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We investigated characteristics of impurities and their impact on the ablation of Glacier

No.31 in the Suntar-Khayata Mountain Range in Russian Siberia during summer 2014.

Positive degree-day factors (PDDFs) obtained from 20 stake measurements distributed

across the glacier’s ablation area varied from 3.00 to 8.55mm w.e. K−1 day−1. The

surface reflectivity measured with a spectrometer as a proxy for albedo, ranged from

0.09 to 0.62, and was negatively correlated with the PDDF, suggesting that glacier

ablation is controlled by surface albedo on the studied glacier. Mass of total insoluble

impurities on the ice surface varied from 0.1 to 45.2 g m−2 and was not correlated with

surface reflectivity, suggesting that albedo is not directly conditioned by the mass of

the impurities. Microscopy of impurities revealed that they comprised mineral particles,

cryoconite granules, and ice algal cells filled with dark-reddish pigments (Ancylonema

nordenskioldii). There was a significant negative correlation between surface reflectivity

and algal biomass or organic matter, suggesting that the ice algae and their products are

the most effective constituents in defining glacier surface albedo. Our results suggest that

the melting of ice surface was enhanced by the growth of ice algae, which increased the

melting rate 1.6–2.6 times greater than that of the impurity free bare-ice.

Keywords: glaciers, light absorbing impurity, snow algae, positive degree-day factor, Siberia, Suntar Khayata

INTRODUCTION

Negative mass balance and recession have characterized the majority of glaciers worldwide over the
last century, and are generally believed to result from global warming. Regional air temperature rise
in summer can increase the extent and duration of melting of snow and ice, enhancing glacier mass
losses. However, ablation can also be enhanced by a reduction of surface albedo, which increases the
proportion of shortwave radiationmade available formelting and amplifies icemass loss. Therefore,
spatial and temporal variations in surface albedo of glaciers are particularly important parameters
for improving our understanding of recent and future glacier change.

The quantity and distribution of insoluble impurities are one of the most significant factors
determining surface albedo and have been reported to cause melting of glacier ice and snow (e.g.,
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Bøggild et al., 2010). Supraglacial impurities usually consist
of both inorganic and organic materials accreted on the ice
surface by wet precipitation or aeolian deposition. Windblown
mineral dust and black carbon are well-known impurities on
the glacier surface and their physical properties and atmospheric
transportation processes have been well-studied (e.g., Qian et al.,
2015). Microbes and organic matter are also dominant biotic
constituents of supraglacial impurities. Microbes observed on a
glacier include cold-tolerant snow and ice algae, cyanobacteria,
and heterotrophic bacteria, and they can grow and proliferate on
the melting snow or ice surfaces (e.g., Edwards et al., 2014). These
microbes and their derivative organic matter often aggregate with
mineral particles and form spherical granules called cryoconite
(e.g., Takeuchi et al., 2001a; Langford et al., 2014). Cryoconite
usually displays a higher light absorbance (i.e., dark colored)
compared with pure snow and ice, thus it can efficiently reduce
the surface albedo of glacier surface (e.g., Takeuchi et al., 2001a).

The effect of impurities on glacier melting varies among
glaciers depending on the abundance and composition of the
impurities as well as their distribution. For example, the effect
has been reported to be significant on Asian glaciers: abundant
and dark colored cryoconite covering the ablation area of
Yala Glacier accelerated its melt rate by a factor of 3 above
that of a clean surface without impurities (Kohshima et al.,
1993). The large abundance of crycoconite on Asian glaciers is
probably due to frequent supplies of windblown mineral dust
from surrounding deserts and to the greater abundance and
productivity of photosynthetic microbes on these glaciers (e.g.,
Takeuchi and Li, 2008). Although the effect of impurities on
melting appeared to be smaller on polar glaciers, studies have
suggested that a dark colored ice surface appeared recently in
the bare ice area and it is likely to contribute to the mass loss of
glaciers in the Arctic region (Hodson et al., 2007; Mernild et al.,
2014) and on the Greenland Ice Sheet (e.g., Bøggild et al., 2010;
Wientjes and Oerlemans, 2010). Impurities collected from the
dark ice surface of the Greenland Ice Sheet have been revealed
to be dark colored cryoconite, containing abundant filamentous
cyanobacteria and mineral dust (Wientjes et al., 2011; Takeuchi
et al., 2014). Furthermore, pigmented ice algae growing on
the ice surface also contribute to albedo reduction on the bare
ice area of the Greenland Ice Sheet and on an Alaskan glacier
(Yallop et al., 2012; Takeuchi, 2013; Lutz et al., 2014). These algal
populations are usually dominated byAncylonema nordenskioldii
and Mesotaenium bergrenii, which are both commonly found
on glaciers, in particular in the Arctic region (Remias et al.,
2009, 2011). The algal cells are typically filled with dark colored
pigments, which can effectively reduce the albedo of the ice
surface (Remias et al., 2009, 2011; Takeuchi, 2013). Since their
abundance changes seasonally and spatially on glaciers (Hodson
et al., 2007; Takeuchi, 2009, 2013; Langford et al., 2014), as well as
variations in their distribution coupled to ice surface hydrology
(Hodson et al., 2007; Irvine-Fynn et al., 2011), the surface albedo
and its effect on melting may vary temporally and spatially
with microbial population growth on glaciers. Furthermore,
changes in the Arctic environment due to global climate change
potentially affect the physical and chemical conditions on the
glacier surface, influencing the abundance and distribution
of cryoconite and ice algae. Consequently, such changes on

glaciers may yield progressive or contrasting variability in ice
surface characteristics from year to year. However, these changes
are currently unconstrained because we still have only limited
information of supraglacial impurities, in particular relating
to biological impurities and their effect on albedo and glacier
melting.

Of the glacierised regions in the Arctic latitudes, those within
Russia are some of the least studied. There are a number of
glaciers in the mountain ranges in Arctic and sub-Arctic regions
in eastern Siberia, Russia (the Suntar-Khayata, Cherskiy, and
Kodar Mountain Ranges). Mass balance surveys of glaciers in the
Suntar-Khayata Range have been conducted intermittently since
the International Geophysical Year (IGY, 1957–1958) by Russian
glaciologists (e.g., Koreisha, 1963; Grave, 1964; Ananicheva and
Koreisha, 2005). Koreisha (1963) reported the first detailed 3-
year study of Glacier No. 31 mass balance including monthly
average values of albedo measured over the surface of this
glacier during ablation period. Ananicheva and Koreisha (2005)
estimated retreat and thinning of the glaciers from the 1940s’
aerophotography and the expeditions of 1957–1958, 1970s, and
2001. The glaciers were resurveyed in 2004 and 2005 by Russian-
Japanese collaboration projects (Takahashi et al., 2011). These
recent studies revealed that most of the glaciers in this range
have receded and thinned significantly in the last 60 years, as has
been observed in other Arctic regions likely reflecting the region’s
recent atmospheric warming trends (Takahashi et al., 2011).
However, since impurities may also contribute to glacier ablation,
information detailing the relationship between impurities and
ice melting in Siberia is important to help evaluate geographical
variations in the response of Arctic glaciers under the scenario of
a changing climate. In fact, Koreisha (1963) noted that material
properties on the ice surface of Glacier No. 31 were highly
variable, and that simple temperature index models did not give
any reliable estimates of the surface melting on this glacier.

In this study, we investigated characteristics of impurities and
their impact on glacier ablation in the Suntar-Khayata Mountain
Range in Russian Siberia in the summer of 2014. Using ablation
stakes distributed across the surface of Glacier No. 31, positive-
degree day factors were compared to observations of surface
reflectivity to evaluate the influence of surface impurities on
glacier ice melt rates. Analysis of sampled impurities included
quantification of the abundance of organic and inorganic
fractions which were related to corresponding observations of
glacier surface reflectivity.

STUDY SITE AND METHODS

Glacier No.31
The field investigation was conducted on Glacier No. 31 (62◦36′

N, 141◦52′ E) in the Suntar-Khayata Mountains in Russia in
August 2014. This mountain range is located in eastern Siberia,
and extends westwards for approximately 500 km from the
coast of the Sea of Okhotsk (Figure 1). The highest peak in the
mountain range is Mt. Mus-Khaya (2959m a.s.l., Figure 1). The
climate in the region is characterized by a strong temperature
inversion during winter due to the Siberian High, and limited
precipitation in the beginning and end of winter (Takahashi et al.,
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FIGURE 1 | Maps detailing (A) the location of Suntar-Khayata Range in Eastern Siberia, and (B) the locality and study sites on Glacier No. 31 and

surrounding glaciers in the range.

2011). Oymyakon valley, the coldest permanently inhabited place
in the Northern Hemisphere, is located in this region. A number
of glaciers exists in the mountain range at the elevations above
2000m (with a total glacier coverage: 162.2 km2; see Takahashi
et al., 2011). Glacier No. 31 is relatively accessible and has been
a focus for mass balance monitoring since 1957 (Koreisha, 1963;
Grave, 1964). The glacier flows northward from an elevation
of 2728m down to 2050m, and covers an area of 3.2 km2

(Figures 1B, 2A, Koreisha, 1963). The equilibrium line altitude
of the glacier has been estimated at 2350m in 2008 (Takahashi
et al., 2011), which is similar to the 3 year mean derived from
the surveys during IGY (2320 ± 65m, Koreisha, 1963), while
the glacier has been retreated by more than 120m since 1957
(Ananicheva and Koreisha, 2005). The glacier is characterized
by relatively low flow velocities (4–6m year−1) in the middle
part, and by low mass exchange rates (low accumulation and
low ablation; Koreisha, 1963). The thickness of the glacier

derived seismically exceeded 100m over its longitudinal profile
(Koreisha, 1963).

Evaluation of Surface Albedo and Melting
In order to quantify the effect of albedo reduction due to surface
impurities on the melting of glacier ice, we used a positive degree
day factor (PDDF, mm w.e. K−1 day−1) as an index of melting
sensitivity of the ice surface to air temperature. The PDDF
involves a simplification of complex processes of the energy
balance at the glacier surface by directly associating ablation
to the sum of positive air temperatures over a defined time
period. This relationship is based on the statistically significant
correlation between the two variables (Braithwaite, 1995) and has
been widely used in modeling runoff from glaciers and changes
in glacier mass (e.g., Braithwaite, 1995; Hock, 2003). Most of the
variation in PDDF can be attributed to the difference in relative
importance of individual energy components providing energy
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FIGURE 2 | Photographs illustrating (A) Glacier No. 31 in the

Suntar-Khayata Range, (B) stakes (No. 15, 16, and 17) installed on

ablation surface for measurements of melt, reflectivity, and sampling

of impurities, and (C) ice surface of stake No. 7, showing slightly

reddish in color due to algal pigment. Diameter of a stake in (C) is

approximately 3 cm. The photographs were taken on 4 August, 2014.

for melt (Hock, 2003). Here, because meteorological conditions
are expected to be virtually uniform over a relatively small glacier,
we attribute variations in PDDF to difference of surface albedo.
This approach, using PDDF as a proxy for albedo, has been
previously applied in a study of a glacier in northwest Greenland
by Sugiyama et al. (2014). Although this technique could fail to
account for the turbulent heat fluxes, these processes are likely to
be negligible for the purposes of this study because of the stable
meteorological conditions over the study period without any rain
or snowfall event.

PDDFs were obtained based on the measurements of 20 stakes
distributed across the glacier’s ablation area at two sites (Sites A
and B) of Glacier No. 31 (Figures 2B,C). At Site A, at an elevation
of 2158m, seven stake locations were selected, while 13 stakes
were installed at Site B (at 2354m). The surfaces studied were
debris-free bare ice (i.e., without rock clasts), but covered a range
of different reflectivity due to various amounts of fine abiotic
and biotic impurities on the ice. The surfaces selected had slope
angles<10◦. We assume that nothing affected the PDDF between
the two sites other than the albedo. At the stakes, ablation was
monitored daily from 4 to 10, August, 2014 (except Aug. 5
and 9). Weather conditions during the study period were sunny
or cloudy without any rain or snowfall. Surface melt at each stake
during the period was obtained as water equivalent (mm w.e.)
based on the change of exposed stake length and assumed density
of ice (910 kg m−3). Air temperature was logged every hour
instantaneously with automatic air temperature loggers (TU-43,
T&D Co., Japan) at approximately 1m above the ice surface at
both sites. The air temperature sensors were shielded from direct
sunlight. Positive degree-day sum (PDD; ◦C day) was obtained
as a cumulative hourly sum of the air temperature excluding the
temperature below 0◦C, divided by 24 h at each site during the
observational period. PDDF at each stake was calculated from the
total surface melt divided by the PDD obtained at each site.

Measurements of Ice Surface Reflectivity
As a proxy of ice surface albedo, a hemispherical-directional
reflectance factor (HDRF), which is referred to as a reflectivity in
this study, was measured. The HDRF is given by the ratio of the
reflected radiance from a target surface area in a single direction
to the irradiance from the entire hemisphere to the area (e.g.,
Schaepman et al., 2006). The reflected radiance in the visible to
near-infrared wavelength range (0.350–1.050µm) in the nadir
direction was measured at a height of approximately 20 cm
above the target surface with a spectrometer (MS-720, Eiko Seiki
Co., Japan). Then, the radiance reflected by a Lambertian white
reference plate (Spectralon 12.7 × 12.7 cm, Labsphere, USA)
was measured in the nadir direction with the spectrometer.
The measurements were carried out within 3 h of local solar
noon (solar zenith: ∼58–47◦). Measurements made at this
height provided a field-of-view spot of 8.9 cm in diameter on
the ice surface. The reflectivities were calculated by dividing the
integrated surface radiance by the integrated radiance acquired
from the white reference panel. The variance due to sub-unity
and anisotropic reflectance of the white panel was not corrected
in this calculation although the error expected in the variance
possibly varies by up to 10% depending on the viewing and
illumination geometry (Painter et al., 2003). However, we assume
that the error is small enough to evaluate the effect of impurities
among the target surfaces. Spectral reflectivity was measured at
three to five surfaces randomly selected around each stake. The
mean of the measurements constituted the reflectivity at that
stake.

Sample Collection of Surface Ice
At each stake site, the local abundance of total impurities was
quantified by sampling surface ice from approximately 10×10 cm
areas and 1–3 cm depth using a stainless-steel scoop. Because
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most of inorganic impurities concentrate on the ice surface as
melting proceeds and microbes photosynthetically grow only
on the ice surface, this depth is sufficient to quantify the
amounts of all impurities affecting albedo of the ice surface. The
cryoconite holes, where the substantial amounts of impurities
were deposited, were excluded in the collection. The precise
dimensions of each sample area were recorded to calculate the
abundance of impurities per unit area. The collected samples
were melted and preserved with a 3% formalin solution in 30mL
clean polyethylene bottles to fix biological activity. All samples
were transported to Chiba University, Japan for analysis.

Laboratory Analysis
In the laboratory, the composition of impurities was examined
with optical microscopes (Leica MZ-12, Germany, and Olympus
BX51, Japan). Samples were then dried (60◦C, 24 h) in pre-
weighed crucibles. The amount of impurities per unit area of
the glacier was obtained from the dry weight and the sampling
area. Then, organic matter in the impurities was measured by
the method based on Dean (1974). The dried samples were
combusted for 1 h at 500◦C in an electric furnace, and weighed
again. The amount of organic matter was obtained from the
difference in the weight between the dried and combusted
samples. After combustion, only mineral particles remained.

From the samples that were preserved with 3% of formalin,
cell counts, and estimations of cell volume were conducted
with an optical microscope (Olympus BX51). Between 50 and
1000µL of sample water was filtered through a hydrophilized
membrane filter (pore size 0.45µm, Millipore JHWP01300), and
the number of algal cells on the filter was counted. The counting
was conducted 3–6 times on each sample. From these counts, a
mean cell concentration (cells mL−1) of the sample was obtained.
Mean cell volume was estimated by measuring the geometrical
size of 50 cells for each taxa. The total algal biomass was estimated
by summing values obtained by multiplying algal concentrations
by the mean cell volume. This calculation was done for each
taxon at each stake. The total biomass was represented as cell
volume per unit area of glacier surface (µL m−2) at each stake.
Community structure was represented by the mean proportion
of each taxa in three samples to the total algal volume at each
sampling point.

Satellite Image Analysis
To evaluate the spatial distribution andmean values of reflectivity
on the glacier, a Landsat satellite image [The Operational Land
Imager (OLI) sensor of Landsat 8 with spatial resolution of
30 m] acquired on 11 August, 2014 was analyzed. Band 2
image (wavelength range: 0.452–0.512µm), which is sensitive to
impurity abundance on snow and ice (e.g., Hall et al., 1988), was
used in this study. Surface reflectivity at top of atmosphere was
obtained from the Level 1 data product (L1T, Roy et al., 2014).
No atmospheric correction was applied in this process since no
cirrus cloud was recognized in the image. The reflectivity was
shown only in the ice surface area. The ice area of glaciers was
extracted with band 5 image (0.845–0.885µm), which can be
used to distinguish between snow and ice surfaces (e.g., Hall
et al., 1988). The threshold of the digital number (DN) value

between snow and ice used in this analysis was 38,550, which was
determined by the location of the snow line during the field work
and the DN value at the point.

Statistical Correlation Analysis
In order to test the correlations statistically among the PDDF,
surface reflectivity, and abundance of total and each fraction of
the impurities, Pearson’s linear correlation coefficients (r) were
obtained from the data of all study stakes. However, since some
of the relationships are possibly non-linear (e.g., exponential or
quadratic), Spearman’s rank-order correlation coefficients (rs)
were also obtained when the relationship did not appear to be
linear.

RESULTS

The air temperature measured at the study sites on Glacier No.
31 during the observational period (6 days from 4 to 10 August,
2014) showed diurnal fluctuations from 1.0 to 10.0◦C (mean:
4.6◦C) and from −0.6 to 8.2◦C (mean: 3.0◦C) at sites A and B,
respectively (Figure 3A). The temperature record shows that it

FIGURE 3 | Hourly air temperature (A), cumulative hourly sum of

positive air temperature divided by 24h (PDD) (B), and surface melt in

water equivalent (C) of Glacier No. 31 recorded at the two sites during

the study period (4–10, August) in 2014. Surface melt indicates average

values of 7 and 13 stakes at sites A and B, respectively. Error bar indicates

standard deviation of stake measurements at each site.
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was relatively cool on 6 and 7 August, but warmer on 8 and 9
August. The cumulative hourly sum of positive air temperature
(PDD) from the start time to the end of observation reached
28.4 and 18.2◦C day at sites A and B, respectively (Figure 3B).
Stake measurements show total surface ablation in a range from
95 to 176mm w.e. (mean: 132mm w.e.) at site A, and from 55 to
156mm w.e. (mean: 120mm w.e.) at site B (Table 1, Figure 3C)
during the study period. Themeanmelt rates for the study period
can be obtained from the total melt, ranging from 16 to 30mm
w.e. day−1 (mean: 22mm w.e. day−1) at site A, and from 9.1 to
26mmw.e. day−1 (mean: 20mmw.e. day−1) at site B. The results
indicate that the melt rate varied greatly from surface to surface
on the glacier.

There was a large spatial variability in PDDF among the
surfaces of the stakes. PDDF at each stake obtained from the
observation during the study period ranged from 3.0 to 8.6mm
w.e. K−1 day−1 (mean: 6.0mm w.e. K−1 day−1, Table 1). The
smallest and greatest values of PDDF occurred at the stake No.20
and No. 9 at site B, respectively.

Surface reflectivity measured at each stake ranged from 0.09 to
0.62 (mean: 0.31, Table 1). The abundance of impurities on the
ice surfaces at each stake ranged from 0.11 to 45 g m−2 (mean:
12 g m−2) in dry weight (Table 1). The organic matter content
in the impurities varied from 3.4 to 18.3% (mean 10.3%). Thus,
mineral and organic fractions in the impurities on the ice surface
ranged from 0.10 to 43 g m−2 (mean: 11 g m−2) and from 0.01 to
6.5 g m−2 (mean: 1.2 g m−2), respectively.

Microscopy of impurities revealed that they consisted of
mineral particles, dark-colored aggregates (cryoconite granules),
and algal cells (Figure 4). These three components were
contained in the samples from all of the stakes. Mineral particles
appeared transparent, white, or black, and their size ranged
approximately from 0.01 up to 2mm in diameter. Cryoconite
granules appeared to be spherical in shape and colored black.
Their size ranged from 0.2 to 2.2mm in diameter.

Algae observed in the impurities consisted of several taxa,
including Ancylonema (A.) nordenskioldii, Chloromonas sp., 4
taxa of filamentous cyanobacteria including Calothrix parietina,
and 2 taxa of Chroococcaceae cyanobacteria. However, A.
nordenskioldii was most dominant in all of the samples in
terms of cell numbers. Forms of A. nordenskioldii were typically
straight or slightly curved filaments, consisting of 1–20 individual
cells (Figure 4B). The cell size was 18.0 ± 3.9µm in length,
9.8 ± 0.87µm in width. These algal cells were filled with dark-
reddish pigments. Chloromonas sp. was observed mostly as a
red-pigmented spherical cell, which appeared to be a resting
zygote. Cell size was 11.1 ± 2.8µm in diameter. C. parietina
was filamentous cyanobacteriumwith thick and brownish sheath.
Cell size was 9.0 ± 1.1µm in width. Other 3 taxa of filamentous
cyanobacteria showed distinct cell size, which was 1.9 ± 1.1,
3.7 ± 0.56, and 5.0 ± 0.51µm in width, respectively. Two
taxa of Chroococcaceae cyanobacteria showed 2.6 ± 0.51 and
5.5 ± 1.2µm in diameter, respectively. The total algal biomass
(bio-volume) varied among the stakes from 0.06 to 523µL m−2

TABLE 1 | Results of measurements of PDDF, reflectivity, mass abundances of total and each fraction of impurities, and algal biomass at 20 stakes of

sites A (2158 m) and B (2354 m) on the Glacier No. 31.

Stake Site PDD Total melt PDDF (mm w.e. Surface Total impurities Mineral fraction Organic fraction Algal biomass

No. (◦C day) (mm w.e.) K−1 day−1) reflectivity (g m−2) (g m−2) (g m−2) (µL m−2)

1 A 28.4 96 3.3 0.45± 0.03 21.0±1.6 20.4± 1.5 0.7±0.3 17.3±5.2

2 A 28.4 98 3.5 0.55± 0.02 0.2±0.1 0.1± 0.1 0.0±0.0 0.2±0.3

3 A 28.4 178 6.3 0.34± 0.01 11.9±11.0 10.8± 10.1 1.1±0.9 36.5±14.5

4 A 15.1 98 6.5 0.15± 0.07 15.5±13.6 13.9± 12.6 1.7±1.1 113.4±74.8

5 A 28.4 126 4.4 0.35± 0.02 27.2±11.8 25.7± 11.4 1.5±0.4 17.3±5.0

6 A 28.4 144 5.1 0.39± 0.03 16.5±11.6 15.8± 11.1 0.7±0.5 9.4±2.2

7 A 28.4 155 5.5 0.35± 0.03 45.2±12.0 43.1± 11.1 2.1±0.9 12.3±5.9

8 B 18.2 128 7.1 0.36± 0.10 3.4±5.5 2.9± 4.8 0.5±0.7 19.9±3.3

9 B 18.2 156 8.6 0.16± 0.03 8.1±10.9 7.0± 9.9 1.2±1.0 303.3±59.7

10 B 18.2 138 7.6 0.20± 0.02 0.5±0.5 0.3± 0.3 0.2±0.1 91.0±39.1

11 B 18.2 117 6.5 0.17± 0.04 8.7±7.3 7.6± 6.5 1.1±0.9 367.4±214.9

12 B 18.2 131 7.2 0.17± 0.04 15.4±15.2 14.2± 14.4 1.2±1.0 201.4±80.2

13 B 18.2 71 3.9 0.56± 0.03 0.1±0.2 0.1± 0.1 0.0±0.0 1.7±2.7

14 B 18.2 136 7.5 0.18± 0.02 4.2±3.5 3.3± 3. 0.9±0.5 167.8±50.8

15 B 18.2 152 8.4 0.16± 0.06 9.1±6.8 8.0± 6.2 1.1±0.6 250.7±140.0

16 B 18.2 132 7.3 0.28± 0.03 15.4±5.5 13.5± 5.1 1.9±0.6 108.8±85.8

17 B 18.2 67 3.7 0.62± 0.01 0.1±0.1 0.1± 0.0 0.0±0.0 0.1±0.0

18 B 18.2 147 8.1 0.09± 0.01 34.9±16.7 28.4± 12.1 6.5±4.7 523.1±209.8

19 B 18.2 112 6.2 0.24± 0.08 0.7±0.4 0.4± 0.3 0.3±0.1 111.7±45.3

20 B 18.2 55 3.0 0.49± 0.03 0.7±0.3 0.6± 0.3 0.1±0.0 0.5±0.4

The period of measurement for PDD and total melt was from 4 to 10 August, 2014, except for the stake 4 (4 to 8 August, 2014). Values for reflectivity and characteristics of impurities

are mean ± standard deviation of measurements at each stake.
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FIGURE 4 | Microscopic photographs of impurities (A) and pigmented

ice algae, Ancylonema nordenskioldii (B), collected at site B on Glacier

No. 31. Inner structure of the cells is damaged due to preservation in frozen

state.

(mean 118µL m−2, Table 1). A. nordenskioldii accounted for
more than 95% of the total biomass in all of the samples.

The Landsat 8 satellite image showed that surface reflectivity
varied across the ice surface of the glacier (Figure 5). On Glacier
No. 31, the areal mean of the band 2 reflectivity in the bare ice
area of the glacier was 0.29. Figure 5B shows that the middle part
of the glacier between Sites A and B appeared light- to deep-blue
corresponding to the reflectivity from 0.16 to 0.26, while the area
below Site A appeared green to light-blue corresponding to the
reflectivity from 0.30 to 0.40, which is higher than that in the
middle part. The area above Site B appeared light-blue, green,
or yellow corresponding to the reflectivity from 0.30 to 0.50,
which is also higher than that in the middle part. This altitudinal
variation in the reflectivity was also apparent in the ice surface of
the other glaciers surrounding Glacier No. 31 (Figure 5B).

DISCUSSION

There was a significant negative correlation between PDDF and
surface reflectivity (r = −0.882, P < 0.001; Figure 6). Since

FIGURE 5 | Landsat-8 satellite image (OLI) acquired on 11 August, 2014

over Glacier No. 31 and surrounding glaciers in the Suntar-Khayata

Range in Russian Siberia. (A) RGB natural color composite image of band

2, 3, and 4, (B) band 2 reflectivity image of the glacier ice area highlighted with

a color look-up-table. Black and white areas denote non-glacier area and

snow area derived from band 5 image, reflectively. The color scale is assigned

to digital number (DN) and reflectivity (Ref) as shown by the color bar.

the variation in PDDF can be attributed to difference in relative
importance of individual energy components providing energy
for melt (Hock, 2003), this significant correlation suggest that
the absorbed shortwave radiation determined by surface albedo
is the main energy source for melting on the glacier. This is
consistent with the previous heat-balance studies on the glacier,
which reported that radiation was the key factor in melting and
contributed about 60–80% of energy used for melting (Koreisha,
1963; Grave, 1964). The negative correlation between PDDF and
surface reflectivity is consistent with the relationship detailed by
Hock (2003). The clean surfaces with higher reflectivity (>0.45)
corresponded to a range of PDDF from 3.0 to 3.9mm w.e. K−1

day−1 (mean: 3.5mm w.e. K−1 day−1). In contrast, the dark
surfaces with lower reflectivity (<0.20) corresponded to a range
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FIGURE 6 | Relationship between positive degree-day factor and

surface reflectivity on the ice surfaces of Glacier No. 31. Open and solid

markers indicate data from Sites A and B, respectively. Error bars indicate

standard deviation of measurements of surface reflectivity at each stake.

of PDDF from 6.5 to 8.6mm w.e. K−1 day−1. This indicates that
the melt rate of each surface is largely affected by the albedo of
the surface, and that surface melting is enhanced ∼1.6–2.6 times
by the albedo reduction.

Although the ground instantaneous field-of-view (GIFOV) of
the Landsat satellite image (1 pixel: 30 × 30m) is considerably
larger than our in-situ observations (a field-of-view spot 8.9 cm
in diameter), each pixel of the satellite image indicates the
spatial mean of surface reflectivity, thus, we used the relationship
between the in-situ surface reflectivity and PDDF to compute
PDDF over the entire glacier from the satellite image. The
PDDF can be calculated using the reflectance obtained from
surface reflectance at the band-2 wavelength range (α2) with a
regression as

PDDF = −8.2337α2 + 8.7092 (R2 = 0.817).

From the areal mean reflectance (0.290) of the band 2-Landsat
image, the areal mean PDDF of Glacier No. 31 can be obtained as
6.3mm w.e. K−1 day−1, which is approximately 1.8 times greater
than that of the clean surfaces with reflectivity higher than 0.45. It
should be noted that this is approximate estimation without any
atmospheric or geographical calibrations or correction, such as
atmospheric transmittance or satellite sensor orientation relative
to glacier surface slope and aspect.

Both at the study sites and glacier scales there is large spatial
variability in ice surface reflectivity, but neither Pearson’s linear
correlation (r) nor Spearman’s rank-order correlation coefficient
(rs) was statistically significant between surface reflectivity and
abundance of total impurities on the ice surfaces (Table 2,
Figure 7A). Although impurities are major factors in reducing

TABLE 2 | Pearson’s correlation coefficients (r) among surface reflectivity,

mass abundances of total and each fraction of impurities, and algal

biomass on the ice surface of Glacier No. 31.

Surface Total Mineral Organic

reflectivity impurities fraction fraction

Total impurities (g m−2) −0.2832 – – –

Mineral fraction (g m−2) −0.2398 0.9962 – –

Organic fraction (g m−2) −0.5431 0.7109 0.6471 –

Algal biomass (µL m−2 ) −0.7729 0.2324 0.1648 0.7042

Bold number indicates that the value is above statistical significant level (Probability <

0.05).

surface albedo on glaciers, this indicates that the albedo is not
simply determined by total amount of impurities on the ice
surface.

Comparison between surface reflectivity and abundance of
each fraction of impurities revealed that the surface reflectivity
is not correlated with the mineral fraction of the impurities,
but significantly correlated with the organic fraction and algal
biomass on the surface (Table 2). Although the scatter plot
of the algal biomass against reflectivity does not show a
clear linear relationship (Figure 7B), Spearman’s rank-order
correlation test also showed their significant correlation (rs = −

0.944, P < 0.001). This correlation between algal biomass
and surface reflectivity suggests that the ice algae and their
derived organic matter are the most effective constituents in
the impurities on albedo reduction. The lack of correlation
between surface reflectivity and total mass of impurities is
probably due to a smaller density of the organic matter including
algal cells compared with that of inorganic impurities. In fact,
correlations among mass of the fractions showed that there is
a significant positive correlation between total impurities and
mineral fraction, but no correlation between total impurities and
organic fraction or algal biomass (Table 2). Furthermore, some
of the data showing higher reflectivity and greater impurities in
Figure 7A can also be explained by greater contents of white
or transparent mineral particles, such as quartz and feldspar, in
the impurities. Such mineral particles have a greater mass but
lower light absorbency compared with other colored minerals
or organic matter and were observed to be contained in the
impurities by microscopy.

The dominance of A. nordenskioldii at all of the stakes
suggests that the cells of this taxon substantially affect ice
surface albedo. The cells of A. nordenskioldii were filamentous
with 1–20 cells containing dark-reddish pigments, which appear
to affect the surface reflectivity as dark-reddish ice surface
was visibly observed in the field (Figure 2C). Furthermore, as
microscopy revealed, other dark-colored organic matter in the
impurities is probably composed of humic substances, residues
remaining after bacterial decomposition of algal cells (Takeuchi
et al., 2001a). These properties of algal cells and organic matter
appeared to be optically effective on surface albedo reduction of
bare ice compared with those of inorganic constituents.

A. nordenskioldii is an ice environment specialist alga,
commonly observed on the bare ice surface of glaciers in Alaska,
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FIGURE 7 | Relationships between surface reflectivity and total

impurities (A) and algal biomass (B) on the ice surfaces of Glacier No.

31. The correlation (Spearman’s rank-order correlation, rs) was not statistically

significant between surface reflectivity and total impurities (A), but significant

between surface reflectivity and algal biomass (B). Open and solid marks

indicate Sites A and B, respectively. Error bars indicate standard deviation of

measurements of surface reflectivity and impurities at each stake.

Greenland, Svalbard, Altai, and Himalayas (e.g., Kol, 1942;
Yoshimura et al., 1997; Takeuchi, 2001; Takeuchi et al., 2001b,
2006a; Remias et al., 2009, 2011; Yallop et al., 2012). In particular,
it is often dominant in algal communities on the ice surface
of glaciers in the Arctic regions (Takeuchi, 2001; Uetake et al.,
2010; Remias et al., 2011). The algae have also been reported to
affect surface albedo on the bare ice area of Greenland Ice Sheet
(Yallop et al., 2012; Lutz et al., 2014). On the other hand, the total
impurities (cryoconite) are more effective on albedo reduction
rather than algae on glaciers in northwest Greenland and a glacier

in Alaska (Takeuchi, 2002; Takeuchi et al., 2014). Thus, the ice
algae do not always determine the surface albedo of the glaciers.
This is probably due to relative importance of each constituent
in the impurities for albedo reduction, which probably results
from the different conditions for algal growth and of mineral
supply on the surface. For example, the cryoconite can be the
main constituent for albedo reduction on the glaciers where
there are abundant mineral particles and favorable conditions for
filamentous cyanobacteria on the surface.

The ice algae possibly cause large variations in surface melting
because they can grow rapidly when the conditions are favorable.
The algal biomass on the surface can increase seasonally, and
vary spatially depending on surface conditions (Takeuchi, 2013).
In contrast, cryoconite (abundance of total impurities) usually
do not show seasonal increase on the glacier surface although it
shows spatial variations caused by physical redistribution with
running melt water or formation of surface ice structure (e.g.,
Takeuchi, 2009). This is probably due to the longer residence
time of cryoconite granules on the surface compared with that
of algae, since they are aggregations of different components
and require a longer time for formation. Furthermore, there
are a number of physical, chemical, and biological conditions
affecting cryoconite formation, for example, availability of
mineral particles, growth of filamentous bacteria, and production
of extracellular polymeric substance (EPS) by other microbes
(Langford et al., 2014). Therefore, the surface albedo on the
studied glacier in Siberia may drastically change with time and
space by algal growth.

The spatial variation in reflectivity on the glaciers in Suntar-
Khayata Range revealed by the satellite image (Figure 5B) is
probably due to the heterogeneous distribution of the algae on
the glacial surface. It showed lower reflectivity in the middle part
compared with in the lower and upper areas of the ice surface
of Glacier No. 31 and surrounding glaciers. Such a variation
in reflectivity was also visibly obvious in the photograph of the
glacier (Figure 2A). Ice algae probably tended to be abundant in
the middle part of the glaciers and their effect on surface albedo
is likely to be more significant in the area. Although factors
affecting the growth of A. nordenskioldii are not exactly clear,
such algal distribution has been observed on other polar and sub-
polar glaciers, such as an Alaskan glacier (Takeuchi, 2013) and a
Greenland glacier (Uetake et al., 2010). According to the reports,
the less abundance of algae near the terminus has been explained
by running meltwater. Since the amount of meltwater is greater
at lower altitudes, the algal cells on the surface would be washed
out and their biomass decrease as altitude decreases. In the upper
parts of glaciers, frequent snow falls can inhibit algal growth since
the algae require solar radiation for photosynthesis.

Although our results showed a significant correlation among
algal biomass, surface reflectivity, and PDDF, the actual dynamics
of each surface impurity and melt rate on the bare ice could
be more complicated. Ice structures on a surface layer, such
as the development of weathering crust and sub-surface melt
water flow, may also affect redistribution of impurities, algal
growth, and surface albedo (Müller and Keeler, 1969; Irvine-
Fynn and Edwards, 2014). Melt water hydrology affected by
the temperature distribution in glacial ice can also affect the
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microbial community and its activity on the surface (Edwards
et al., 2011). Furthermore, there are interactions among physical,
chemical, and biological components on the ice surfaces and
these surface processes can result in spatial and temporal
variabilities in melt rate on the bare ice (Irvine-Fynn et al., 2014).
In fact, inter-annual variability of the ice surface conditions of
Glacier No. 31 was recognized in the earlier work (Koreisha,
1963). In order to evaluate the effect of impurities on surface
melting across spatial, regional, and geographical scales, it is
important to conduct further studies focusing on the growth of
algae on the ice surface, and transportation and redistribution
processes of each constituent of impurities. Furthermore,
multispectral remote sensing and imaging spectroscopy of algae
distribution have a potential to evaluate these processes since
these techniques can determine unambiguously the biological
absorption features in snow (Painter et al., 2001; Takeuchi et al.,
2006b).

CONCLUSIONS

Impurities on the bare ice surfaces of a glacier in the Sutar-
Khayata Range of Russian Siberia were revealed to consist
of minerals, cryoconite granules, and ice algae. We found a
significant correlation between PDDF and surface reflectivity,
indicating that, as would be expected, the albedo reduction
enhanced ablation. Impurities enhanced the ice melting by 1.6–
2.6 times greater than that of clean ice surface on the glacier
during the short period of the melt season studied here. However,
the surface reflectivity was not correlated with the total ormineral

abundance of the impurities, but was significantly correlated with
the organic fraction or algal biomass in the impurities. This
suggests that the albedo of the ice surfaces on this glacier is mainly
determined by the abundance of algae and their derived organic
matter on the ice surface. The algae were mostly dominated by
A. nordenskioldii, which is common ice alga observed on glaciers
in Arctic regions. The growth of the ice algae is likely to be
responsible for spatial variations in surface albedo on the glacier
although the factor affecting the algal growth is uncertain.
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