limited stability of the scanner setup
(Prokop, 2008; Revuelto et al., 2014a). In the end, the complete
rock face was scanned in about 15 min with a correspondingly
coarser resolution and images of the rock face were acquired
by a digital camera installed on the TLS. The data set of each
measurement day consists of slightly overlapping fine scans
(between three and five), the coarse scan and the images.

The rock face was scanned five times in winter: once before
the snowfall (21 March 2014) and four times after the snowfall
(25, 27, 28 March and 1 April). A summer scan without snow
was acquired on 18 August 2014.

2.3. Weather Conditions
The weather on 21 March was sunny and mild with air
temperatures between −2 and 4◦C. The snowfall event occurred
between 22 and 24March. Most of the 55 cm of fresh snow fell on
23 and 24March. From 25March until 1 April it was sunny again
and increasingly warm. Temperatures ranged between −16 and
−3◦C on 25 March and between −1 and 8◦C on 1 April. During
the whole period, there were only weak winds (mean wind speeds
< 6 ms−1, max. wind speeds< 11 ms−1). The predominant wind
direction was south-east on 21 and 22 March and north-west on
23 and 24March. After 25March, the wind direction was variable
and mean wind speeds decreased to below 3 ms−1 (max. wind
speeds < 8 ms−1). All meteorological data were taken from the
automatic station Weissfluhjoch (WFJ), which is at a distance of
1.5 km from the Schiahorn (see Figure 1A). The station is located
in a slope with an average aspect of south-east, but the terrain
around the station is flat. The elevation of the station is 2540 m
a.s.l. The temperature at WFJ in March 2014 was 2.7◦C higher
than the long-term average (1981–2010). Regarding snow depth
and new snow, March 2014 was below average. The long-term
average snow depth is 192 cm. In March 2014 the mean snow
depth was 152 cm. For new snow, the numbers are 137 and 69 cm.

2.4. Postprocessing
While the process of data acquisition was very similar to previous
studies, the postprocessing was modified substantially. Wirz et al.
(2011) noted that TLS performance deteriorates in the rough
terrain of a rock face. In our opinion, the main reason for this
deterioration is not the roughness, but the steepness of a rock
face. Snow depth is the magnitude of the snow cover in the
vertical direction (Fierz et al., 2009). The extreme slope angles
lead to a high sensitivity of snow depth tomisalignments between
the compared scans (registration errors). The errors may be small

in the horizontal but in steep terrain, they can quickly amplify
in the vertical. In fact, the vertical error is the horizontal error
multiplied by the tangent of the slope angle, which tends to
infinity as the slope angle approaches 90◦. Snow thickness, on the
other hand, is the magnitude of the snow cover perpendicular
to the surface (Fierz et al., 2009). The registration errors are
not amplified in steep terrain because the slope angle is taken
into account in the calculation of snow thickness. TLS scans
are usually analyzed by viewing them from the top, e.g., in a
GIS software. This can be problematic because extremely steep
terrain is barely visible from this direction. Such terrain can be
analyzed in much more detail by rotating the scans and viewing
them from the front. This also ensures that the point cloud does
not overlap in vertical and overhanging areas and makes the
interpolation (triangulation) much easier. The Schiahorn was
viewed from the north-east and downwards at 30◦. This direction
was chosen based on the averages of aspect and slope angle. It
is the optimal view direction because it is perpendicular to the
“average rock face.” All measures of length or surface area below
were calculated in a plane perpendicular to this view direction.
Figures 2, 3, 5, 6, 10 show the rock face from this direction. This
orientation is similar to the view in Figure 1B.

After applying the usual corrections and filters (atmospheric
and geometric corrections, remove-isolated-points and octree
filters, e.g., Prokop, 2008 or Wirz et al., 2011), the different fine
scans of one measurement day were registered to each other
using the reflectors. Registration is the process of transforming
different scans to a common coordinate system. The assembled
fine scans were then compared to the coarse scan to check
the quality of the registration. The registration could often be
improved with amethod calledMulti Station Adjustment (MSA).
This extension of the software RiScanPro uses an iterative closest
points (ICP) algorithm to adjust different scans to each other
(Kenner et al., 2011). We used it to adjust the fine scans to
the coarse scan. The best results were achieved by considering
triangulated surfaces (interpolations) in addition to the reflectors.
That way, every triangle becomes a tie point like a reflector.
MSA was also applied to improve the registration between the
different measurement days. Only unchanged parts of the surface

FIGURE 2 | Division of the rock face into three subareas: “slope toe,”

“snowfields” and “steep/rough” areas. The orientation of the rock face is

similar to the view in Figure 1B.
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FIGURE 3 | Errors between fine and coarse scans (A) before and (B)

after MSA. (A) The boundary between two of the fine scans is visible as a

sharp transition of the error. (B) MSA reduced the registration errors

(systematic error). Note, however, that there are still some spatial patterns in

the errors. The case of 21 March is shown. The orientation of the rock face is

similar to the view in Figure 1B.

can be used for MSA. Between two measurement days, these are
the areas that were snow-free on both days. The snow-free rock
surfaces were filtered out, triangulated and adjusted to each other.
The adjustment of the fine scans to the coarse scan, on the other
hand, was done using the complete surface.

The snow thickness changes were calculated in this MSA-
corrected coordinate system and were then transformed into the
Swiss coordinate system CH1903 and rotated to be viewed from
the front. The snow-free areas were neglected in the calculation
of averages to reduce noise. Snow and rock can be distinguished
based on RGB color information (Wirz et al., 2011). Cells were
classified as snow if they had a blue band value higher than 190 or
if they had a red/blue ratio higher than 1.1 and a blue band value
higher than 100. Furthermore, snow patches with a surface area
below 1m2 were neglected as well and gaps in the point cloud
larger than 1.2m were considered as measurement shadows and
were not interpolated. The rasters of snow thickness change were
created in ArcGIS with a cell size of 0.5m. This corresponds to
the average point spacing in the original point cloud. The grid
size should be similar to that value to minimize smoothing and
scaling concerns (Deems et al., 2013).

Winter and summer slope angles were calculated. The winter
slope angle was based on the surface of 21 March and is relevant
for the snow thickness change. The summer slope angle was
based on the surface of 18 August and corresponds to the
steepness of the underlying terrain. The correlation between
snow thickness changes and topographic parameters may depend
on the resolution of the latter (Blöschl, 1999; Deems et al., 2006).
Wirz et al. (2011) tested different resolutions but did not find

significant differences.We used a resolution of 0.5m for the slope
angle rasters.

The rock face was divided into three subareas (Figure 2). The
extent of the “slope toe” was defined manually based on the
orthophoto (undistorted, georeferenced image) of 25 March. The
“slope toe” is the area below the lowest rock areas, i.e., below
the actual rock face. This boundary was very clear (Figure 1B),
such that this method should be applicable to other study sites.
If the “slope toe” extent is not evident, it probably makes more
sense to only use the two other subareas. The “snowfields” were
defined based on the snow/no snow classification (see above) of
25 March. “Snowfields” are snow-covered areas with a surface
area above 90m2 and a area/perimeter ratio above 1.3. The
second condition removes areas with extremely complicated and
distorted shapes. The “steep/rough” areas encompass the rest of
the rock face. This subarea contains many small snow patches
and most of the snow-free areas.

2.5. Data Quality
The software RiScanPro calculates the standard deviation
between tie points used for registration. These values are one
way to analyze data quality. For the registration of the different
fine scans of one measurement day without MSA, this calculation
only includes the reflectors. The average standard deviation for all
measurement days in winter was 0.6 cm. Despite this small value,
there were systematic errors in the registration (Figure 3A). After
MSA, the average standard deviation between the tie points was
2 cm. Note that this value now includes every triangle in addition
to the reflectors. In spite of this value being higher than 0.6 cm,
MSA improved the registration (see Figure 3B and below). The
standard deviation of the MSA-corrected registration between
the different measurement days was 1.8 cm.

A better way to analyze data quality is to directly quantify the
accuracy and precision of the snow thickness data. The accuracy
could not be calculated because no independent measurements
were available. However, the precision (repeatability and
reproducibility) was measured. The repeatability was tested by
comparing the fine scans to the coarse scan of each measurement
day. Note that this is an approximation of repeatability because
the spatial resolution of the compared scans was different. For
each measurement day, the mean error (offset, systematic error)
and the standard deviation of the error was calculated. The
average of the absolute values of the mean errors |µ| was 0.5
cm, the average of the standard deviations σ̄ was 3.7 cm. The
effect of MSA was quantified for the measurement of 21 March.
Before MSA, the statistics were µ = 2.6 cm and σ = 5.8 cm
(Figure 3A). The application of MSA reduced these values to
µ = −0.5 cm and σ = 3.6 cm (Figure 3B). Therefore, MSA
clearly improved the registration and the quality of the data. The
application of MSA can be problematic and even increase errors
if the used areas are wrongly assumed to be unchanged. In case of
the registration of the fine scans to each other, this could happen
if an avalanche occurs between the different scans.

The reproducibility was tested by comparing the rock surfaces
between different measurement days. We compared subsequent
scans to each other and the last scan (1 April) to the first scan
(21 March). The average statistics for the reproducibility tests
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were |µ| = 0.3 cm and σ̄ = 4.6 cm. The distributions are
such that more than 90% of the values are on average contained
in the interval ±7 cm. This average includes repeatability and
reproducibility tests. The precision of the snow thickness
measurements is thus an order of magnitude higher than the
precision of the snow depth data in Wirz et al. (2011). Note,
however, that the values given here represent the best case
scenario because the same areas were used for MSA and the
comparison. But even the standard deviation without MSA
(5.8 cm) is lower than the value given by Wirz et al. (2011)
(20.3 cm). This suggests that the improvement is mostly due to
the use of snow thickness instead of snow depth.

The error of the snow thickness measurements has two
components. The error introduced during the acquisition and
the error introduced during the postprocessing. The acquisition
error depends on the instrument and increases with the range,
the incidence angle (angle between laser beam and target surface
normal) and the roughness of the target surface (Deems et al.,
2013). Because it depends on the target surface, the acquisition
error is not constant across the rock face (see Figure 3B).
Other acquisition error sources include edge effects and laser
penetration into the snow surface. The latter effect is generally
negligible (Prokop, 2008; Deems et al., 2013). Edge effects
(Boehler et al., 2003) appear when the laser beam (due to the
beam divergence) hits more than one target. This may happen
at the edges of rock ledges, for example. The postprocessing error
is caused by errors due to the interpolation of the point clouds
and the registration error.

It appears that the dominant component is the registration
error. All other errors are expected to be similar between this
study and that of Wirz et al. (2011) because we used the same
instrument and methods. The targets also had similar properties.
This leaves the improvement of the postprocessing as the main
cause for the better precision in this study.

3. RESULTS AND INTERPRETATION

3.1. Spatial Distribution of Snow Thickness
and Snow Thickness Change
The subareas were compared in terms of winter slope angle,
snow thickness change during the snowfall event (1DS) between
21 and 25 March and snow thickness (DS) on 25 March
(Figure 4). The “slope toe” is the flattest subarea with slope
angles limited to a fairly small range around 40◦ (Figure 4A).
The slope angles in the other two subareas cover a very wide
range of values, the steepness of the terrain is highly variable.
The two ranges overlap for the most part but the slope angles are
nonetheless significantly higher in the “steep/rough” areas than
in the “snowfields.” 1DS and DS were highest in the “slope toe,”
lowest in the “steep/rough” areas and reached intermediate values
in the “snowfields” (Figures 4B,C). The variability of 1DS and
DS followed the same pattern. There are negative values of 1DS
in all three subareas. Snow appears to have been ablated in some
places. There are also some negative values of DS, especially in
the “snowfields.” There were several outliers with DS between
−2 and −1m. It could be shown that these extreme values are

FIGURE 4 | Comparison of the subareas with regard to (A) winter slope

angle, (B) snow thickness change during the snowfall, and (C) snow

thickness on 25 March. The flatter the subarea, the more snow was

accumulated and the higher was the total snow thickness. The medians’ 95%

confidence intervals are so small that the notches are not visible. The outliers

are not shown.

due to hikers in the summer scan (a trail passes through the
area of interest). The less extreme negative values are mostly
located at the edges of rock ledges and could be caused by edge
effects. These values also appeared mostly in areas where the
measurement noise was above average due to increased range
and incidence angle (rightmost part in Figure 3B). Rockfall could
also be a reason for negative snow thicknesses. Overall, less
than 2h of the values were below −0.15m. The effect of these
values on the results are small. Excluding them would change
the average snow thickness by less than 2mm. Flatter terrain
accumulated more snow during this snowfall event and also
during the complete winter. Pearson’s correlation coefficient is
r = −0.61 between 1DS and the winter slope angle and r =

−0.59 between DS and the summer slope angle.
Figure 5 shows the spatial distribution of 1DS between 21

and 25 March. We introduced an uncertainty zone around zero
of ±4 cm. This value is similar to the standard deviations of
the precision tests (Section 2.5). As mentioned previously, most
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FIGURE 5 | Spatial distribution of the snow accumulation during the snowfall. The area in the black rectangle is shown in detail in Figure 10. Most snow

accumulated below the actual rock face. Within the rock face, 1DS only reached high values locally. The spatial variability was high. The orientation of the rock face is

similar to the view in Figure 1B.

FIGURE 6 | Spatial distribution of snow thickness on 25 March. Most snow lay at the top of the “slope toe.” The spatial patterns of DS were very similar to those

of 1DS. The orientation of the rock face is similar to the view in Figure 1B.

snow accumulated in the “slope toe.” This is also where the high
variability is most evident. There are many areas with 1DS > 60
cm but the snow thickness change was also negative in some
places. The deposits of small avalanches could be responsible
for the largest accumulations. Several avalanches were observed
visually. They often released in the “snowfields” and redistributed
snow to the “slope toe.” The negative values of 1DS may be
caused by avalanches which transported snow further down into
the “slope toe” and out of the area of interest. No such avalanches
were witnessed, however. In the “snowfields,” 1DS was generally
lower than in the “slope toe” but did reach high values locally,

especially in snowfields adjacent to the ridge/crest. In other
snowfields, 1DS was predominantly negative and the variability
was correspondingly high (see also Figure 4B). Only little snow
accumulated in the “steep/rough” areas. In fact, many cells have
values within the uncertainty zone.

The spatial patterns of the total snow thickness after the
snowfall were similar to those of the snow thickness change
(Figure 6). The correlation coefficient between DS and 1DS is
r = 0.86. The similarity also becomes evident by comparing
Figures 5, 6. As an example, the areas with DS > 2m correspond
very well to the areas with 1DS > 60 cm. This similarity
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indicates that the measured snowfall event is representative
of most (larger) snowfalls during this winter. Similarly high
correlations between the absolute snow thickness and snow
accumulation were also found in gentler terrain by Schirmer
et al. (2011) but only for snowfalls associated with a specific
wind direction. Furthermore, the DS distributions of the different
measurement days were also very similar. In fact, all correlation
coefficients between these distributions are higher than 0.98.
Consequently, only the distribution of 25 March is shown, where
the spatial patterns are most evident. DS was highest in the
“slope toe,” especially along the boundary to the actual rock face.
There are several local maxima, where DS exceeded 4m. This
indicates that the observed avalanching took place everywhere in
the rock face over the course of the winter, but that there were
preferred avalanche tracks where avalanches were larger and/or
more frequent. In the “snowfields,” DS was generally lower. Most
values were between ten centimeters and one meter, whereas DS
exceeded one meter in almost all cells in the “slope toe.” In the
“steep/rough” areas finally, the majority of cells have DS < 0.1m
and there are many small negative values due to measurement
noise (see also Figure 4C).

3.2. Redistribution of Snow After The
Snowfall Event
We hypothesize that the snow redistribution, which started
during the snowfall (Figure 5), continues for several days after
the snowfall ceases and that snow is redistributed from extremely
steep to flatter areas within the rock face. Figure 7 shows the
evolution of snow covered area (SCA) in the rock face. SCA is
the ratio between the snow-covered and the total surface area
(Fierz et al., 2009). By definition of the subareas, the “slope toe”
was almost completely snow-covered, whereas the “steep/rough”
areas were mostly snow-free before the snowfall. On 25 March,
however, almost 40% of this subarea was snow-covered. SCA
strongly decreased in the “steep/rough” areas between 25 and 28
March, especially compared to the “snowfields.” After 28 March,
the rate of decrease was similar in both subareas. This suggests
that snow was redistributed from the “steep/rough” areas to
the “snowfields” between 25 and 28 March. It is likely that the
strong decrease of SCA in the “steep/rough” areas was also partly
caused by melt. Results show that extremely steep terrain can
accumulate some snow during a snowfall event but cannot retain
all of it.

Figure 8 presents the evolution of the snow thickness
relative to 21 March. The point measurements at the flat-
field reference station Weissfluhjoch (WFJ) are shown in
addition to the TLS results. DS increased in the “snowfields”
between 25 and 27 March. This supports the hypothesis
that snow is being redistributed from very steep to flatter
areas. However, the data from the “steep/rough” areas do not
support this. There, DS remained constant between 25 and
27 March and did not decrease. During the same period,
small avalanches were observed to redistribute snow to the
“slope toe.” Notwithstanding, DS decreased in this subarea. This
could be explained by snow settling. Large amounts of fresh
snow accumulated in the “slope toe” during the snowfall event
(Figure 5). Loose snow settles quickly and this effect may have

FIGURE 7 | Evolution of snow covered area (SCA) in the rock face. After

a marked increase during the snowfall, SCA reattains pre-snowfall values a

week later. Note the strong decrease in the “steep/rough” areas compared to

the “snowfields” between 25 and 28 March.

FIGURE 8 | Evolution of the snow thickness relative to 21 March. WFJ:

reference station at Weissfluhjoch. Note the increase in the “snowfields”

between 25 and 27 March as well as the stronger decrease at WFJ compared

to the “slope toe” in the same period.

dominated the snow redistribution. There was less fresh snow
in the “snowfields.” Hence, snow settling was less pronounced
in this subarea. Between 25 and 27 March, the decrease of DS
was 50% lower in the “slope toe” than at the reference station
WFJ. The amount of fresh snow was only 10% lower. The
difference can therefore not be attributed to settling alone. The

Frontiers in Earth Science | www.frontiersin.org 7 December 2015 | Volume 3 | Article 73

http://www.frontiersin.org/Earth_Science
http://www.frontiersin.org
http://www.frontiersin.org/Earth_Science/archive


Sommer et al. Snow in a Very Steep Rock Face

FIGURE 9 | Averaged transects of 1DS (between 21 and 25 March) and

winter and summer slope angle. The x-axis gives the distance from the

ST-boundary. Negative values lie in the “slope toe.” 1DS attained a maximum

at –7 m and then decreased rapidly closer to the ST-boundary.

decrease may have been lower in the “slope toe” because of
the redistribution of snow. The decrease of DS at WFJ can be
assumed to have been largely due to settling because there was
practically no wind (see Section 2.3). There were some gusts that
could have transported snow but only during short periods. After
27 March, the rate of decrease at WFJ and in the “slope toe” was
similar. This supports the hypothesis that snow is redistributed
only during the snowfall event (Section 3.1) and 2 or 3 days
thereafter (provided that there is no strong wind).

3.3. Snow Accumulation at the Slope Toe
Boundary
A recurring pattern of snow accumulation was observed at
transitions frommoderately steep to extremely steep terrain. The
snow thickness change decreased rapidly across such boundaries
(Figure 9). The boundary between the “slope toe” and the actual
rock face is considered in this section (henceforth referred to
as slope toe boundary or ST-boundary). The same pattern was
also observed at the upper boundaries of snowfields, however.
The averaged transects in Figure 9 were calculated as illustrated
in Figure 10. The ST-boundary was shifted vertically in steps of
0.5m (the raster size) and mean values were calculated along
those lines. An averaged transect is much more representative
than a single transect at an arbitrary location. The averaged
transects were calculated in the area shown in Figure 10

because the ST-boundary was very clear in this area. The
winter slope angle rises slowly in the upper part of the “slope
toe” and then increases rapidly to over 70◦ across the ST-
boundary. The summer slope angle is higher and less regular.
This indicates that the snow-free surface is rougher than the
snow surface (Mott et al., 2011; Schirmer et al., 2011). Below
−15m, winter and summer slope angles are nearly identical.

FIGURE 10 | Illustration of how the average transects in Figures 9 and

11 were calculated. The mean values were calculated along the average

transect lines. Only every second line is shown. The ST-boundary is defined by

the snow cover extent of 21 March. The location of this detail is shown in

Figure 5. The arrows show in which direction the distance is positive or

negative.

More snow accumulated close to the ST-boundary than further
down in the “slope toe.” The snow thickness change reached
a maximum of 60 cm only several meters away from the ST-
boundary. The value of the maximum is another indication
of snow redistribution during the snowfall (Figure 5) because
1DS at WFJ was only 40 cm (Figure 8). The snow thickness
change decreased rapidly across the ST-boundary. However, a
considerable amount of snow accumulated in very steep terrain.
1DS remained above 50 cm in terrain up to 70◦ steep. If we
consider the winter slope angle, which may be more relevant
for the snow thickness change, 1DS was higher than 50 cm in
areas up to 50◦ steep. At 70◦, the snow thickness change was still
20 cm.

The DS transects (Figure 11) were calculated the same way
as the 1DS transect (Figure 9). The DS and 1DS transects have
similar shapes. However, there appears to be a horizontal shift of
about −3 m. 1DS was maximal at around −7m and began to
decrease rapidly at −2m. In the case of the DS transects these
two distances were −10 and −5m. Furthermore, the maxima in
the DS transects were less pronounced. The horizontal shift could
be explained by avalanching. Many small, loose-snow avalanches
were observed by eye. Most of them released right below the ST-
boundary and were only several meters long. The maximum of
1DSmay also be located differently for each snowfall event. This
would also explain why the DS maxima were less pronounced.
Snow creep (McClung, 1980; Abe, 2001; Teufelsbauer, 2011) is
another process which transports snow downhill. However, creep
velocities are of the order of one millimeter per hour (Exner
and Jamieson, 2009). It would thus take about 4 months for the
maximum to be shifted by 3m. The total amount of snow at the
slope toe boundary was considerable. On 25March, DSwas above
2m in terrain up to 60◦ steep (summer slope angle). At 70◦,
there was more than one meter of snow. The very steep terrain
considered here was able to hold most of the fresh snow for at
least 10 days. Until 1 April, DS did not decrease much in terrain
steeper than about 65◦. In flatter terrain, on the other hand, the
decrease between 25 March and 1 April was considerable. This
may be due to snow settling (Section 3.2).
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FIGURE 11 | Averaged transects of snow thickness on different days

and of winter and summer slope angle. DS did not decrease much in the

extremely steep terrain. The curves are similar to the 1DS transect (Figure 9)

but with a horizontal shift of about −3m.

FIGURE 12 | Mean snow thickness and snow thickness change in

slope angle classes of 2◦. The complete rock face/study site is considered.

After a rapid decrease, the curves flatten out and remain constant up to 90◦.

Note the plateau between 35 and 40◦.

3.4. Snow Accumulation in Very Steep
Terrain
The averaged transects in Figures 9, 11 showed that the snow
thickness and the snow thickness change both tended to zero
in terrain steeper than 70◦. It is important to note that these
results are only valid in the area shown in Figure 10. In fact, the

FIGURE 13 | Cumulative distribution of the normalized snow volume as

a function of the summer slope angle. Calculated for slope angle classes

of 2◦. The complete rock face/study site is considered. More than 10% of the

total amount of snow lay in areas steeper than 60◦.

results are quite different when the complete rock face/study site
is considered (Figure 12). This discrepancy reveals that the area
considered for the transects is not representative of the complete
area of interest. To plot the curves in Figure 12, the rock face
was subdivided in (summer) slope angle classes of two degrees
and mean values were computed for the snow thickness on 25
March and the snow thickness change during the snowfall. The
class width of two degrees ensures that each class (above 30◦)
contains a minimum of more than 900 cells. The curves begin
at 30◦ because there are practically no cells with a slope angle
below that value. At first, DS and 1DS decreased rapidly with
increasing slope angle. At 50◦, 1DS began to flatten out and
reached a value of about 10 cm, at which it remained up to 90◦.
DS leveled out starting at about 60◦ and stabilized at a value of
about 0.25m. An interesting feature in both graphs is the plateau
between 35 and 40◦. Almost the complete “slope toe” falls into
this range of slope angles. Snow was accumulated more evenly
in this gentler terrain, at least with respect to the slope angle.
The high variability of 1DS and DS (Figures 5, 6) appears to be
related to other processes and parameters.

The amount of snow in extremely steep terrain is considerable
(Figure 13). To obtain the curves in Figure 13, the snow volume
in each slope angle class was normalized by the respective
number of cells. The cumulative sum of these normalized values
was divided by the total normalized volume such that the
curves reach 100% at 90◦. In other words, Figure 13 presents
the normalized integrals of the curves in Figure 12 (see also
Appendix). The cumulative distributions became flatter between
40 and 50◦ and then increased uniformly to 100%, reflecting
the almost constant values of 1DS and DS at high slope angles
(Figure 12). The shapes of the curves were similar but the
distribution corresponding to the total amount of snow always
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had a higher value. The difference between the two curves is
another indication of the redistribution of snow taking place after
the snowfall. While areas steeper than 60◦ accumulated close to
18% of the snow during the snowfall event, the same areas “only”
contained about 12% of the total amount of snow. This shows
that the extremely steep terrain could not hold all of the snow
that was deposited there during the snowfall event. Nevertheless,
the amount of snow in near-vertical terrain is remarkably
high.

4. DISCUSSION

One of the aims was to develop a postprocessing procedure for
TLS data specifically adapted to rock faces. The main innovations
were the use of snow thickness instead of snow depth and
the consistent application of MSA to improve the registration
between the measurement days. Wirz et al. (2011) transformed
the scanned surfaces to global coordinates (CH1903) and
computed differences between them in this frame of reference.
We calculated the snow thickness change in the MSA-corrected
frame of reference and transformed them to global coordinates
afterwards. The achieved precision (standard deviation < 5 cm)
was similar to observations in gentle terrain (Grünewald et al.,
2010; Revuelto et al., 2014a). The transformation to global
coordinates relies on a usually very limited number of reflectors
(. a dozen). MSA, on the other hand, uses up to hundreds of
thousands of tie points. This leads to a much more robust and
more precise registration. MSA can only be applied if the target
surface includes enough stationary areas. These parts of the target
must also be distinguishable from the non-stationary parts. A
rock face usually fulfils these requirements, at least at a time
scale of weeks. At a time scale of years, however, rockfall may
substantially alter the appearance of a rock face.

Snow appears to be able to accumulate permanently at all
slope angles. We observed constant values of DS and 1DS at
slope angles between ∼70 and 90◦. (Figure 12). Several authors
have assumed that no snow can be retained in such terrain
(Winstral et al., 2002; Gruber Schmid and Sardemann, 2003;
Machguth et al., 2006). Our results suggest that the assumption
of a positive constant may be more appropriate. This approach
was in fact chosen by Bernhardt and Schulz (2010). They assumed
an exponential decrease of the snow holding depth but set a
constant value of 5 cm at slope angles above 75◦. The value
of the constant is expected to strongly depend on the micro-
topography of the rock face. Haberkorn et al. (2015) suggest that
rough, step-like topography is necessary for permanent snow
accumulation in near-vertical terrain. They argue that snow and
rime can only temporarily adhere to near-vertical, smooth rock.
In such a case, the DS-constant would be zero but a positive
constant could still be assumed for 1DS. Lehning et al. (2011)
and Wirz et al. (2011) observed that rougher terrain accumulates
less snow than smoother areas. This result may be invalid in near-
vertical terrain. The constant may also depend on climate and on
the spatial resolution, i.e., the grid size of the1DS and slope angle
rasters. Blöschl et al. (1991) suggest that “warm” snow (maritime
climate) may accumulate more easily in extremely steep terrain
than “cold” snow (continental climate) because the latter does not

sinter as quickly and is thus more susceptible to redistribution.
The grid size may have a large influence on results in near-vertical
terrain. A high resolution is needed to detect small rock ledges
which appear essential for snow accumulation in such terrain.
Finally, the type of stone (chemical composition) may also affect
the value of the constants.

The cumulative distributions presented in Figure 13 depend
on how the extent of the rock face is defined. In fact, the extent
should be chosen such that two conditions are fulfilled. First, the
area of interest should encompass a closed system with regard
to deposited snow, i.e., once deposited, no snow should cross
the boundary of the area of interest (AI-boundary). Second,
the area of interest should include a sufficient number of cells
at every slope angle. Neither condition was completely fulfilled
in this study. The first condition is always hard to satisfy due
to drifting snow. In this study, it is also likely that avalanches
crossed the AI-boundary in the slope toe. Because avalanches
redistribute snow from steeper to flatter areas, this means that
the cumulative distributions are likely to be higher in reality than
shown in Figure 13. The second condition is easier to verify.
In this case, the area of interest contained only 933 cells with
slope angles below 30◦ and none with slope angles below 10◦.
Such flat areas are expected to contain a large amount of snow.
Their inclusion in the area of interest would therefore lead to
even higher values of the cumulative distributions. Thus, the
values given for the relative amount of snow in extremely steep
terrain may be lower if an area satisfying the two conditions
were considered. However, as shown in the Appendix, the values
would probably be only slightly smaller. It is estimated that areas
steeper than 60◦ contained about 10% of the total amount of snow
and accumulated almost 15% of the snow during the snowfall
event. The measured values using the area of interest with an
imperfect fulfillment of the conditions were 12 and 18%.

Avalanching seems to be the main process involved in the
redistribution of snow, both during and after the snowfall.
Many small avalanches were observed visually. The accumulation
patterns in the “slope toe” do not resemble “normal” avalanche
deposits, however. There are no sharp transitions in the snow
thickness change. The Schiahorn rock face is so steep that
avalanches do not slide but fall down. This leads to accumulations
of loose snow with poorly defined borders. The falling snow
accumulates at the top of the “slope toe” close to the actual rock
face. This explains the maxima in the transects of DS and 1DS.
The relatively high correlations between the winter slope angle
and 1DS and between the summer slope angle and DS provide
additional evidence of the importance of avalanching because this
gravitational effect is also closely related to the slope angle. These
observations are in contrast to the results of Wirz et al. (2011),
where wind was identified as the main cause for the observed
DS distribution. Whereas wind speeds were high during most
snowfalls studied by Wirz et al. (2011), they were low during the
snowfall event investigated here (Section 2.3). This may explain
why our correlation coefficients between slope angle and DS (and
1DS) were much higher than those of Wirz et al. (2011). It is also
possible that the correlations were higher because the Schiahorn
rock face is much steeper than the Chüpfenflue studied by Wirz
et al. (2011). The importance of gravitational effects is expected to
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increase with the steepness of the terrain. In a rock face as steep
as the Schiahorn, avalanching may even be the dominant process
during snowfalls accompanied by wind. The observed changes in
snow thickness cannot be attributed to snow redistribution alone.
Warm temperatures and shortwave radiation may have caused
some melt. This is especially likely in the “steep/rough” areas
where the snow cover was thin and interspersed with snow-free
rock areas.

Another process that may influence the distribution of
1DS during snowfalls is preferential deposition. The effect of
topography on the atmospheric flow field leads to an uneven
deposition of snow at small scales. In particular, more snow
accumulates on the leeward slope than on the windward slope
of ridges (Lehning et al., 2008; Mott et al., 2014; Revuelto et al.,
2014b). At the scale of a single slope, the ambient turbulence
close to the surface may have an effect on the falling snow
particles that would lead to preferential deposition of snow in
less steep parts of the slope. The relevance of this effect is
unknown and because preferential deposition and avalanching
would affect the accumulation distribution similarly, it may be
difficult to distinguish the two processes based on experiments
only. Numerical simulations may shed some light (Bernhardt
et al., 2010; Dadic et al., 2010;Mott and Lehning, 2010;Mott et al.,
2010; Warscher et al., 2013).

5. CONCLUSIONS AND OUTLOOK

The quality of TLS data from rock faces strongly depends on
the postprocessing. We propose to use snow thickness instead
of snow depth and, if possible, to consistently apply MSA to
improve the registration. Furthermore, the view direction should
be adapted to the rock face under consideration. To further
improve data quality, the spatial resolution of the point clouds
should be increased. This can be achieved either by decreasing
the distance between the rock face and the scan position or by
using a TLS with a smaller beam divergence.

Snow in rock faces should not be neglected in hydrological
models. Even though more snow accumulates in moderately
steep terrain, the amount of snow in extremely steep areas is
considerable. Terrain steeper than 60◦ contained an estimated
10% of the total amount of snow. The same areas accumulated
15% of the fresh snow during the observed snowfall. The fresh

snow was partly redistributed, both during and after the snowfall.
In our case, many small avalanches redistributed snow from the
steeper to the flatter parts of the rock face.

Since the support area for this investigation was small and
observations were from a single rock face with specific properties
such as exposition, climate etc., the results should be generalized
in the future by investigating additional rock faces with diverse
characteristics and from a variety of climates. The processes of
snow redistribution should be further investigated. Wind and
avalanching were both observed to be important factors, but their
relevance appears to strongly depend on the characteristics of
the rock face and on the weather conditions during the snowfall.
Furthermore, it remains unclear how much melt contributes
to the observed snow thickness changes. An important step
in the necessary generalization will be to try to distinguish

and quantify processes that contribute to the observed snow
relocation or melt. A development step in this direction could
be to install a permanent scanning device, which automatically
scans a rock face in regular (short) intervals such that gravity
relocation (avalanches and slides) can be distinguished from
melt or wind transport of snow. Modeling these processes is
a complementary step and can in principle be tackled with a
combination of very high resolution wind and snow transport
models (Mott and Lehning, 2010; Groot Zwaaftink et al., 2014),
simple parametrization of slides (Bernhardt and Schulz, 2010)
and advanced energy balance melt modeling (Mott et al., 2015).
However, model application to such extreme terrain has not been
achieved to date and presents a major challenge for the future.
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APPENDIX

To estimate the cumulative distributions in an area satisfying
the two conditions described in Section 4, we assume that
the values measured at the lower AI-boundary in the slope
toe change linearly to reach flat field values a certain
distance away (see Figure A1). The values from the reference
station WFJ are taken as the flat field values (DS = 1.68m
and 1DS = 40 cm). The values at the lower AI-boundary
are averages along this line (DS = 1.28m and 1DS =

31.7 cm). The summer slope angle at the lower AI-boundary is
36.3◦.

The normalized volume of snow Ṽ in a certain subarea is the
snow volume V divided by the number of cells N in this subarea.
It can therefore be written as

Ṽ =
V

N
=

DSA

N
= DSAc

where DS is the average snow thickness in this subarea,

A is the surface area, and Ac is the surface area of a
single cell. Relative amounts of snow, which are fractions
of normalized snow volumes, are thus entirely defined by
the average snow thicknesses in the considered subareas if
the cell size is constant. In particular, they do not depend
on the assumed distance between the lower AI-boundary
and the virtual flat field. The distance can therefore be
chosen, such that no avalanches cross the extended AI-
boundary. With the exception of drifting snow, the condition
of a closed system is thus fulfilled. The second condition,
that the area contains areas of all slope angles is also
fulfilled.

FIGURE A1 | Estimation of the cumulative distribution of the

normalized snow volume in an area encompassing all slope angles. A

linear change of the variables is assumed between the AI-boundary in the

slope toe and the virtual flat field conditions a certain distance away. The x-axis

is the same as in Figures 9, 11.

Because the variables are assumed to vary linearly, DS can
easily be calculated for each slope angle class between 0◦ and
36◦. The original area of interest contains slope angles between
10◦ and 90◦. To calculate the overall cumulative distribution, we
used the estimated values in the range 0◦ to 10◦, the average of
the estimate and the measurement between 10◦ and 36◦ and the
measured values above 36◦. This leads to the relative amount of
snow in terrain steeper than 60◦ of 10%. The calculations are the
same for the snow accumulation and result in a relative amount
of 15%.
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