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Recently, many novel concepts originated in dynamical systems or information theory

have been developed, partly motivated by specific research questions linked to

geosciences, and found a variety of different applications. This continuously extending

toolbox of non-linear time series analysis highlights the importance of the dynamical

complexity to understand the behavior of the complex Earth’s system and its

components. Here, we propose to apply such new approaches, mainly a series of

entropy methods to the time series of the geomagnetic field. Two datasets provided

by Chambon la Foret (France) and Niemegk (Germany) observatories are considered

for analysis to detect dynamical complexity changes associated with geomagnetic

jerks, the abrupt changes in the first temporal derivative of the Earth’s magnetic field.

The results clearly demonstrate the ability of Shannon and Tsallis entropies as well as

Fisher information to detect events in a regional manner having identified complexities

lower than the background in time intervals when geomagnetic jerks have already been

reported in the literature. Additionally, these information measures are directly applicable

to the original data without having to derive the secular variation or acceleration from the

observatory monthly means. The strength of the proposed analysis to reveal dynamical

complexity features associated with geomagnetic jerks can be utilized for analyzing not

only ground measurements, but also satellite data, as those provided by the current

magnetic field mission of Swarm.

Keywords: Earth’s magnetic field, geomagnetic observatories, geomagnetic jerks, dynamical complexity,

information measures, Shannon entropy, non-extensive Tsallis entropy, Fisher information

1. INTRODUCTION

A geomagnetic jerk can be defined as a sudden change (a V-shape like change) in the slope of the
geomagnetic secular variation, i.e., the first time derivative of the Earth’s magnetic field (Mandea
et al., 2010). Geomagnetic jerks were first reported by Courtillot et al. (1978). Various techniques
have been applied in order to detect these events in geomagnetic field time series (Mandea et al.,
2010). Usually, geomagnetic jerks are particularly visible in the eastward (Y) component of the
geomagnetic field, which is supposed to be the less affected by external fields (Qamili et al., 2013).
Although the phenomenon has been studied for many years, its origin is not yet fully explained.
These phenomena are difficult to be studied, because of their small amplitudes and the overlap of
their frequency range with the effect of solar-dependent external variations. Recently, Brown et al.
(2013) analysing geomagnetic observatory data from 1957 to 2008, suggested that jerk amplitudes

http://www.frontiersin.org/Earth_Science
http://www.frontiersin.org/Earth_Science/editorialboard
http://www.frontiersin.org/Earth_Science/editorialboard
http://www.frontiersin.org/Earth_Science/editorialboard
http://www.frontiersin.org/Earth_Science/editorialboard
http://dx.doi.org/10.3389/feart.2016.00071
http://crossmark.crossref.org/dialog/?doi=10.3389/feart.2016.00071&domain=pdf&date_stamp=2016-06-30
http://www.frontiersin.org/Earth_Science
http://www.frontiersin.org
http://www.frontiersin.org/Earth_Science/archive
https://creativecommons.org/licenses/by/4.0/
mailto:gbalasis@noa.gr
http://dx.doi.org/10.3389/feart.2016.00071
http://journal.frontiersin.org/article/10.3389/feart.2016.00071/abstract
http://loop.frontiersin.org/people/191391/overview
http://loop.frontiersin.org/people/313372/overview


Balasis et al. Entropy Analysis of Magnetic Jerks

present some possible periodic trends across Europe and North
America. This behavior may be related to the 6-yr periods
detected independently in the secular variation and length-of-day
(Gillet et al., 2010; Holme and de Viron, 2013).

Geomagnetic jerks have been detected around 1900, 1901,
1913, 1915, 1925, 1932, 1949, 1969, 1971, 1978, 1979, 1980, 1986,
1991, 1992, 1999, 2003, 2005, 2007 (Brown et al., 2013, and
references therein). These established global and regional jerk
epochs reported in different studies do not fully characterize the
observations, as until recently only magnetic observatory data
have been available, with a very sparse data set for even the
best observed events. This is crucial when assessing the potential
occurrence of global events. The new magnetic satellite data offer
a new way to investigate these events, on global scale (Mandea
and Olsen, 2006). Since the beginning of this century, more
regional geomagnetic jerks are proposed, the last one for 2014
(Torta et al., 2015).

A number of methods originated in (non-equilibrium)
statistical mechanics and information theory exist that have
recently found successful applications to quantitatively studying
complexity in various components of the complex system Earth
(Balasis et al., 2013). For instance, entropy techniques provide
convenience for detecting and capturing useful information of
geophysical time series having the advantages of simplicity,
extremely fast calculation, and antinoise ability (Balasis et al.,
2009; Vallianatos, 2011; Vallianatos and Telesca, 2012). In
particular, entropy measures have been proven their character
as versatile tools to detect dynamical complexity in geomagnetic
activity indices (Balasis et al., 2008, 2009, 2013). Herein, entropy
measures have been applied to monthly means of geomagnetic
observatory data to detect dynamical complexity signatures
associated with geomagnetic jerks.

2. DATA PROCESSING

In order to apply the methods proposed in the following and to
demonstrate their applicability to characterize geomagnetic jerks,
we have considered data from two geomagnetic observatories:
Chambon La Foret (CLF), and Niemegk (NGK). This choice is
motivated twofold. Firstly, we take advantage of our intimate
knowledge of both observatory data (including changes in base-
lines). Secondly, these observatories are situated close enough to
record the same changes in the geomagnetic field, but still far
enough (of the order of 1000 km) to record specific tiny changes,
if any.

The considered time series represent the temporal variation of
the geomagnetic field recorded for more than a century (1890–
2013). For our analysis, we have used the monthly means of
the Y component of the geomagnetic field, which is the one
less affected by external fields (Qamili et al., 2013). Figure 1A
shows the evolution of themonthlymeans for both observatories,
as well as their first and second derivatives (Figures 1B,C),
respectively, estimated by convolution with the derivative of a 33
points Gaussian kernel with σ = 5, encompassing a 32 points
window of the time series within ±3σ . The quality of data is
not the same from the beginning of observations to the very

recent ones, due to changes in instrumentation, measurements
methodologies, sites etc. The same general trend is observed in
both observatories, however, with a different secular variation
rate over the considered interval.

3. ANALYSIS METHODS

Different complexity measures have been proposed during
the growth of the scientific field of complex systems. Either
as Boltzmann-Gibbs entropy, in physics, or as Shannon
entropy, in information engineering, Boltzmann-Gibbs-Shannon
entropy has long been considered as the main tool for the
analysis of the complexity characteristics of a wide variety
of systems and signals. However, during the last years, a
growing interest for information has arisen in theoretical
physics and interdisciplinary system/signal analysis leading to
the definition of many different information / entropy metrics.
We focus here on three quite popular complexity measures;
namely, Boltzmann-Gibbs-Shannon entropy, Tsallis entropy and
Fisher information. Entropy and information are considered
complementary quantities, in the sense that lower complexity
(indicating higher information content, higher order, lower
ambiguity, lower randomness, etc.) corresponds to decrease
of entropy and accordingly increase of information. In the
following, basic theory and formulas concerning the employed
complexity measures are briefly presented.

3.1. Boltzmann-Gibbs-Shannon Entropy
Let sk = s (tk) be a discrete measured variable, with tk = kT,
k = 1, 2, ...,K, and T being the sampling period. One can then
define a set of N disjoint but adjacent intervals (bins) spanning
the observed range of values of the time series {sk}, denoted as
{xn} , n = 1, 2, ...,N. Let also P =

{

p (x1) , p (x2) , ..., p (xN)
}

be

a finite discrete probability distribution, with
∑N

n=1 p (xn) = 1,
that describes the probabilities for the samples of the time series
to belong to each one of theseN bins; the probability for a sample
of the time series to belong to the n − th bin can be denoted as
p (xn). The informational content of the normalized probability
distribution P is given by Shannon’s information measure as
Shannon (1948):

Hsh = −Ksh

N
∑

i=1

p (xi) log
[

p (xi)
]

, (1)

where Ksh, is a positive constant (it merely amounts to a choice
of a unit of measure, however it is usually set to 1). The choice
of a logarithmic base corresponds to the choice of a unit for
measuring information (Shannon, 1948).Hsh has been forwarded
by Shannon as a measure of information, choice and uncertainty.

This is often referred to as the Boltzmann-Gibbs-Shannon
entropy, since the degree of disorder of a thermodynamic
system is measured by the Boltzmann-Gibbs entropy, S =

−kB
∑W

i=1 pi ln pi, where kB is the Boltzmann constant and pi
stands for the probability for the system to be in its i − th
microstate, that is the i − th cell of its phase space; W is the
total number of possible microstates of the system (Shannon,
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FIGURE 1 | From top to bottom, (A) the evolution of the monthly means of the Y component of the geomagnetic field at CLF and NGK observatories

(1890–2013) (B) the corresponding first time derivative of the Y component and (C) the corresponding second time derivative of the Y component,

respectively. Single lines denote single jerk events while shaded areas denote time intervals that global jerks are centered following the jerk events identification by

Brown et al. (2013).

1948; Pathria, 1972; Lin and Ou, 2012). However, for brevity we
will use the term “Shannon entropy” in the rest of the paper.
The decrease in Shannon entropy is attributed to increase of the
information content, of the order, or equivalently to decrease
of complexity. Shannon entropy is recognized as a basic tool
for the description of information behavior and complexity
of physical, sociological, economic, technological, etc. systems
and their observables, like time series of measurable quantities
characterizing them.

3.2. Non-extensive Tsallis Entropy
Long-range spatial interactions or long-range memory effects
may be observed in a vast variety of complex systems influencing
their behavior. A very interesting class of such systems is
formed by those characterized by non-extensive statistics. These
systems share a very subtle property: they violate the main
hypothesis of Boltzmann-Gibbs (B-G) statistics, i.e., ergodicity.
Inspired by multifractals concepts, Tsallis (Tsallis, 1988, 1998,
2009; Abe and Okamoto, 2001) has proposed a generalization
of the B-G statistical mechanics, which covers systems that
violate ergodicity, systems the microscopic configurations

of which cannot be considered as (nearly) independent.
This generalization is based on non-additive entropies, Sq,
characterized by an index q which leads to a non-extensive
statistics (Tsallis, 2012),

Sq = kB
1

q− 1

{

1−

N
∑

i=1

[

p (xi)
]q

}

, (2)

where p (xi) are the probabilities associated with the value bins
xi, as defined in Section 3.1, N is their total number and q is a
real number. The value of q is a measure of the non-extensivity
of the system. Notice, that in the limit q → 1 non-extensive
statistics converges to the standard, extensive, B-G statistics (Abe
and Okamoto, 2001).

The entropic index q characterizes the degree of non-
extensivity reflected in the following pseudo-additivity rule,
where A and B are statistically independent subsystems:

Sq (A+ B)

kB
=

Sq (A)

kB
+

Sq (B)

kB
+

(

1− q
) Sq (A)

kB

Sq (B)

kB
. (3)
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For subsystems that have special probability correlations,
additivity

SB−G (A+ B) = SB−G (A) + SB−G (B) (4)

is not valid for SB−G, but may Equation (3) occur for Sq
with a particular value of the index q. Such systems are
referred to as non-extensive (Tsallis, 1998, 2009). Note also
that, although Rényi entropy (Rényi, 1961) and Tsallis entropy
seem to be connected by a simple transformation, they should
not be confused since they correspond to different physics and
are derived from different principles. Characteristically, Rényi
entropy is an additive complexity measure like Shannon entropy
in contrast to Tsallis entropy (Abe, 2002).

We clarify that the parameter q itself is not a measure of
the complexity of the system but measures the degree of non-
extensivity of the system. The value of q represents the strength of
the long-range correlations governing the dynamics of the system
(Lin and Ou, 2012). On the other hand, the time variations of the
Tsallis entropy, Sq, for a given q quantify the dynamic changes of
the complexity of the system. Lower Sq values characterize signals
with lower complexity.

The cases q > 1 and q < 1, correspond to sub-extensivity,
or super-extensivity, respectively. We may think of q as a bias-
parameter: q < 1 privileges rare events, while q > 1 privileges
prominent events (Zunino et al., 2008). In the case of noisy time
series, the value of q is often selected such that the signal is better
discriminated from the noise and this value of the entropic index
is considered to be related to the (multi)fractal structure of the
signal(s) under study, which in turn reflects the deepmicroscopic
or mesoscopic (generically non-linear) dynamics in the phase
space of the underlying system (Tsallis, 1998). However, if
possible, the appropriate value of q should be selected by other
independent means, like the best fit to models or distributions
expressing the dynamics of the underlying system (Tsallis and
de Albuquerque, 2000; Minadakis et al., 2012a,b; Potirakis et al.,
2013; Vallianatos, 2013; Efstathiou et al., 2016; Michas et al.,
2016).

3.3. Fisher Information
Fisher information was first introduced as a representation of
the amount of information that can be extracted from a set of
measurements (or the “quality” of the measurements) (Fisher,
1925; Mayer et al., 2006). Fisher information is also a powerful
tool to investigate complex and non-stationary signals (Martin
et al., 1999; Telesca et al., 2011), permitting the detection of
significant changes in the behavior of non-linear dynamical
systems and the characterization of complex signals generated
by these systems (Martin et al., 1999, 2001; Vignat and Bercher,
2003).

Considering, here too, a finite discrete probability distribution
defined for the real values of a time series (c.f. Section 2), the so
called Fisher Information Measure (FIM) in its discrete form is
most often (e.g., Martin et al., 1999, 2001; Humeau et al., 2008;

Cabezas and Karunanithi, 2008) expressed as:

Ix =

N−1
∑

n=1

[

p (xn+1) − p (xn)
]2

p (xn)
, (5)

where p (xi) are the probabilities associated with the value bins
xi , as defined in Section 3.1, N is their total number, while p (xn)
and p (xn+1) are the probabilities corresponding to two successive
bins.

FIM has been used as a measure of the state of disorder
of a system or phenomenon, behaving inversely to entropy,
that is when order increases, entropy decreases, while Fisher
information increases (Mayer et al., 2006; Potirakis et al., 2011,
2012). Furthermore, Fisher information presents the so called
“locality” property in contrast to the “globality” of entropy,
referring to the sensitivity of FIM in changes in the shape of the
probability distribution corresponding to the measured variable,
not presented by entropy (Fath and Cabezas, 2004; Frieden, 2004;
Mayer et al., 2006).

4. RESULTS

The dynamics of complex signals are often revealed by locally
estimating a complexity measure on a short time-window
running along the whole length of the time series. The time series
of the monthly means of the Y component of the geomagnetic
field were studied by sliding time-windows of different lengths,
specifically of 32, 64, and 128 consecutive data points, with a
step of 1 data point. Note that the probability density function
of each time-window of the processed time series, necessary for
the complexity measures calculations, was approximated by a
discrete probability distribution through binning (normalized
histogram). Specifically, the simple linear binning was adopted;
a fixed number of bins equispaced across the dynamic range
of the processed data window, i.e., between the minimum and
maximum values of the analyzed data excerpt, was used. Note
that if empty bins exist, these are excluded renormalizing the
frequency of appearance for the remaining number of bins. The
optimum number of bins, for all three cases of 32/64/128 value
time-windows and both time series was determined to be equal
to 12 (Scott, 1979, 2015; Freedman and Diaconis, 1981). In
estimating Tsallis entropy, the entropic index was considered to
be equal to 1.8 (Balasis et al., 2011a,b). Note that the specific
entropic index value provides an optimum discrimination of the
analyzed magnetic time series from possible noise contamination
in the sense that entropy changes are more clearly revealed.
Moreover, it has been found that it might be a universal choice
not only for the non-extensive study of geomagnetic data but in
general for geophysics, space and solar physics, since it has been
found to best fit the non-extensive study of magnetic storms,
solar flares, earthquakes and pre-earthquake electromagnetic
emissions (Balasis et al., 2011a,b). The results for the CLF and
NGK datasets, covering the time period from January of 1890 to
December of 2013, are presented in Figures 2–4 for the various
sliding windows.
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FIGURE 2 | From top to bottom, Shannon entropy, Tsallis entropy and Fisher information for the monthly means of the Y component at CLF (left

column) and NGK (right column) observatories using a sliding window of 32 points. Single lines denote single jerk events while shaded areas denote time

intervals that global jerks are centered following the jerk events identification by Brown et al. (2013).

Brown et al. (2013) found relative peaks in the global number
of jerk occurrences in 1968–1971, 1973–1974, 1977–1979, 1983–
1985, 1989–1993, 1995–1998, and 2002–2003 with the suggestion
of further poorly sampled events in the early 1960s and late 2000s.
Moreover, they have identified a number of single geomagnetic
jerks in 1900, 1901, 1913, 1915, 1925, 1932, 1949, 1969, 1971,
1978, 1979, 1980, 1986, 1991, 1992, 1999, 2003, 2005, 2007 based
on a literature search (Table 1 of Brown et al., 2013). Building on
the specific findings by Brown et al. (2013), we examine whether
these events could be revealed by the complexity measures used
in this study.

In Figure 2, where the results for the window of 32months are
presented, we note five prominent peaks after 1950 (minimums
in both Shannon and Tsallis entropies and maximums in Fisher
information) seen both at CLF and NGK around 1958 and in
the time interval of 1968–1971 as well as in the intervals of
1989–1993, 1999–2000, and 2002–2003. The four time intervals
identified here as candidates for jerk occurrences were also

provided as global events identifiers in the study of Brown
et al. (2013), while year 1958 was invoked only by a very
few studies in the literature (e.g., Golovkov et al., 1989). We
also observe four more noticeable common low complexity/
high information peaks in the time period from the start
of our analysis period until 1950. These are found over the
intervals 1896–1898, 1901–1902 and in 1908 and 1947; note
that a global jerk in 1901 is mentioned in Brown et al. (2013).
Apart from the shared standing out low complexity / high
information peaks, the 32 months window analysis yields some
further main peaks different between the two observatories,
while the CLF shows less than the NGK. All the peaks which
clearly discriminate from the background are summarized in
Table 1. Note that, for almost all cases, minor low complexity
/ high information peaks are found in each observatory’s
analysis results in the place of the unary major peaks of the
other one. Moreover, some minor peaks can be identified at
epochs different of those mentioned in Table 1; some of them
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FIGURE 3 | From top to bottom, Shannon entropy, Tsallis entropy and Fisher information for the monthly means of the Y component at CLF (left

column) and NGK (right column) observatories using a sliding window of 64 points. Single lines denote single jerk events while shaded areas denote time

intervals that global jerks are centered following the jerk events identification by Brown et al. (2013).

coincide with times when a geomagnetic jerk has been eventually
denoted.

The temporal evolution of the complexity measures values
shown in Figure 3, for an analysis window of 64 months,
confirms the findings of Figure 2 at both observatories for
the intervals of 1893–1896, 1900–1902, 1958–1959, 1967–1969,
1989–1992 and 1999–2000. The entropy results for the longest
time-window used in this study (128 months) are depicted in
Figure 4 and they are in good agreement with the peaks identified
in Figure 2; note that, due to the length of the time-window
we cannot make any inferences after 2003 for the 128 months
window analysis.

The roughness of the complexity measures, as expected, is
reduced for wider analysis windows (64 and 128 months long).
As a result, fewer minor peaks are identifiable, while major
peaks become more prominent. Furthermore, the change in the
window length leads, in some of the cases, to slight temporal
shift of the observed low complexity / high information regions.
It is worth noting that, in several cases of already reported jerk

occurrences the complexity calculated for the corresponding time
periods is found to be lower than the background. However,
lower complexity is also observed in years when no events
have been reported in the literature. Interestingly, some of
these complexity lows, like the 1958–1960, the 1891–1893 and
the 1896–1898 ones, seem to be systematically revealed by the
performed analyses, either in both (the 1958–1960 one) or in
NGK observatory (the 1891–1893 and the 1896–1898 ones). It
is worth mentioning that the 128 months window analysis of the
NGK data reveals a strong singularity in 1893, which leads to an
extremely high peak of the Fisher information measure, so high
that almost masks all other high information peaks.

5. CONCLUSIONS AND DISCUSSION

The detection of dynamical complexity in time series originated
from various complex systems is one of the foremost problems
in science (including the disciplines of physics, medicine,
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FIGURE 4 | From top to bottom, Shannon entropy, Tsallis entropy and Fisher information for the monthly means of the Y component at CLF (left

column) and NGK (right column) observatories using a sliding window of 128 points. Single lines denote single jerk events while shaded areas denote time

intervals that global jerks are centered following the jerk events identification by Brown et al. (2013).

and economics). In geophysics and in particular in the field
of geomagnetism, accurate detection of the dissimilarity of
complexity between normal and abnormal geomagnetic states
(e.g., pre-jerk activity and magnetic jerks) could shed light on
the origin and mechanisms associated with these events. In
this paper, we analyze monthly means of the Y component of
Earth’s magnetic field at CLF and NGK observatories from 1890
to 2013 by introducing a variety of information measures in
the search of appropriate and effective entropic quantities to
study the complex character of the dynamics of the geomagnetic
field. Shannon entropy, non-extensive Tsallis entropy and Fisher
information sensitively show the complexity dissimilarity among
different “physiological” (normal) and “pathological” (magnetic
jerks) states. They imply the emergence of two distinct patterns:
(1) a pattern associated with geomagnetic jerks, which is
characterized by a higher degree of organization or lower
complexity, and (2) a pattern associated with normal periods,
which is characterized by a lower degree of organization or higher
complexity.

The information measures used here have the ability to
be directly applicable to the time series of the monthly
geomagnetic observatory means without the need to calculate

either their corresponding secular variation or acceleration.
These information measures are not quantifiers of the intensity
of the geomagnetic jerks but they actually reveal the dynamical
complexity associated with the events, i.e., how the complexity
or the degree of organization of the system Earth varies with
time. Moreover, by analysing data from the two observatories we
could claim that (a) some of the jerk occurrences have a more
widespread character than others, since they have been observed
at both places and (b) some events are associated with a far more
ordered system than others, since their corresponding entropy
variations attain extremely low values (c.f. the event identified
just before the interval of 1968–1971). This fine characterization
of the geomagnetic field can bring new elements in interpretation
of its temporal variations, as geomagnetic jerks or rapid secular
variation fluctuations (Mandea and Olsen, 2009).

Recent studies, Korte et al. (2009) and Qamili et al.
(2013) investigate the second time derivative for characterizing
geomagnetic jerks. We can invoke two specific issues linked
to the use of the geomagnetic field second time derivative.
Firstly, the second derivative, depending on the algorithm used
to calculate it, may produce values characterized by large,
fast variations, which mask the internal signal. Therefore,
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TABLE 1 | Magnetic jerks revealed through Shannon entropy (Hsh), Tsallis

entropy (Sq) and Fisher information (FIM) by analysing the CLF and NGK

Y-component datasets for different lengths of sliding windows.

32 64 128

CLF NGK CLF NGK CLF NGK

1891–1893 1893 1891–1893 1893

1896–1898 1896–1898 1896

1901–1902 1901–1903 1900–1902 1900 1900–1902

1903–1805 1904

1908 1908 1908

1914 1915 1915

1919

1939

1947 1947 1944–1947 1944

1949 1949 1949 1949 1949

1955

1958–1959 1959–1960 1958 1959 1959 1959–1960

1964

1967–1971 1968–1971 1967–1968 1968–1969 1968 1968

1974

1980–1981 1980

1985–1986 1985

1989–1993 1989–1993 1989–1992 1990 1989 1988–1989

1995–1998 1995–1998

1999-2000 1999 1999–2001 1999–2000

2002–2003 2002–2003 2003 2003

The bold years correspond to years of time-periods for which jerk events have already

been reported in the literature. Years in italic correspond to the less prominent among the

noticeable peaks.

particular attention should be paid in selecting an appropriate
algorithm in order to minimize these large variations side
effect. Secondly, the second derivative is particularly susceptible
to random instrumentation noise, especially if compared to
dynamical complexity measures. Note that the observatory
time series used in this study are characterized by different
instrumentation noise over the considered period, with a clear
progressing improvement with time (e.g., after the 50’ s, the
proton magnetometer was introduced for measuring the field
intensity, while in the 80’ s the DI-flux was also included in
standard geomagnetic observatory practice for measuring the
absolute values of declination and inclination), whichmay render
the results of the second time derivative less reliable than the
results of the complexity measures.

Methods for detection and characterization of geomagnetic
jerks divide broadly into two categories, the fitting of piecewise
polynomials (particularly straight line fits) and the application
of wavelet analysis techniques. To obtain a more robust and
unbiased detection and characterization of such events, wavelet
analysis has been proposed, improved and applied (for details
see Mandea et al., 2010). Wavelets are very useful to detect
and date a jerk, without a priori information, and with high
accuracy (within a couple of months, when series of monthly
means are investigated). Here, we introduce another class of

techniques for jerk detection based on entropy measures. The
proposed method presents indeed the advantage to detect jerks
with at least the same accuracy as the wavelet transforms. Besides,
entropies offer the advantage to infer more robust analysis results
in comparison to wavelets when dealing with unevenly spaced or
gappy time series, since the scalogram representation suffers from
edge effects mainly influencing the longer time scales (Torrence
and Compo, 1998).

Future work will involve analysis of geomagnetic field data
derived from observatories around the world using similar
statistic quantifiers in order to assess the global character of
jerk events. Moreover, magnetic satellite data will be considered
from ESA’s Swarm mission. Together with previous satellite data
(Oersted, SAC-C, CHAMP) continuous models over the recent
space magnetic missions will be proposed by different teams. We
aim to investigate thesemodels (e.g., CHAOS series—Finlay et al.,
2015) and the potential of the various complexity measures to
reveal magnetic jerk signatures in these long space observations.
The proposed “magnetic virtual observatory” (Mandea and
Olsen, 2006) will be again considered with an improvement in
processing of the data (Saturnino et al., 2015).
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