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Lake Qinghai is the largest lake in China and situated in an important climate-sensitive

zone on the northeastern margin of the Tibetan Plateau, making it an ideal place to study

the environmental evolution of the northwest China as well as the interplay between

the Asian monsoon and the westerlies in the late Quaternary. In this study, detailed

rock magnetic measurements were carried out on the offshore soils of Lake Qinghai.

The dry grassland samples have higher magnetic susceptibility than that of the wet

grassland samples, which suggests a higher concentration of magnetic minerals in the

dry grassland and lower concentration of magnetic minerals in the wet grassland near

the lake edge. The high concentration of the superparamagnetic (SP) magnetic minerals

related to pedogenesis may also contribute to the high magnetic susceptibility of the

dry grassland. The low magnetic susceptibility of the wet grassland may result from the

conversion of strongly to weakly magnetic minerals and/or the dissolution of magnetic

minerals. In addition, the Hm/(Gt+Hm) value has a positive correlation with the water

content, thus can be taken as an effective proxy for the soil moisture.

Keywords: Lake Qinghai, rock magnetism, pedogenesis, goethite, hematite

INTRODUCTION

The iron-bearing minerals in rocks and sediments are sensitive to a range of environmental
processes, which makes it possible to associate magnetic signals with environmental processes.
Environmental magnetism is an interdisciplinary subject involving the application of rock
and mineral magnetic techniques to situations in which the transportation, deposition, and
transformation of magnetic grains are influenced by environmental processes in the atmosphere,
hydrosphere, and lithosphere (Thompson and Oldfield, 1986; Oldfield, 1991; Verosub and Roberts,
1995; Liu et al., 2012). In recent decades, with the rapid development of the techniques for
identifying magnetic minerals, environmental magnetism has been employed as an effective tool
in the researches of sedimentation processes and environmental evolution recorded in marine and
lacustrine sediments, loess-paleosol sequences, and soils (Kämpf and Schwertmann, 1983; Heller
and Evans, 1995; Dekkers, 1997; Maher et al., 2002; Evans and Heller, 2003; van der Zee et al., 2003;
Deng et al., 2007; Liu et al., 2007; Zhang et al., 2007; Ao et al., 2010).

Lake Qinghai, situated in the sensitive semi-arid zone between the Asian summer monsoon
controlled (humid) and the westerlies influenced (arid) areas of Asia, is an ideal site to study
the competing influence of two climate system in the late Quaternary (An et al., 2012). Previous
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FIGURE 1 | Schematic location map showing the location of Lake Qinghai. Red five-pointed star, the sampling site.

studies have provided valuable information about the climatic
changes and their responses to the interplay between the
westerlies and the monsoons during the last 36 ka. For example,
geochemical and palynological results from sediment cores
QH85-14 (Kelts et al., 1989; Lister et al., 1991) and QH2000 (Liu
et al., 2003; Shen et al., 2005) suggested a transition towards
warm climate in Lake Qinghai at around 14.5 ka. The magnetic
susceptibility of the bottom sediments of Lake Qinghai also has
been employed as an important climatic proxy in paleoclimate
researches (e.g., Wu, 1993; Shen et al., 2001; Zhang et al., 2002).
The rock magnetism research was, however, rarely taken in the
sediments of Lake Qinghai, which hindered the explanation
of environmental magnetism in paleoclimatic studies of Lake
Qinghai. The magnetic mineral assemblage in sediments is first
influenced by weathering and transport process in the catchment
areas. After deposition, it will also be altered by chemical and
biogenic processes at the water/sediment interface and during
diagenesis (Snowball, 1993; Verosub and Roberts, 1995; Demory
et al., 2005). The catchment provides a significant amount of
erodible material to the bottom sediment in the lake. As a result,
the investigation of modern magnetic minerals in the catchment
will enrich our understanding of the migration and alteration
processes of magnetic minerals, which is necessary for further
application of environmental magnetism in paleoclimatic studies.

In this study, we carried out detailed rock magnetic
measurements on the offshore sediments of Lake Qinghai to
improve our understanding of the different magnetic properties
related to different sedimentary processes. We further discussed
the validity of Hm/(Gt+Hm) as a proxy for the climate in the
offshore sediments.

FIGURE 2 | Field photographs of the offshore soils of Lake Qinghai. (A)

the lake edge; (B) the slop between 210m and 230m; (C) the wet grassland

sample at 28m; (D) the dry grassland sample at 230m.

GEOLOGICAL SETTING AND SAMPLING

Geological Setting
Lake Qinghai is located on the northeastern margin of the
Tibetan Plateau and west of the Chinese Loess Plateau (Figure 1),
with an altitude of 3194m above current sea level. As the
largest saline lake in China, the onset of today’s permanent Lake
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FIGURE 3 | Temperature dependence of magnetic susceptibility (χ–T) of typical samples. (A–D) samples directly heated to 700◦C, (E–H) the sample at 12m

stepwise heated to 700◦C, (I–L) the sample at 250m stepwise heated to 700◦C. Red solid, blue dashed lines represent the heating (cooling) curves.

Qinghai may occur at 11.5 ka, due to a major shift to humid
climate throughout the Holocene (Jin et al., 2015). During the
last century, the surface of the lake changed from 4980 km2

to 4260 km2 in 2006 (Li et al., 2007). The modern lake has
a water volume of 71.6 km3 and a catchment area of about
29,660 km2. The lake is currently fed by 5 major rivers, including
Buha, Shaliu, Hargai, Quanji, and Heima Rivers (Figure 1). The
primary runoff supply is from the Buha River in the west, which
supplies annually∼50% of the total runoff and∼70% of the total
sand loading to the lake. From 1951 to 2005, the average annual
temperature was ∼1.2◦C within the catchment of Lake Qinghai.
From 1959 to 2011, the annual mean precipitation was 383mm,
about 1/3–1/4 of the annual evaporation (Jin et al., 2011). The
lake is frozen from late October to April.

The catchment of Lake Qinghai comprises of predominantly
late Paleozoicmarine limestone and sandstones, Triassic granites,
Mesozoic diorite and granodiorite with minor late Cambrian
phyllite and gneiss LIGCAS (1979). Two terraces formed since
the last glaciation. The first terrace is mainly wet grassland which
is exposed due to the retreat of the lake level thousands of
years ago. The soils on the second terrace are developed on the
sediments of the Lake Qinghai between 70 and 90 ka (Liu and
Lai, 2010), but the sediments have been evolved into soils.

Field Sampling
We took samples at the end of August when the lake level was
the highest. The sampling sites (36◦32′37.75′′ N, 100◦42′38.18′′)
were located to the southeast of the Lake (Figure 1). Samples
were collected along a 330-meter-long transection from the lake
edge to the dry grassland (Figure 2). From 0 to 210 m, the
ancient offshore alluvial/lacustrine sediments consist of brown-
black sapropel with clay or silt (Figures 2A,C). There is a 10-
meter-high slope from 210 to 230m (Figure 2B). The samples
of surface soils were collected from 230 to 330m from the dry
gray grassland on the second terrace (Figure 2D). Altogether, 41
samples were collected from the offshore sediments and soils in
the southeast of Lake Qinghai.

METHODOLOGY

Magnetic Methods
The raw samples were oven dried at 45◦C and grinded
into powder for magnetic measurements. The low-frequency
magnetic susceptibility (χlf) and high-frequency magnetic
susceptibility (χhf) was measured with a Bartington MS2 meter
at a frequency of 470 and 4700Hz, respectively. Further, the
frequency-dependent susceptibility χfd percent was calculated:
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FIGURE 4 | FORC diagrams of typical samples. (A) 12m, (B) 85m, (C) 210m, and (D) 250m.

χfd percent = (χlf–χhf)/χlf × 100%. About 300mg powdered
samples were used for measuring temperature-dependent
susceptibility (χ–T) curves with a MFK1 FA susceptometer
equipped with a CS-3 high-temperature furnace (AGICO,
Brno, Czech Republic). Measurements were done in an argon
atmosphere from room temperature up to 700◦C and back to
room temperature (heating and cooling rate of ∼6.5◦C/min).
The magnetic field during measurement was 300A/m (peak-to-
peak). The susceptibility of each sample was corrected for the
background χ (furnace tube correction) using the CUREVAL 8.0
program (AGICO, Brno, Czech Republic). Isothermal remanent
magnetization (IRM) acquisition curves were measured with
an AGICO JR-6A dual speed spinner magnetometer in a
magnetically shielded room (residual field <150 nT). IRMs
were imparted with an impulse magnetizer (ASC, model IM-
10-30). IRM acquisition curves consist of 32 field steps with a
maximum field of 2.0 T. We define SIRM as IRM acquired at
2000 mT, IRM−300 as IRM acquired at back-field 300 mT after
being saturated at 2000 mT, and S-ratio as -IRM−300/SIRM. The
anhysteretic remnant magnetization (ARM) was imparted in a
100 mT alternating field with a superimposed 0.05 mT direct
bias field using a D2000T Alternating Field Demagnetizer, and

measured with JR-6A dual speed spinner magnetometer. The
χARM was calculated by dividing the ARM intensity by the DC
field strength (0.05 mT).

First-order reversal curve (FORC) diagrams were measured
by a Vibrating Sample Magnetometer System (VSM 3900) with
a maximum field of 1 T or 1.5 T. 120 FORCs were measured
for each sample following the method of Roberts et al. (2000).
The FORC diagrams are processed by the FORCinel software
(Harrison and Feinberg, 2008) with a smoothing factor (SF)
of 7.

The χ-T curves were measured at the Institute of Tibet
Plateau Research, Chinese Academy of Sciences, CAS,
Beijing, and FORC diagrams at the Institute of Geology
and Geophysics, CAS, Beijing. The rest of the measurements
were performed at the Institute of Earth Environment, CAS,
Xi’an.

Non-magnetic Methods
To obtain the gravimetric water content, powdered samples were
oven dried at 105◦C for 2 days. We define water content as: the
weight of lost water/ the weight of raw sample × 100%. The
diffuse reflectance spectroscopy was carried out using Cary 4000
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FIGURE 5 | Isothermal remanent magnetization (IRM) acquisition

curves. (A) 12m, (B) 85m, (C) 210m, and (D) 250m. The dashed vertical

lines at 300 mT are shown to aid distinction between low- and high-coercivity

portions of the IRM acquisition curves.

UV-Vis spectrophotometer at a scan rate of 30 nm/min from
350 to 750 nm in 0.5 nm steps and the second derivative was
calculated with the Cary UV software.

RESULTS

χ-T Curves
The decrease of χ between 250 and 450◦C in the heating
curves of dry grassland samples (Figures 3C,D) may result from
the inversion of ferrimagnetic maghemite to weakly magnetic
hematite (Sun et al., 1995; Deng et al., 2006), suggesting the
presence of a small amount of maghemite. The χ–T curves
of all samples are characterized by a major peak at 450–
600◦C (Figures 3A–D), which is due to the appearance of new
strongly magnetic minerals during heating. Step-wise heating
of the samples suggests that the peak is related to the thermal
transformations during laboratory heating (Figures 3E–L). The
major drop in magnetic susceptibility at 520–600◦C indicates the
presence of magnetite in both the samples and the newly formed
minerals (Figure 3). The transformation of iron oxyhydroxides
(e.g., goethite) to a strongly magnetic phase with the presence of
organic carbon occurred at 450–600◦C according to the stepwise
heating curves (Hanesch et al., 2006).

FORC Diagrams
FORC diagrams can be used to identify and discriminate
between the different components in a mixed magnetic mineral
assemblage (Roberts et al., 2000, 2014). FORC diagrams of
samples at 12 and 85m show closed contours that diverge
along the Hc axis, suggesting the character of interacting SD

FIGURE 6 | Second derivative spectra of typical samples. (A) wet

grassland samples, and (B) dry grassland samples.

behavior (Figures 4A,B). The FORC diagrams of the sample
at 210m show wide vertical distribution along Hu axis with
open contours (Figure 4C), which may indicate a PSD behavior.
In addition, the low coercivity peak near the origin of the
FORC diagram indicates the signals of superparamagnetic (SP)
grains. The FORC diagrams of the sample at 250m show two
evident contour peaks of both SD and SP grains (Figure 4D),
which may imply the presence of both SD and SP grains
(Roberts et al., 2000).

IRM Analyses
All IRM acquisition curves undergo a major increase at low field
and the acquired IRM reaches more than 85% of the SIRM at
300 mT (Figure 5), suggesting the dominance of low-coercivity
magnetic minerals. But the IRM is not totally saturated up to 2.0
T (Figure 5), suggesting the presence of low concentration
of high-coercivity magnetic minerals (e.g., hematite or
goethite).

DRS Results
The difference in ordinate between the trough and the next peak
at a longer wavelength, the band intensity, has been used as
a proxy for the true band amplitude (Scheinost et al., 1998).
In the second derivative of the reflectance spectrum, the band
intensity at 424 nm (I424) and 535 nm (I535) is proportional to the
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FIGURE 7 | Variations of environmental magnetic parameters vs. depth. (A) low field magnetic susceptibility (χlf ), (B) percentage of frequency dependent

susceptibility (χfd), (C) susceptibility of the anhysteretic remanent (χARM), (D) saturation isothermal remanent magnetization (SIRM), (E) S-ratio, (F) the value of

hematite/(goethite+hematite), (G) χARM/SIRM, (H) χARM /χlf.

concentration of goethite and hematite, respectively (Scheinost
et al., 1998; Torrent et al., 2007). For most samples in this
study, the I425 is more evident than I535 (Figure 6). Nonetheless,
the band intensity is not the real concentration of the goethite
or hematite, because the reflectance can be affected by other
admixed minerals (the matrix effect) (Deaton and Balsam, 1991;
Ji et al., 2002). The I535 of the wet grassland is not evident
compared to that of the dry grassland, which may be related
to the low concentration of the hematite in the wet grassland.
In this study, we calculated the ratio Hm/(Gt+Hm) along the

transection following the regression functions of Torrent et al.
(2007):

Y=−0.133+ 2.871∗ X−1.709∗ X2,
Where, Y=Hematite / (Hematite+ Goethite),
X= I535/ (I425+ I535).

We only calculated the value of Y, which is not the absolute
content of hematite or goethite, because the calculation of
the citrate-bicarbonate-dithionite (CBD) extractable Fe remains
controversial (Torrent et al., 2007; Buggle et al., 2014).
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FIGURE 8 | (A) Dearing plots and (B) King plots. Black (gray) dots represent

wet (dry) grassland samples.

DISCUSSION

The χ-T curves imply the presence of magnetite in both wet and
dry grassland, but that of maghemite only in the dry grassland.
The high value of χfd also suggests the presence of SP grains in the
dry grassland. The FORC diagrams illustrate the dominant SD
behavior in the wet grassland and the presence of SP, SD, and PSD
grains in the dry grassland. The IRM and S-ratio suggests that
the low-coercivity magnetic minerals dominate in all the samples
(Figures 5, 7E). Nonetheless, the IRM is not saturated at 2000
mT due to the presence of high-coercivity magnetic minerals
(e.g., hematite and goethite). Additionally, the band intensity in
the second derivative of the reflectance spectrum also provides
evidences for the presence of goethite and hematite in the dry
grassland and only goethite in the wet grassland (Figure 6).

When magnetite dominates the magnetic properties of the
sediments, the Dearing plot and King plot can be used to estimate
the grain size of the ferrimagnets (King et al., 1982; Dearing
et al., 1997). Both the wet grassland and dry grassland samples
are located in the coarse stable SD (SSD) region (Figure 8A),
but the dry grassland samples show more SP contribution. The
dry grassland samples are within 0.1–0.2 µm size range while

FIGURE 9 | Scatter plots of (A) the distance from the lake edge vs.

Hm/(Gt+Hm), and (B) water content vs. Hm/(Gt+Hm).

most of the wet grassland samples within 0.2–1 µm (Figure 8B).
Inter-parameter proxies formagnetic grain-size variation, such as
χARM /χlf andχARM/SIRM, are sensitive to climate (Bloemendal
and Liu, 2005). For example, χARM /χlf and χarm/SIRM of surface
soils on the Chinese Loess Plateau are proportional to annual
mean temperature and annual mean precipitation (Nie et al.,
2014). But in this study, this two values increased from wet
grassland to dry grassland (Figures 7G,H), opposite to the results
of Nie et al. (2014), which may be due to the different conversion
process of magnetic minerals between the surface soils of Chinese
Loess Plateau and the offshore sediments of Lake Qinghai.

The χlf, χfd percent, χARM, and SIRM show similar trend
along the transection from the lake edge to the dry grassland.
All the parameters are relatively low in the wet grassland,
but increase sharply in the dry grassland (Figures 7A–D).
Consequently, we speculate that the wet grassland has lower
concentration of total magnetic minerals than the dry grassland.
The χlf of wet grassland is usually less than 15 × 10−8 m3/kg.
The value is of the same magnitude as the χ of typical lacustrine
sediments in northwest China, such as Pliocene and Holocene
sediments of Lake Qinghai (Jun and Kelts, 2002; Fu et al., 2015),
the Oligocene-Miocene lacustrine sediments in the Xining basin
(Fang et al., 2015) and Oligocene lacustrine sediments in the
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Lanzhou basin (Zhang et al., 2015). The χlf of dry grassland is
usually over 35 × 10−8 m3/kg, the same as the loess deposited in
the Lake Qinghai region (Hunt et al., 1995; Lu et al., 2004; Wang
et al., 2015).

The different magnetic properties of the wet and dry grassland
may be linked to different conversion process of magnetic
minerals, pedogenesis in the dry grassland, and/or the dissolution
of magnetic minerals in the wet grassland. Magnetic minerals
could be converted to goethite or other weakly magnetic minerals
owing to the high water content of wet grassland, but converted
to ferrimagnetic minerals in dry grassland, a hypothesis raised
by Nie et al. (2016) based on the magnetic properties of red-
clay on the Chines Loess Plateau. However, the different mineral
transform route needs detailed study in the future.

The pedogenic fine-grained (SP+SD) maghemite is
responsible for the enhanced magnetic susceptibility in the
paleosols on the Chinese Loess Plateau (Zhou et al., 1990; Deng
et al., 2000; Liu et al., 2007). In this study, the high magnetic
susceptibility, the presence of SP and SD grans and maghemite
may point to pedogenesis in the dry grassland. Besides, the
dissolution of the magnetic minerals in the wet grassland may
also contribute to the low magnetic susceptibility. The unusually
low χlf, χARM, and SIRM compared to the dry grassland soils
may be due to the removal of most magnetite particles. What
is more, the soils of dry grassland have a much wider magnetic
grain-size distribution (SP, SD, and PSD particles), while the
soils of wet grassland have a narrow grain-size distribution
(SD particles). The several lines of evidence suggest that the
pedogenesis and magnetic mineral dissolution are potential
causes of different magnetic properties between the wet and dry
grassland.

Of a variety of magnetic minerals, the hematite (α-Fe2O3)
and goethite (α-FeOOH) which commonly occur in soils
and sediments, are especially sensitive to the environmental
variation. The transformations from ferrihydrite to hematite and
goethite are favored by opposite climate conditions. Hematite
is interpreted as being indicative of warm and dry conditions,
while goethite indicative of cold and wet conditions (Kämpf and
Schwertmann, 1983; Ji et al., 2004). Consequently, the ratio of
hematite to goethite (Hm/Gt) or hematite to (goethite+hematite)
(Hm/(Gt+Hm)) has been used as a climatic proxy in the
paleoclimate studies (Ji et al., 2002; Zhang et al., 2007, 2009; Hao
et al., 2009).

In this study, the Hm/(Gt+Hm) value has an indistinctive
positive correlation (R2 = 0.37, Figure 9A) with the distance
from the lake edge (Figure 7F), which may be due to the
abnormal water content of four samples at 115, 145, 175, and 200
m. The I535 of the wet grassland is not evident compared to that of
the dry grassland, which may be related to the low concentration

of the hematite in the wet grassland. However, the Hm/(Gt+Hm)
value has a much more positive correlation with the water
content (R2 = 0.61, Figure 9B), despite the low concentration of
the hematite in the wet grassland. High value of Hm/(Gt+Hm)
corresponds to low soil moisture, and vice versa. This suggests
that the Hm/(Gt+Hm) value can be taken as an effective proxy
for soil moisture, in line with the results from a 600 km E-
W transect in south Brazil (Kämpf and Schwertmann, 1983).
In paleoclimate studies, the Hm/(Gt+Hm) value (or Hm/Gt)
was mostly regarded as an indicator of precipitation (Harris and
Mix, 2002; Ji et al., 2004; Zhang et al., 2007). For example, the
hematite/goethite (Hm/Gt) ratios are lower in paleosols (formed
during wet period) than in loess (formed during dry period)
(Ji et al., 2004). Modern process [this study and the results of
Kämpf and Schwertmann (1983)] proves the validity for the use
of Hm/Gt ratios in the paleoclimate researches.

CONCLUSIONS

In this study, detailed rock magnetic measurements were carried
out in the offshore soils of Lake Qinghai. The results show a
higher magnetic susceptibility of dry grassland samples than
that of wet grassland, suggesting a higher concentration of
magnetic minerals in the dry grassland and lower concentration
of magnetic minerals in the wet grassland near the lake
edge. The different magnetic properties of the wet and dry
grassland may be linked to different conversion process of
magnetic minerals, pedogenesis in the dry grassland, and/or the
dissolution of magnetic mirerals in the wet grassland. Besides, the
Hm/(Gt+Hm) value can be taken as an effective proxy for soil
moisture.
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