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A commentary on

Commentary: Is the Neoproterozoic oxygen burst a supercontinent legacy?

by Nédélec, A., and Borisova, A.Y. (2015). Front. Earth Sci. 3:80. doi: 10.3389/feart.2015.00080

We thank Nedelec and Borisova (2015) for giving us the opportunity to clarify our data and
(derived) conceptual model. The purpose of Macouin et al. (2015) was to propose a new approach
to explain the Neoproterozoic Oxygenation Event. It should be recalled that among the recent and
abandoned hypotheses for the oxidation of the atmosphere, rise of less reduced gases (or more
oxidized) remains one of the most frequently invoked (i.e., Kasting, 2013).

We illustrate our model with data acquired on the Neoproterozoic Socotra biotite granite (SBG)
thought to be related to one of the subduction zones that surrounded Rodinia around 780 Ma. The
main question raised by Nedelec and Borisova (2015) concerns the primary origin of hematite and
ilmenite in this granite and the oxidized character of the emitted gases.

Before discussing the oxide assemblage, we answer on the use of the hematite-magnetite buffer,
for which we refer to Sun et al. (2015) and Botcharnikov et al. (2008). Indeed, the magnetite-
hematite assemblage does not permit to give a precise value of 1FMQ, but as stated by these
authors, the assemblage is a classical indicator of high oxygen fugacities and hence of an oxidized
magma. As mentioned in the comment, it is true that, recently, fO2 from gas has been shown to
possibly diverge from the source magma contrary to what was commonly thought previously (i.e.,
Burgisser and Scaillet, 2007). Nevertheless, these authors have estimated the deviation from the
redox state of the magma source by no more than 1.5 log unit at maximum. In our case, we can still
invoke oxidized gases since our estimated fO2 from sources is significantly higher (1FMQ+ 4/5).

Concerning the oxide assemblage found in the SBG, we first state that magmatic or late
magmatic origin of (titano-poor) hematite has already been reported. For example, Carvalho and
Janasi (2012) found hematite in the 610 Ma Pedra Branca syenite (from a magmatic arc) in Brazil.
These authors described a primary assemblage of hematite, ilmenite and magnetite. They conclude
that this coexistence implies oxidized conditions and probably high oxygen fugacities. One of the
authors herself reports an example of magmatic hematite in the unalteredWashita granite (Nedelec
et al., 2015). In this publication, the hematite, in the unaltered granite, is interpreted as due to a
change in oxygen fugacity in the magma “without any influence of a hydrous fluid.” Also, contrary
to what Nedelec and Borisova (2015) advance in their comment, Broska and Petrik (2011) do not
state that hematite is always post magmatic but that the reactions could begin in the magmatic
stage.
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FIGURE 1 | Corrected caption of Figure 7 of Macouin et al. (2015).

Photomicrographs of magnetite from CS46 sample (Socotra Biotite Granite,

Neoproterozoic terrains, Oman) (A) Photomicrographs of subhedral crystals of

magnetite (black minerals) trapped in a poikiloblast crystal of biotite (brown

mineral). (B) Recognition of treillis-like shaped hematite within the crystal of

magnetite under reflected light microscopy. Note that hematite is present in

the ilmenite and at the fringe of the ilmenite lamellae (C) Back-scattered

electron imaging on the internal structure of oxide, using a scanning electron

microscope (SEM), reveals multiple grains of magnetite-hematite separated by

elongated crystals of ilmenite. (D) Oriented needles or patches of ilmenite

outline the contact with biotite. (E,F) Interpreted magmatic events depicted

from microscopic and SEM observations. Ilmenite and hematite lamellae

developed along cleavage planes of magnetite, due to magmatic

oxy-exsolution processes. Magnetite was fractured and divided.

Nedelec and Borisova (2015) affirm that liquidus phase
hematite was uniquely found in an experimental peralkaline
residual (Edgar, 1974), and therefore not possible with natural
samples. More recent literature reports formation of liquidus
phase hematite on both, for example, I-type Chinese granite,
remelted and recrystallized (Liaw et al., 2006) and a synthetic
analog of a ferrobasaltic melt of the Skaergaard intrusion
(Botcharnikov et al., 2008). These authors even demonstrate
that they produce hematite in their experiments only at
high oxygen fugacities (fO2 > 2.5). Both these experiments
involve formation of titano-poor hematite (and not of
stoichiometric hematite) as it is interpreted in the SBG.
This interpretation is strongly suggested by the reversible
behavior of the thermomagnetic curves with Néel temperatures
on the order of 620◦-630◦C (see samples CS27-CS30 from

Figure 4, Macouin et al., 2015) combined with the petrological
observations.

We are aware that hematite can be secondary in granites due
to oxygenated fluids. Such secondary hematite has been described
in different forms described in Nedelec et al. (2015), or associated
with chloritized biotite (Just and Kontny, 2012). A typical mark
of hematitization (maghemitization) of titano-magnetite is to
display a progression from rims toward core center (often with
the core untouched) or along the fractures (Figure 4H of Broska
and Petrik, 2011). Curved cracks are also a typical feature of
maghemitization (Figure 15 of Haggerty, 1991; Figure 3C of
McEnroe and Brown, 2000). It is worth noting that in the SBG,
the hematite does not appear into any of these forms and marks
of alteration are absent (Figure 1).

In the SBG, as described by Haggerty (1991), the C4 stage
is probably reached in the samples presenting the assemblage
of magnetite-ilmenite-hematite. It is difficult to assess whether
the hematite lamellae replaced previous thin ilmenite lamellae
(as expected for C4 stage) or are secondary as Nedelec and
Borisova (2015) argue. Nevertheless, in Figure 1B, thick ilmenite
lamellae are seen to both contain hematite and be fringed by
hematite, indicating the C4 stage. While we think that this
stage was attained during the formation of the granite, late
magmatic deuteric oxidation (above 600◦C) could not completely
be excluded. In this case, such a high temperature alteration
would indicate high fugacity of oxygen at least in the fluids that
were involved during the end or just after the crystallization as
likely occured in the Malani red rhyolites described by Torsvik
et al. (2001).

Furthermore, contrary to what Nedelec and Borisova
(2015) claim, porphyries generally present hematite-magnetite
assemblages and their primary origin has recently been evoked by
Sun et al. (2013, 2015). As stated by Sun et al. (2013), intergrowths
of magnetite-hematite, such as the ones we exposed in our paper
(Macouin et al., 2015), are not often studied and may represent
a challenge. It appears clearly that their occurrences are rare and
therefore represent an unusual feature. The fact that hematite is
ignored or systematically referred as secondary might be a bias in
the studies.

Finally, the hematite in the SBG seems to be likely primary
and our model remains a possible valid explanation for the NOE.
This interesting discussion emphasizes the need to scrutinize this
type of mineralogical assemblage in further studies. Additional
methods could be used for that, such as paleomagnetic direction
to decipher the synchronicity in hematite and magnetite
formation or in-situ geochemistry.
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