
ORIGINAL RESEARCH
published: 16 December 2015
doi: 10.3389/feart.2015.00079

Frontiers in Earth Science | www.frontiersin.org 1 December 2015 | Volume 3 | Article 79

Edited by:

Ivana Stiperski,

University of Innsbruck, Austria

Reviewed by:

Ernesto Dos Santos Caetano Neto,

National Autonomous University of

Mexico, Mexico

Dino Zardi,

University of Trento, Italy

Johannes Wagner,

Institute of Atmospheric Physics,

Germany

*Correspondence:

Juerg Schmidli

schmidli@iau.uni-frankfurt.de

Specialty section:

This article was submitted to

Atmospheric Science,

a section of the journal

Frontiers in Earth Science

Received: 27 June 2015

Accepted: 23 November 2015

Published: 16 December 2015

Citation:

Schmidli J and Rotunno R (2015) The

Quasi-Steady State of the Valley Wind

System. Front. Earth Sci. 3:79.

doi: 10.3389/feart.2015.00079

The Quasi-Steady State of the Valley
Wind System
Juerg Schmidli 1, 2* and Richard Rotunno 3

1 Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland, 2 Institute for Atmospheric and

Environmental Sciences, Goethe-University Frankfurt, Frankfurt, Germany, 3National Center for Atmospheric Research,

Boulder, Colorado

The quasi-steady-state limit of the diurnal valley wind system is investigated over idealized

three-dimensional topography. Although this limit is rarely attained in reality due to

ever-changing forcings, the investigation of this limit can provide valuable insight, in

particular on the mass and heat fluxes associated with the along-valley wind. We derive

a scaling relation for the quasi-steady-state along-valley mass flux as a function of valley

geometry, valley size, atmospheric stratification, and surface sensible heat flux forcing.

The scaling relation is tested by comparison with the mass flux diagnosed from numerical

simulations of the valley wind system. Good agreement is found. The results also provide

insight into the relation between surface friction and the strength of the along-valley

pressure gradient.

Keywords: quasi-steady state, valley wind system, along-valley wind, mass and heat fluxes, scaling relation, valley

geometry

1. INTRODUCTION

Thermally forced diurnal along-valley winds are a prominent phenomenon in many mountain
areas and they are particularly pronounced in larger valleys. They are not only an important element
of the near-surface climate in mountain regions, but they also influence the horizontal transport
and vertical exchange of heat, mass, moisture, and pollutants over complex terrain. They contribute
to the formation of clouds and precipitation and the interaction with the larger-scale atmospheric
flow (Banta, 1990;Whiteman, 1990; Zardi andWhiteman, 2013). Due to their importance they have
been intensively investigated in the past using conceptual models (e.g., Wagner, 1938; Steinacker,
1984; Vergeiner and Dreiseitl, 1987; Egger, 1990) and more recently using idealized numerical
simulations (e.g., Rampanelli et al., 2004; Schmidli and Rotunno, 2010; Schmidli, 2013; Wagner
et al., 2015a).

In the present work we return to a basic question: can one estimate a-priori the (maximum)
strength of the along-valley wind and the associated mass and heat fluxes? More specifically, given a
valley, a specific atmospheric environment, and a specified forcing, can one estimate the maximum
along-valley mass flux, and hence also the (maximum) heat and mass exchange of the valley with
its surroundings induced by the along-valley flow.

One approach would be to use simple linear and non-linear conceptual models such as those
described in Vergeiner (1987) and Egger (1987, 1990). Although these models are capable of
predicting the time evolution of the along-valley wind, their results are very sensitive to key
parameters such as the eddy-diffusivity coefficients for heat and momentum or some empirical
time scales. In addition they are only applicable to simple valley geometries.

Here we take a different approach. We investigate the quasi-steady-state limit of the valley
wind system. In order to be able to investigate this limit also for large valleys, we assume a
time-independent forcing of the valley-plain system. In the quasi-steady-state limit the thermal
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gradients, the resulting pressure gradients, and the along-valley
wind are approximately constant in time, only the temperature
of the atmosphere is slowly changing (e.g., Wyngaard, 2010, p.
204). As long as the temperature gradients are not changing, the
slow temperature change does not have a significant influence
on the dynamics of the along-valley wind. Hence the relevant
parts of the system are in an approximate steady state. Although
this limit is rarely attained for large valleys due to everchanging
forcings, the analysis of this limit can provide valuable insight, in
particular into themass and heat fluxes associated with the along-
valley circulation. In contrast to the simple conceptual models,
the current approach is valid for arbitrary valley geometries. As
with other conceptual models our approach provides insight into
the basic governing principles of the along-valley wind.

The accuracy of the quasi-steady-state approximation for a
particular situation depends primarily on the valley size and the
background stratification, as these two quantities determine the
linear response time of the along-valley wind. According to Egger
(1990), the phase speed of the linear solution is c = 1

2HN,
whereH is the valley depth andN is the Brunt-Väisälä frequency,
resulting in a characteristic response time τc = L/c, where L is the
length of the valley. Assuming constant forcing, the along-valley
wind attains its steady state value after about 3τc. For typical static
stabilities, the response time varies from less than an hour for
small valleys to several hours for a large Alpine valley. These time
scales have to be compared with the time scales of the forcings.
In undisturbed conditions the relevant forcing time scale is given
by the diurnal motion of the sun. Thus, it is clear that the valley
wind in a smaller valley will be closer to the quasi-steady-state
limit than the valley wind in a large valley. Even if the quasi-
steady-state is not reached in large valleys, the present analysis
can provide useful estimates on the maximum strength of the
valley wind and associated fluxes.

Our goal is to derive scaling relations for the along-valley
mass flux and the associated advective heat flux in the quasi-
steady state limit as a function of valley geometry, valley size,
atmospheric stratification, surface sensible heat flux forcing,
and surface friction. Our derivation highlights the key balances
associated with the along-valley circulation. If we consider the
valley volume argument (e.g., Whiteman, 1990) to represent
a zeroth-order model of the along-valley wind, our approach
represents a consistent first-order model, as it takes the implicit
advective tendencies into account (e.g., advective cooling during
daytime up-valley wind conditions). The mere existence of
a thermally induced along-valley wind implies corresponding
advective tendencies. The scaling relations are then tested by
comparison with the mass and heat fluxes diagnosed from
numerical model simulations of the valley wind system. The
analysis of the quasi-steady state highlights the essential role
of the valley heat budget in determining the strength of the
along-valley wind.

The paper is organized as follows. In Section 2, we derive the
scaling relations for the along-valley mass flux and the associated
net advective heat flux. The numerical setup and the set of
simulations are introduced in Section 3. The scaling relations
are evaluated in Section 4, and the conclusions are drawn in
Section 5.

2. THEORY

We consider an arbitrary valley-plain system as illustrated in
Figure 1. Our goal is to derive a diagnostic expression for the
along-valley mass flux in the quasi-steady state limit. For this
we proceed in two steps: (i) analysis of the net heat exchange
of the valley with its surroundings, (ii) determination of the
resulting steady-state along-valleymass flux from the steady-state
advective heat flux. Using additional assumptions the diagnostic
expression can be used for the a-priori estimation of the along-
valley mass flux and the strength of the along-valley wind.

2.1. Heat Budget and Advective Heat
Transport
We first derive an expression for the net heat exchange of the
valley with its surroundings due to advection. The bulk heat
budget for an arbitrary control volume V can be expressed as

∫

V
ρcp

∂θ

∂t
dV

︸ ︷︷ ︸

mi θ̇ i

=

∫

As

Hs dS+

∫

V
∇ · R dV

︸ ︷︷ ︸

Fi
db

+

∫

V
ρcpv · ∇θ dV

︸ ︷︷ ︸

Fia

+

∫

Aa

H dS

︸ ︷︷ ︸

Fit

, (1)

where Hs is the turbulent sensible heat flux normal to the
land surface As, R is the radiation flux, and H is the turbulent
sensible heat flux normal to the surface Aa. The surface Aa is
the atmospheric component of the surface of the control volume
V . For a conventional control volume the last term simplifies
to the integral of the vertical turbulent sensible heat flux across
the top surface of the control volume. Equation (1) is derived
by integration of the potential-temperature equation and by
using Gauss’ theorem to convert the resulting volume integral
of the turbulent heat flux divergence into a surface integral
and by decomposing the resulting surface integral into a land
surface part As and an atmospheric part Aa (as in Schmidli
and Rotunno, 2010). In other words, the net change of heat
content in an arbitrary volume V i (miθ̇ i) is equal to the sum

FIGURE 1 | Schematic of the three-dimensional valley-plain system

indicating the four control volumes and the mean along-valley

circulation during the up-valley wind phase. The arrows indicate the net

mass flux across the interfaces between adjacent control volumes. See

Figure 3 for a top view of the valley-plain system.
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of the contributions due to diabatic processes (Fi
db
), mean-flow

advection (Fia), and turbulent heat flux through Aa (F
i
t). Here mi

refers to the mass of the air in the volume V i, multiplied by the
specific heat of the air, that is mi = cp

∫

V i ρ dV , and θ̇ i refers to
the density-weighted volume-averaged temperature tendency.

Now let us return to the valley-plain system, as illustrated
in Figure 1. Our goal is to determine net heat exchange due
to advection F2a in the valley volume V2. Assuming no diabatic
heating and turbulent exchange in the upper plain volume V4,
the bulk heat budgets for the four control volumes are

m1θ̇1 = F1db + F1a, (2)

m2θ̇2 = F2db + F2a + F2t , (3)

m3θ̇3 = F3db + F3a + F3t , (4)

m4θ̇4 = F4a . (5)

Assuming equal heating rates in the quasi-steady state, θ̇1 = θ̇2

and θ̇3 = θ̇4, and introducing

Fdb ≡ F2db, Fa ≡ −F2a, Ft ≡ −F2t , (6)

βdb ≡ F3db/F
2
db, βa ≡ F3a/F

2
a, (7)

where the sign is chosen such that Fa ≥ 0 and Ft ≥ 0 during
the daytime heating period, and noting that F3t = −F2t , the above
equation system can be written as

m2(F1db + F1a) = m1(Fdb − Fa − Ft) (8)

m4 (βdbFdb − βaFa + Ft) = m3F4a . (9)

Next, the net advective fluxes over the plain are related to those
over the valley:

F1a + F4a = (1+ βa)Fa + Fna , (10)

where Fna is the net advective exchange of the entire valley-plain
system with its surroundings (later on we will assume that Fna =

0). Solving (8) for F1a and (9) for F
4
a and substituting into (10) one

obtains

m1

m2
(Fdb − Fa − Ft)− F1db +

m4

m3
(βdbFdb − βaFa + Ft)

= (1+ βa)Fa + Fna . (11)

Defining the mass (volume) ratios τυ ≡ m1

m2 , τu ≡ m4

m3 , and the
turbulent exchange ratio γt ≡ Ft/Fdb and factoring out Fa yields

Fa (1+ βa + τυ + τuβa) = τυ (1− γt)Fdb − F1db
+τu(βdb + γt)Fdb − Fna . (12)

Assuming equal diabatic forcing per unit area, the diabatic heat
flux in the plain volume V1 can be expressed by the diabatic
heat flux in the valley volume by F1

db
= τAFdb, where τA is the

ratio of the areas of the upper control surfaces of the plain and
valley volume. [Under typical topographic amplification factor
considerations (Whiteman, 1990), these surface areas would be

assumed to be of equal size, hence τA = 1]. Substituting F1
db

into
(12) yields

fa ≡
Fa

Fdb
=

τυ − τA + βdbτu − γt(τυ − τu)− δa

τυ + 1+ βa(τu + 1)
, (13)

where fa represents the ratio of the advective to the diabatic
forcing of the valley control volume and δa ≡ Fna/Fdb represents
the net advective exchange of the entire valley-plain system with
its surroundings. Note that (13) follows directly from the first
law of thermodynamics and the three assumptions of quasi-
steady state, equal diabatic forcing per unit area, and no diabatic
or turbulent heating of the upper plain volume. It is valid for
arbitary valley geometries. It can be seen that the advective heat
flux increases if there is diabatic heating of the upper valley
volume and it decreases if there is significant turbulent exchange.
It also decreases if there is advective heating of the upper valley
volume (i.e., βa > 0). If one assumes that the valley-plain system
is closed to external influences, i.e., negligible larger-scale flows,
then δa = 0. Application of (13) requires diagnosis or estimation
of the ratios βdb, γt , and βa, and the geometric factors τυ , τA, and
τu. In general, not all of these parameters are known a-priori.

As our goal is to derive scaling relations that can be applied
a-priori, or with minimal additional assumptions, we assume
that the flow-dependent parameters βa and γt are approximately
zero. In other words, assuming only diabatic heating of the upper
valley volume, (13) reduces to

fa =
τh − 1

τh + 1/τA
+

βdbτu

τυ + 1
, (14)

where τh ≡ τυ/τA = h/h̄υ is the ratio of the mean depth of the
plain to that of the valley control volume. For the standard case of
equal upper control surfaces, τh corresponds to the topographic
amplification factor (TAF). Returning to the heat budgets, it can
be seen that in this limit, the diabatic heating of the upper valley
volume is matched by a corresponding advective heating of the
upper plain volume.

To provide further insight, suppose that βdb = 0 and that the
surface areas of the valley and plain control volumes are identical,
as is often done in TAF considerations (e.g., Whiteman, 1990),
then τA = 1, and the advective heating ratio becomes

fa =
τh − 1

τh + 1
. (15)

For illustration consider a valley with triangular cross section
with τh = 2, then fa = 1/3 for the closed valley-plain system.

2.2. The Along-Valley Mass Flux
Using the advective ratio fa, it is now possible to derive an a-priori
estimate of the strength of the mean up-valley wind at the valley
entrance. First note that the net advective heat flux out of the
valley volume can be expressed as

Fa = cpM1θ, (16)

where M is the mass flux through the valley volume and 1θ =

θout − θin is the difference in the mean potential temperature
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of the outflow and the inflow. Combining (16) and (13), the
up-valley mass flux at the valley entrance is

M =
faFdb

cp1θ
=

fdb

cpcθγθ

·
LW

h
· fa, (17)

where fdb is the diabatic heating rate per unit area, γθ is the
potential temperature lapse rate, cθ is an empirical constant
relating the temperature difference 1θ to the lapse rate, L is the
valley length, andW is the valley width.

Assuming that the inflow is through the valley entrance and
the outflow is through the valley top, the mass flux is related to
the mean along-valley wind through M = v̄ρ̄Ain. Substituting
into (17), using (14) with βdb = 0, and rearranging, the mean
up-valley wind at the valley entrance is

ῡ =
fdb

cpcθγθhρ̄
·
L

h̄υ

·
τh − 1

τh + 1/τA
, (18)

where Ain = Wh̄υ has been used. It can be seen that the valley
wind strength is proportional to the valley length, independent
of the valley width, and inversely proportional to the square of
the valley depth. It increases monotonically with increasing TAF
(τh).

2.3. Parameter Estimation
Several parameters are required in order to estimate the up-valley
mass flux using (17) and the advective heating ratio using (14).
Some of these parameters, such as τh, βdb, and τυ , depend on the
choice of the control volumes, in particular on the height h of the
upper control surfaces of the valley and plain volume. They can
be calculated directly from the given topography as a function of
the height h, once the horizontal location of the control volumes
has been fixed, as illustrated in Figure 2. It can be seen that the
TAF, τh, increases with decreasing height of the control volume,

FIGURE 2 | Dependence of the parameters τh, βdb and the different

approximations of the advective ratio fa (see main text) on the height

of the upper control surface (depth of the control volume), for the

topography to be introduced in Section 3 and illustrated in Figure 3.

as has been pointed out by Steinacker (1984). If h is smaller
than the crest height hc, the diabatic ratio βdb becomes non-
zero and increases with decreasing h. Assuming uniform diabatic
forcing per unit area, βdb is equal to the area fraction occupied by
topography on the lower surface of the upper control volume (for
h > hc, this area fraction is zero).

Two choices for estimating the parameters are considered:
first, h equal to the height of the mountain crest, hc; second,
h equal to the height of the “equilibrium” level, he, that is the
level of zero mean along-valley flow. The first choice corresponds
to the standard application of the TAF argument; all required
parameters, except cθ , can be calculated a-priori. The second
choice better represents the true flow geometry, in particular the
depth of the up-valley flow layer. If he is known, then the required
parameters can be calculated.

As we are interested in the a-priori scaling of the valley wind, a
simplified estimate of the advective ratio is introduced. Assuming
that βdb ≈ 0, one obtains

f
g
a =

τh − 1

τh + 1/τA
(19)

It can be seen that f
g
a depends only on parameters related to the

valley geometry and can thus be calculated a-priori, if h is given.
In summary, three different approximations of the up-valley

mass flux and the advective heating ratio will be compared in
comparison to the numerical simulations to be introduced next.
The simplest approximation is based on the parameters evaluated
with h = hc. The next is based on (19) using h = he, and the final,
and potentially most accurate estimate, is based on (14) and also
using h = he. For the latter βdb > 0 if he < hc.

3. NUMERICAL SETUP

The numerical setup of the simulations is similar to the one
described in Schmidli and Rotunno (2010, 2012) (hereafter SR10
and SR12) and detailed information can be found there. For
convenience we summarize the main aspects of the setup and
point out the key differences with respect to SR10. To investigate
the quasi-steady state of the valley wind system, we introduce a
valley-plain configuration with a horizontal valley floor as shown
in Figure 3. Except for the east-west orientation, the topography
is identical to the periodic configuration introduced in SR12, and
the corresponding analytic expression for the topography can be
found in SR12. To save computing resources, the cross-valley
extension of the computational domain is reduced from 120 to
20 km. For the periodic configuration this does not influence the
results.

As in SR10, the simulations are initialized from an atmosphere
at rest with a constant stratification. The main difference with
respect to SR10 is in the thermal forcing of the valley wind
system. As we are interested in the quasi-steady state, the wind
system is forced by a constant surface sensible heat flux. In
contrast to the previous simulations, the land surface model
is turned off. Momentum transfer is determined by a constant
momentum drag coefficient, corresponding to a neutral surface
layer and a given momentum roughness length. While the
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FIGURE 3 | Computational domain adopted in this paper. The lines denote the height contours of the topography (contour interval = 250m).

TABLE 1 | Summary of the numerical experiments.

Experiment Setup he fsima

REF Reference 1.41 0.43

L40 L = 40 km 1.40 0.50

L60 L = 60 km 1.40 0.48

W30 W = 30 km 1.50 0.44

W40 W = 40 km 1.53 0.46

H1000 H = 1000m 1.22 0.34

H2000 H = 2000m 1.69 0.54

LR2 LR = 2Kkm−1 1.56 0.37

LR4 LR = 4Kkm−1 1.35 0.49

LR6 LR = 6Kkm−1 1.30 0.58

SH25 SH = 25Wm−2 1.31 0.54

SH100 SH = 100Wm−2 1.60 0.32

z0m2 z0 = 0.01m 1.39 0.44

z0m0 z0 = 1m 1.44 0.42

The abbreviations refer to valley length (L), valley width (W), valley depth (H), potential

temperature lapse rate (LR), surface sensible heat flux (SH), and momentum roughness

length (z0).

simulations are integrated for 14 h, our main focus is on the
scaling properties after 9 h, when the simulation is close to a
steady-state.

To investigate the scaling of the quasi-steady state, a set of
simulations are carried out. The set is created by varying the
valley dimensions, the lapse rate of the initial state, the thermal
forcing in terms of the prescribed surface sensible heat flux,
and the momentum roughness length. The reference simulation
comprises a valley with a length of 100 km, a crest-to-crest width
of 20 km, and a depth of 1500m, a potential temperature lapse
rate of +3K km−1, a surface sensible heat flux of 50Wm−2, and
a momentum roughness length of 0.1m. All experiments are
created by varying one parameter in comparison to the reference
simulation (see Table 1).

As in SR10, the numerical simulations have been carried
out using the Advanced Regional Prediction System (ARPS)
model (Xue et al., 2000, 2001). The horizontal grid spacing
is 1 km and the vertical grid spacing varies from 20 m near
the surface to a maximum of 200m above 2 km. The lateral
boundary conditions are periodic in the cross-valley direction
and free-slip wall conditions are imposed in the along-valley
direction. This choice minimizes the required computational
resources, as doubly periodic boundary conditions would require
a computational domain of double the current size in the along-
valley direction. In order to reduce the implicit diffusivity of
the integration, horizontal and vertical advection of momentum

and scalars is carried out by a 4th-order advection scheme (in
SR10, vertical advection is carried out by a 2nd-order scheme).
Thus, the time step had to be reduced from 12 to 6 s. Vertical
mixing is parameterized with a TKE-based PBL scheme using
a non-local turbulence length scale (Sun and Chang, 1986). All
moist processes are turned off (moist=0). The current setup
was chosen in order to be able to do many simulations. Although
large-eddy simulations for two-dimensional valley sections are
now fairly common (e.g., Catalano and Moeng, 2010; Serafin
and Zardi, 2010; Schmidli, 2013; Wagner et al., 2014), and even
isolated examples of large-domain simulations of the along-valley
wind exist (Schmidli, 2013; Wagner et al., 2015a,b), for the
purpose of the present study simulations using parameterized
turbulence are sufficient. We have found that for well-resolved
valleys mean and bulk quantities obtained with the current setup
compare well with large-eddy simulation results (see alsoWagner
et al., 2014).

4. RESULTS

Next, we test the formula for the advective heating ratios and
the along-valley mass flux for the set of numerical simulations
introduced above. The section starts with a brief discussion
of the evolution of the reference simulation, followed by the
presentation of the main results on the net advective heat flux
(heat export out of the valley control volume) and the along-
valley mass flux.

4.1. The Reference Simulation
Snapshots of the evolution of the valley wind system are shown
in Figure 4 after 3, 6, and 9 h of integration. The figure
illustrates the evolution of the along-valley flow, both in an
along-valley plane located at the valley center and in a cross-
valley plane located 20 km up valley from the valley entrance,
the cross-valley circulation and the thermal structure of the
atmosphere. The basic characteristics of the flow are very similar
to previous simulations with a time-dependent diurnal forcing.
The symmetric cross-valley circulations develop rapidly, while
the along-valley circulation takes longer to develop fully. It can
be seen that while the up-valley component of the along-valley
circulation (on the valley center plane) is already close to a
steady state after 6 h, the upper-level return flow is still increasing
between hours 6 and 9. Note also the suppression of the growth of
the convective boundary layer within the valley, which is clearly
visible in the along-valley sections. For amore detailed discussion
of the evolution of the valley wind system, see SR10 and SR12. As
already noted in SR12, the disturbances in the along-valley flow
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FIGURE 4 | Evolution of the valley wind system for the reference case. Along-valley and cross-valley sections after 3, 6, and 9 h of integration showing the

along-valley flow (thick contours; contour interval = 0.5ms−1; negative values are dashed), potential temperature [contour interval = 1K (left panels) and 0.5K (right

panels)], eddy diffusivity (shading; 10 m2 s−1), and the cross-valley circulation (wind vectors). The axis units are kilometers.

FIGURE 5 | Time evolution of the mean up-valley wind at the valley entrance (left panel) and the heat budget tendencies for the valley control volume

(right panel). ῡin denotes the average of the along-valley wind over the inflow layer, that is up to he. The dashed line indicates the a-priori estimate, fa (hc ), of the

steady-state advective heating rate.
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FIGURE 6 | Scaling the advective heat flux: comparison of different approximations of fa with the diagnosed value from the numerical simulations. (A)

basic approximation: fa = fa (hc ), (B) improved estimate with fa = f
g
a (he ), (C) improved estimate with fa = fa (he ).

pattern near the valley entrance seen after 9 h are likely related to
the ARPS turbulence scheme and unresolved cellular motions in
the convective boundary layer (Ching et al., 2014). Other models
do not show such quasi-periodic patterns (Schmidli et al., 2011).
Toward the end of the simulation these patterns may dominate
the flow. Luckily they do not significantly influence the early
stages of the quasi-steady state which is the focus of our study.

The approach to the quasi-steady state is depicted in Figure 5

in terms of the evolution of the mean up-valley wind (at the
valley entrance) and the valley heat budget. During the first 6

h, the mean along-valley wind increases approximately linearly.
Thereafter, as the valley wind system approaches the quasi-steady
state, the increase is much reduced and the mean along-valley
wind reaches its maximum value of about 2.2m s−1 after 10 h.
In terms of the heat budget, and in particular the net advective
heat flux, the components are already steady after 6–7 h. The
simulated cooling rate due to advection is close to the a-priori
estimate indicated by the dashed line. Note that the net heat
exchange due to turbulence is close to zero for the reference
simulation. This is due to the combination of a relatively deep
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valley, sufficient stratification and relatively weak surface forcing.
It can be seen that after 10 h of integration there are deviations
from the steady-state values. This is due to the ARPS-specific
disturbances discussed above. In order to avoid issues related to
these disturbances we will focus on hour 9 for the analysis of the
quasi-steady state.

4.2. Net Advective Heat Flux
The quasi-steady state predictions of the net advective heat flux
out of the valley control volume are compared with the diagnosed
value from the numerical simulations in Figure 6. The scaling
predictions correspond to the three approximations introduced
in Section 2.3. The most basic approximation corresponds to the
assumption that the top of the valley control volume corresponds
to the height of the mountain ridges [i.e., fa = fa(hc)]. While
this assumption results in reasonable estimates for some of the
valleys, it fails to represent the variations associated with changes
in the valley depth, the atmospheric stratification, and the surface
sensible heat flux. Further analysis shows that this failure is partly
related to the varying depth of the up-valley wind layer. For the
simulation with strong stability, for example, the up-valley wind
layer is restricted to a depth of less than 1 km and the upper-level
return flow occurs already at heights well below the mountain
ridge height (not shown).

In order to improve the estimate of fa, the true flow geometry
needs to be considered. From the cross-valley averaged along-
valley circulation at the valley entrance, one can estimate the
height of the mean inflow, the mean outflow, and the level of
zero net along-valley flow. For the reference simulation the zero-
flow height corresponds to 1.41 km. The results for the other
simulations are tabulated in Table 1 and visualized in Figure 7.
Improved estimates of fa can now be obtained by setting the
top of the lower control volumes to the zero-flow height. These
are denoted by f

g
a (he) and fa(he). The former represents only

the more accurate consideration of the flow geometry, while
the latter also includes the effect of a non-zero diabatic factor
βdb. Consideration of the flow geometry leads to an overall
improvement of the estimates. The correspondance between the
analytic estimates and the diagnosed values from the numerical

simulations is further increased by including the effect of the
non-zero diabatic factor, except for the simulations with different
valley widths. Much of the remaining differences (e.g., for LR6,
SH25) are likely due to larger deviations from the quasi-steady-
state assumption for the particular simulations (not shown).

In summary, the a-priori estimation of the net advective heat
flux out of the valley volume is successful if the zero-flow height is
close to the valley ridge height, or if the corresponding zero-flow
height can be estimated (a-priori), provided the circulation is
approximately in a quasi-steady state.

4.3. The Along-Valley Mass Flux
Once the net advective heat flux out of the valley control volume
is known, it is possible to estimate the along-valley mass flux and
thus the strength of the mean along-valley wind at the valley
entrance. The key idea is that the net advective heat flux is
proportional to the mass flux through the valley control volume
and the difference in the mean potential temperature of the mean
inflow into the valley volume and the mean outflow out of the
valley volume, see (16).

The scaling of the along-valley mass flux according to
the (a-priori) quasi-steady state estimates and the numerical
simulations is depicted in Figure 8, for the same three
approximations discussed above. Note that both the estimated
and the diagnosed values are scaled with respect to the reference
case, i.e., REF = 1. Even for the most basic approximation,
M(hc), the scaling of the along-valley mass flux works quite well.
Larger differences are only found for H1000, LR2, and SH100,
the three cases for which the inflow layer extends above the crest
height (i.e., he > hc, see Table 1). This indicates that the a-priori
scaling is less accurate if the valley is shallow in comparison to the
surface forcing and the stratification. If the valley is too shallow,
that is if the convective boundary layer extends well beyond the
crest height, the scaling does not work (additional simulations
with shallower valleys were undertaken, but are not shown).

The lower two panels show the scaling of the up-valley
mass flux, that is of the along-valley mass flux up to the
equilibrium height he, for the two approximations of fa. Overall
the performance of the scaling is quite similar for both cases,

FIGURE 7 | Diagnosed depth of the inflow layer, he.
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FIGURE 8 | Scaling the along-valley mass flux M: comparison of different a-priori estimates of M with the corresponding diagnosed value from the

numerical simulations. (A) Basic approximation M = M(hc ), (B) improved estimate with M = M(he, f
g
a ), (C) improved estimate with M = M(he, fa ). The former

estimate is compared to the simulated along-valley flux up to ridge height, the latter two estimates are compared to the total simulated up-valley flux, that is to the

height he.

with a slightly higher overall skill for the simpler estimate f
g
a .

Comparing the simpler estimate (middle panel) with the a-priori
scaling (top panel), the skill is clearly improved for variations of
the valley depth and of the surface sensible heat flux.

According to the analysis presented in Section 2, the
steady-state along-valley wind and the associated mass and
heat fluxes should be independent of the surface roughness

(friction). Comparing the three simulations with different surface
roughnesses (0.01, 0.1, and 1.0m), it is found that this is indeed
approximately the case. The pressure gradient forcing adjusts
itself in order to support roughly the same along-valley mass flux.
Note that the near-surface wind speed is of course reduced for
large roughness lengths, but this has only a minor effect on the
integrated along-valley mass flux (not shown).
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In summary, the scaling of the along-valley mass flux (and
hence of the along-valley wind) with respect to variations of the
valley geometry, atmospheric stratification, and surface sensible
heat flux is successful, provided the up-valley wind circulation
(and hence the convective boundary layer) does not extend
significantly above the height of the surrounding mountain
ridges. This implies that the valleys need to be sufficiently
deep, given the specific combination of surface forcing and
atmospheric stratification.

5. CONCLUSIONS

The quasi-steady-state limit of the diurnal valley wind system
has been examined in order to contribute to an improved
understanding of the along-valley winds and the associated
transport processes. A scaling relation for the steady-state
along-valley wind speed and the associated advective heat
flux as a function of valley geometry, valley size, atmospheric
stratification, and surface sensible heat flux forcing has
been derived. In contrast to results from simple dynamical
models (e.g., Vergeiner, 1987), the steady-state scaling is
also valid for complex valley geometries. The formula can
be used as a diagnostic tool or for the a-priori estimation
of the along-valley mass flux and the valley-wind strength
in a given situation. The a-priori estimation requires either
additional closure assumptions or the use of an approximate
formula.

It is found that the steady-state along-valley wind speed
increases linearly with the magnitude of the surface forcing
and the strength of the valley volume effect (τh − 1), these
two factors correspond to the extra heating factor in simple
linear models (Egger, 1990). Also as in the linear case, the wind
speed decreases with increasing atmospheric stability. In contrast
to the results from simple dynamical models, the steady-state
wind speed increases with increasing valley length and it is
largely independent of the surface roughness. This may at first
seem counterintuitive, but can easily be understood. The initial
evolution of the along-valley wind is of course restrained by
surface friction, but in the steady state the plain-temperature
contrast will increase until the along-valley pressure gradient is
strong enough to support the along-valley wind required by the
steady-state valley heat budget. Also the longer valley, the larger
the excess heat that needs to be exported out of the valley to
maintain a steady-state heat budget. In summary, the strength

of the steady-state valley wind is primarily controlled by the
diabatic forcing and the atmospheric stability, and not by surface
friction. This scaling prediction is confirmed by the numerical
simulations.

The scaling relation for the steady-state mass and heat flux is
tested by comparison with the corresponding diagnosed fluxes
from numerical simulations of the along-valley wind system
for idealized three-dimensional topographies. In general, good
agreement is found. The scaling of the along-valley mass flux
with respect to variations of the valley geometry, atmospheric
stratification, and surface sensible heat flux works well, provided
the valley is sufficiently deep, such that the convective boundary
layer (and hence the up-valley flow layer) does not extend

significantly above the height of the surrounding mountain
ridges.

The quasi-steady state scaling relations can be used for
the a-priori estimation of the mass and heat fluxes associated
with the along-valley circulation. Two different approximations
of the scaling relations have been developed and tested. The
first one assumes that the budgeting volumes extend to the
top of the mountain ridge; the second one sets the height of
the budgeting volumes to the top of the inflow layer. While
the former approximation can be calculated a-priori, the latter
requires the height of the inflow layer as an input. The results
show that this height is strongly correlated with variations of
the valley depth and the atmospheric stratification. This opens
up the possibility for the development of a parameterization
of the depth of the inflow layer and thus of using also the
more complete scaling relations in an a-priori setup. This
requires further investigation. In any event it points to the most
important parameter dependencies for estimating the along-
valley mass flux. The a-priori scaling relations could be used as
a basis to parameterize the larger-scale effects of the thermally-
induced along-valley circulations in coarse-resolution weather
and climate models.
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