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Sub-seasonal to seasonal (S2S) retrospective forecasts from three global coupled

models are used to evaluate the predictability of the onset and demise dates of the

rainy season over monsoonal regions. The onset and demise dates of the rainy season

are defined using only precipitation data. The forecasts of the onset and demise dates

of the rainy season are based on a hybrid methodology that combines observations and

simulations. Although skillful model precipitation predictions remain challenging in many

regions, our results show that they are skillful enough to identify onset and demise dates

of the rainy season in many monsoon regions at sub-seasonal (∼30 days) lead-times

in retrospective forecasts. We verify sub-seasonal prediction skill for the onset and

demise dates of the rainy season over South America, East Asia, and Northern Australia.

However, we find low prediction skill for the onset and demise of the rainy season on

sub-seasonal scales over the Indian monsoon region. This information would be valuable

to sectors related to water management.
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INTRODUCTION

The deterministic prediction of the evolution of monsoon systems has proven to be a challenging
task (Charney and Shukla, 1982; Webster et al., 1998; Krishnamurthy and Shukla, 2012). The most
successful deterministic predictions ofmonsoon systems to date consist of predicting the large-scale
component of the flow, defined as the primary modes of variability (Zhou and Zou, 2010; Zuo et al.,
2013; Wang et al., 2015). However, regional features of monsoon precipitation anomalies remain
highly unpredictable (Zhou and Zou, 2010).

Although it is challenging to predict the full evolution ofmonsoon systems, there is evidence that
it is possible to predict the onset dates of monsoon systems on sub-seasonal to seasonal timescales
using large-scale monsoon indexes (Vellinga et al., 2013; Alessandri et al., 2015). Alessandri
et al. (2015) showed that the onset of the Indian summer monsoon (ISM) can be predicted
on sub-seasonal timescales using retrospective forecasts with the prediction system developed at
Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC). They used two different indices
based on large-scale features of the ISM and found that the onset date can be predicted skillfully as
much as a month in advance. Vellinga et al. (2013) investigated the forecast skill for the onset date
of the monsoon in the Sahel region of West Africa and verified probabilistic skill at 2–3 months
lead-time using the operational seasonal forecasting system of the UKMet Office (GloSea4).
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In contrast, attempts to represent the onset and demise of
monsoons using regional features, such as simulated gridded
wind and precipitation, have proved to be more challenging
(Cherchi and Navarra, 2003; Li and Zhang, 2009). Both Cherchi
and Navarra (2003) and Li and Zhang (2009) evaluated the
representation of the onset and demise of the Asian summer
monsoon in global circulation models using Atmospheric Model
Intercomparison Project (AMIP) style simulations. These studies
found that the models performed better at representing the onset
and demise of the Asian summer monsoon when the onset
and demise were defined in terms of monsoon circulation (e.g.,
gridded 850 hPa kinetic energy or wind), rather than in terms of
gridded precipitation.

In this work we take a different approach from previous
studies. Instead of predicting the onset (or demise) dates of
the monsoon system itself, which is a complex large-scale
phenomenon, we will predict the onset and the demise dates of
the rainy season associated with a particular monsoon system.
Althoughmonsoon indices can provide useful information about
the large-scale properties of monsoon systems, the utility of
this knowledge is somewhat limited at the local level. Our
method, however, allows us to determine the characteristics
of the rainy season over every grid point, providing the user
with information at the same spatial resolution as the dataset
used. In addition, instead of relying completely on the model’s
ability to represent the onset and demise of the rainy season
we use a hybrid methodology that combines observations and
simulations by appending themodel’s predictions to observations
prior to the initialization date of the forecasts. Using this
methodology, we demonstrate that it is possible to make skillful
sub-seasonal forecasts of the onset and demise dates of the
rainy season for certain monsoon systems. Based on this forecast
skill, our methodology provides a complimentary forecast to the
prediction of large-scale monsoon indices that can be used at the
local level.

Accurate prediction of these dates are not only relevant to
predicting the onset of the monsoon system as a whole but can
also provide valuable information for decision makers. Sectors
related to water management such as agriculture, management
of waterborne diseases, and electric energy generation would
greatly benefit from the prediction of the dates of onset or
demise of monsoons. The objective of this work is to evaluate
how far in advance model re-forecasts perform better than using
climatological values to forecast the onset and demise of the
rainy season over some of the monsoonal regions. We will show
that models produce skillful predictions of the onset and demise
dates of the rainy season on sub-seasonal timescales for several of
these regions. Section “Data and Methods” presents the data and
methods used in this study. The forecast of the onset of the rainy
season is explored in Section “The Onset of the Rainy Season”.
Section “The Demise of the Rainy Season” explores the forecast
of the demise of the rainy season. Section “Precipitation Bias
and Time Series Discontinuity” investigates the role of simulated
precipitation bias in the predictability of the onset and demise
dates of the rainy season. A discussion and the conclusions
are presented in Section “Precipitation Bias and Time Series
Discontinuity”.

DATA AND METHODS

Onset and Demise Dates of the Rainy
Season in Observations
The onset and demise dates of the rainy and dry seasons are
characterized here based on a method designed to capture a
seasonal change in the precipitation regime and adapted to
be used with model forecasts or hindcasts. This method uses
only precipitation data and was developed by Bombardi and
Carvalho (2009), based on the method proposed by Liebmann
andMarengo (2001). In this work we use daily precipitation from
the Climate Prediction Center Unified Precipitation (CPC_UNI)
from 1979 to 2014 (Xie et al., 2007; Chen et al., 2008) and daily
precipitation estimates from the Tropical Rainfall Measuring
Mission (TRMM; Huffman et al., 2007) from 1998 to 2013 (see
Appendix).

As the procedure for determining onset and demise has
undergone several improvements since it was originally proposed
we present a full description of the methodology here (illustrated
in Figure 1). The onset or demise date for each grid point is
calculated from Equation 1:

S (n) =

n∑

i=t0

(P (i) − PC) (1)

where S(n) is the accumulated precipitation deviation from
the annual mean at day “n,” P(i) is the daily precipitation at
day “i,” “PC” is the annual daily average precipitation (annual
climatological precipitation rate), and “t0” is the starting date for
the calculations. The calculation starts on t0 up to a full year (N
= t0 + 364). Therefore, n ranges from t0 to N. The calculation of
the onset of the rainy season always starts from the same day of
the year for every year.

The choice of t0 depends on the region of interest. For
example, if the region of interest is the Indian subcontinent, one
could use a date in early April as t0. Since according to the Indian
Meteorological Department the onset of the rainy season does
not start before May 10th, a date in early April would be well
within the dry season. However, if the region of interest is a large
domain such as the entire continent of South America or Africa,
t0 has to vary from grid point to grid point. The reason for that
is that the onset and demise dates over all of South America and
Africa will vary substantially from place to place.

In previous studies (Bombardi and Carvalho, 2009; Bombardi
et al., 2015, 2016) we used the minimum and maximum dates
of the climatological annual cycle of precipitation as t0 dates
fromwhich to determine the onset and demise dates, respectively.
Although this procedure works well for South America, it
generates too many false onsets for India. This problem occurs
because the minimum of the annual cycle sometimes falls
immediately after the end of the rainy season in the Indian
monsoon regions. Therefore, a better way to define t0 is to find
the dates of minimum and maximum of the first harmonic of the
climatological annual cycle of precipitation with t0 for the onset
(demise) corresponding to the minimum (maximum).

If we start the calculation during the dry season, S (black line
in Figure 1) will initially assume negative values. Once the rainy
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FIGURE 1 | Example of the calculation of the onset of the rainy season

for a single year for a grid point over central India. The left axis shows

observed precipitation values and the right axis shows the values of S, S

smoothed (Ss), and the first derivative of Ss. The horizontal dashed line shows

the zero line for accumulated anomalies and the vertical dashed line shows the

date of the onset of the rainy season.

season starts, there will be an inflection in S. In order to avoid
false onsets or demises, the S curve is smoothed (orange line in
Figure 1, Ss) using a 3-point moving average and we take the first
derivative of the smoothed S [green line in Figure 1, d(Ss)/dt]
curve. Finally, starting from t0, the first day when the derivative
crosses from negative to positive values is considered the onset
of the rainy season, as long as the positive values persist for 3
days. Rainy season demise is calculated in a similar manner, but
now t0 is selected during the wet season. The first day when
the derivative crosses from positive to negative values (and the
negative values persists for 3 days) is considered the demise of
the rainy season. To further ensure that there are no false onset
or demise dates, after the onset and demise dates are calculated
we exclude outliers. We define outliers as values that are 3 times
the interquartile range above or below the median of the time
series of onset or demise dates.

Since we always calculate S using a full year of data, the
last year in the dataset might create a boundary condition
issue. To solve this problem we apply a boundary constraint
to the smoothing of the time series that approximates the
“minimum roughness” boundary constraint (see Mann, 2004).
This constraint is applied by simply mirroring the precipitation
data at the end of the time series in both “x” and “y” axes. That
is, we simply add extra data points to the end of the time series.
This extension of the time series is only used to assure that the
smoothing of the S curve is correct at the boundaries.

The method does not require all days of the year; it simply
requires a reasonable choice for the starting date t0 and the
climatological value for the annual daily average precipitation
PC. The method does require, however, a dataset that covers
the period between t0 and the onset (or demise) of the rainy
season. We choose to use a full year in our calculations simply
to guarantee that the onset or demise dates can be defined for
every grid point, since the rainy season varies substantially from

region to region. This is done to guarantee that the methodology
is applied consistently at every grid point.

Onset and Demise Dates of the Rainy
Season in Hindcasts
We use simulations from three global coupled models
participating in the Sub-seasonal-to-Seasonal (S2S)
project (Robertson et al., 2015): the China Meteorological
Administration (CMA) model (Wu et al., 2010, 2014); the
Japan Meteorological Agency (JMA) model (http://www.jma.
go.jp/jma/jma-eng/jma-center/nwp/outline2013-nwp/index.
htm); and the NCEP model (Saha et al., 2010, 2014). Table 1
summarizes the model information and details of the hindcasts.
These models are examples of models that are producing S2S
data and are selected only on the basis of data availability.

To evaluate the skill of sub-seasonal hindcasts in forecasting
the onset and demise dates of the rainy season we had to modify
our methodology due to the short lead-time of the hindcasts
(e.g., 45 days). The first day of each hindcast was discarded
and the prediction was appended to observational data that
occurred prior to the forecast initialization so that it would
amount to a full year of data. In this work, the CPC_UNI and
TRMM (see Appendix) precipitation data were interpolated to
the grid of each S2S model prior to any calculation. We used
the observed climatological values for PC and t0. In addition,
we also applied the approximation to the “minimum roughness”
boundary constraint, as noted above.

We calculate the onset and demise dates using all the hindcasts
available. This is done by defining one onset date and one demise
date for each grid point for every member of the S2S dataset.
Once all of the onset and demise dates are identified we select
only the hindcasts in which the onset or demise of the rainy
season was found within the simulated period for evaluation of
forecast skill. We also only analyze the results over regions where
the explained variance of the first harmonic of the climatological
annual cycle is above 30%, thus excluding regions that do not
experience well-defined rainy and dry seasons.

THE ONSET OF THE RAINY SEASON

Onset Date Climatology
Figure 2 shows the median and the interquartile range of rainy
season onset dates over the tropics and subtropics. The figure
also indicates the domains selected to study specific monsoonal
regions (black boxes), namely the North American monsoon
(e.g., Adams and Comrie, 1997; Vera et al., 2006), the South
American monsoon (e.g., Vera et al., 2006; Marengo et al., 2012;
Carvalho and Cavalcanti, 2016), the West Africa monsoon (e.g.,
Nicholson, 2013), the East African monsoon (e.g., Nairobi, 1979;
Mutai and Ward, 2000), the Indian monsoon (e.g., Webster
et al., 1998; Krishnamurthy and Shukla, 2000; Prasad, 2005), the
East Asia monsoon (e.g., Wang et al., 2001; Yihui and Chan,
2005), and the Northern Australia monsoon (e.g., Hendon and
Liebmann, 1990).

The latitudinal variation of rainy season onset dates clearly
follows the seasonal evolution of convection, with the onset of the
rainy season usually occurring during spring in each hemisphere
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TABLE 1 | Models’ information summary.

Model name Center Total No. of Ensemble size Interval between Integration Spatial Range of years

simulations sets of hindcasts time resolution

NCEP National Centers for

Environmental Prediction

17,532 1 member 6 h 45 days T126 (∼1.0◦) 1999–2010

CMA Beijing Climate Center 29,216 4 members 1 day 60 days 1.5◦ × 1.5◦ 1994–2013

JMA Japan Meteorological

Agency

5,400 5 members 10 days 33 days 1.5◦ × 1.5◦ 1981–2010

FIGURE 2 | (A) Median onset date [DOY or Julian day] and (B) interquartile range of onset dates calculated from CPC_UNI data (1979–2014). The boxes indicate

monsoonal regions of interest. We mask regions where explained variance of the first harmonic of the mean annual cycle of observed precipitation is small (<30%).

(Figure 2A). Some monsoonal regions show relatively large
variability in the dates of onset of the rainy season (e.g., the
eastern flank of the North American, South American, West
Africa, East Asian, and Northern Australia monsoon regions),
while others are more consistent (e.g., the western flank of the
North American, East African, and the Indian monsoon regions;
Figure 2B).

Onset Date Hindcasts
Figure 3 shows the lead-time Root-Mean-Square-Error (RMSE)
of onset dates for the three models considered and the multi-
model ensemble (MME). The MME was generated by averaging
the simulated daily precipitation of all members, which were
initialized on the same day, for all three models. For the days
where the JMAmodel was not initialized theMME consists of the
average between NCEP and CMA simulations only. Lead-time

zero indicates the observed onset of the rainy season. We use
the observed climatology as the benchmark for comparison. That
is, the goal of Figure 3 is to show whether or not (and how far
in advance) the models outperform the observed climatology in
predicting the onset of the rainy season.

The dashed line (Figure 3) represents the average error one
would observe if climatology were used to predict the onset of
the rainy season. Since we interpolated the observations to the
model’s grids, the error in relation to the climatology differs from
model to model due to the differences in spatial resolution (not
shown). In addition, due to the fact that the onset of the rainy
season happens at a different time of the year from grid point
to grid point, the error in relation to the climatology also varies
with lead-time, as we only consider grid points where the onset of
the rainy season was identified in the hindcasts. The monsoonal
regions of interest are relatively large and the simulation time is
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FIGURE 3 | Lead-time RMSE of rainy season onset date forecasts. The

figure shows results for (A) North American Monsoon, (B) South American

Monsoon, (C) West African Monsoon, (D) East African Monsoon, (E) Indian

Monsoon, (F) East Asian Monsoon, and (G) Northern Australian Monsoon.

Lead-time 0 (zero) refers to the observed onset date. Thick lines show lead

times where the RMSE of hindcasts is smaller than the RMSE related to the

climatology and their difference is statistically significant at 5% level according

to an f-test of the squared errors. The dashed line shows the RMSE in relation

to the climatology for the CMA model grid for the sole purpose of visualization.

relative short. Therefore, the onset or demise of the rainy season
at a given time might be defined for only a fraction of grid
points in each region. As an example, the onset date RMSE in
relation to the climatology calculated for the CMA grid is shown

FIGURE 4 | HSS for onset date hindcasts. The dashed lines show HSS

equal to 0.3 and 0.5. The figure shows results for (A) North American

Monsoon, (B) South American Monsoon, (C) West African Monsoon, (D) East

African Monsoon, (E) Indian Monsoon, (F) East Asian Monsoon, and (G)

Northern Australian Monsoon. Lead-time 0 (zero) refers to the observed onset

date.

in Figure 3, however, the skill of each model is evaluated against
the climatological values based on its own grid. To reduce the
number of degrees of freedom, the errors are spatially averaged
over the region of interest for each hindcast. That is, first the
errors are calculated for every grid point within the region of
interest and then they are spatially averaged for each ensemble
member.
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FIGURE 5 | Lead-time ratio between the simulated mean squared error of onset dates and the onset mean square error using the climatology as

predictor. The figure shows the results for the (a) MME; (b) NCEP, (c) CMA, and (d) JMA models over the South American monsoon region. Lead-time 0 (zero) refers

to the observed onset date. The shading only shows values where the hindcasts outperform the climatology and are statistically significant at 5% level according to an

f-test of the squared errors.

We find that all three models outperform the climatology in
predicting the rainy season onset date over the North American
(Figure 3A), the South American (Figure 3B), the West African
(Figure 3C), and the East Asian (Figure 3F) monsoon regions
by as much as 25–30 days in advance. The models also show
good skill for the North Australianmonsoon region, although the
CMA model shows an inflection in the forecast error with errors
growing after 30-day lead-time until the onset date (Figure 3G).
Over the East African (Figure 3D) and the Indian (Figure 3E)
monsoon regions, however, the models do not perform as well
in comparison to the climatology at sub-seasonal timescales. As
expected, the MME often has the best skill (Figure 3).

To evaluate the probabilistic forecast skill of the onset date we
calculated the Heidke Skill Score (HSS) using a three by three
contingency table. The observational values were divided into
three equally likely categories (i.e., terciles). The tercile values are

determined from the spatially averaged observed time series and
the same tercile values were used for each hindcast lead-time.
The HSS is the proportion of correct forecasts that would be
achieved by random forecasts that are statistically independent
of the observations (Wilks, 2006). A negative value indicates that
a forecast is correct by chance. A value of 0.5 indicates that two
out of three forecasts were in the correct tercile while a value of
0.0 indicates that one out of three forecasts were in the correct
tercile. Since the climatology will always fall in the same tercile,
the forecast using the climatology has a HSS value of 0.0. A
value of 0.3 is commonly considered as the threshold for skillful
forecasts.

Over North America (Figure 4A) and West Africa
(Figure 4C) the HSS indicates very good skill for NCEP and
CMA models more than 3 weeks in advance. NCEP and JMA
also show very good HSS for East Asia (Figure 4F). In addition,
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HSS values are above 0.3 over North America (Figure 4A),
South America (Figure 4B), West Africa (Figure 4C), East Asia
(Figure 4F), and Northern Australia (Figure 4G) for at least
two out of three models for sub-seasonal lead-times. However,
there is very little forecast skill for the onset date over East Africa
(Figure 4D) and India (Figure 4E). These results are consistent
with the results from forecast error (Figure 3), suggesting that
the onset of the rainy season over most monsoonal regions is
predictable by current models on sub-seasonal timescales.

Why are the hindcasts of onset dates not skillful over East
Africa and India? The onset over these regions has relatively low
variability relative to the other monsoon regions (Figures 3D–E);
therefore it is more difficult to distinguish them from the noise in
the system. Since we are using the climatology as the benchmark
for measuring forecast skill, the lower the amplitude of the onset
dates the closer they are to climatology and, therefore, the more
difficult it is to distinguish them from climatology.

To demonstrate the evolution of the onset forecast errors
we calculated the ratio between the mean square error of onset
hindcasts and the mean square error using the climatology
as predictor for every year and every lead-time. Figures 5, 6
show the results for the South American (Figure 5) and Indian
(Figure 6) monsoon regions, respectively. South America is
an example of a region where the onset date shows high
predictability. The MME and NCEP hindcasts outperform the
climatology by 24–45 days (Figures 5a,b). Likewise, with the
exception of a few years the CMA hindcasts outperform the
observed climatology by more than 30 days (Figure 5c). In
contrast, the Indian monsoon is a region where the models show
little improvement over the climatology. NCEP and CMA could
only outperform the climatology for some years and only for
a lead-time window that ends sometime prior to the observed
onset date (Figure 6). Due to the fact that JMA (Figures 5d, 6D)
hindcast members were initialized in sets of simulations with an

FIGURE 6 | As in Figure 5 but for the Indian monsoon region.
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FIGURE 7 | Ratio between the mean squared error of simulated onset dates for lead-times during week 4 and the mean squared error calculated

using the climatology as predictor. The figure shows the results for (A) NCEP, (B) CMA, (C) JMA, and (D) MME. We mask regions where explained variance of the

first harmonic of the mean annual cycle of observed precipitation is small (<30%). Shading indicates the squared errors are statistically different at 5% level according

to an f-test.

interval of approximately 10 days (Table 1) the forecast errors of
these hindcasts are much less consistent than those from NCEP
(Figures 5b, 6B) and CMA (Figures 5c, 6C).

In order to present a global view of the onset forecast error,
Figure 7 shows the ratio between the mean squared error of
simulated onset dates for lead-times during week 4 and the
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mean squared error calculated using the climatology as predictor.
There is a remarkable similarity between models. If we focus
on the two more reliable sets of simulations, NCEP (Figure 7A)
and CMA (Figure 7B), we notice that the models outperform
the climatology over most of South America, West Africa, and
the Sahel region, East Asia, and northern Australia. At lead-
times during week 4 the climatology outperforms the models
over the western flank of North America, East Africa, India,
and western China (Figure 7). These results correspond well to
the map of onset date variability (Figure 2B) and are consistent
with the notion that regions with relatively low onset date
variance are regions that show the lowest forecast skill relative
to climatology. It is important to mention that when these same
analyses (Figure 7) are performed with the TRMM precipitation
dataset, the results are consistent almost everywhere except over
Africa (not shown). Results over Africa should be interpreted
carefully due to the scarcity of observed precipitation data.

THE DEMISE OF THE RAINY SEASON

Demise Date Climatology
The latitudinal variation of the demise dates of the rainy season
also reflects the seasonal evolution of convection, with the end
of the rainy season usually occurring during the fall in each
hemisphere (Figure 8A). Similar to the onset dates (Figure 2B),
the western flank of the North American and Indian monsoon
regions show low variability of demise dates (Figure 8B). In

contrast to the onset dates (Figure 2B), the demise dates show
less variability over the West African monsoon region than over
the East African region (Figure 8B).

Demise Date Hindcasts
All three models outperform the climatology by at least 25
days lead-time over all monsoon regions considered (Figure 9).
The regions that show the smallest demise date forecast error
(Figure 9) do not necessarily coincide with the ones that have the
smallest onset date forecast error (Figure 3). For instance, over
West Africa (Figure 9C) the forecast of the demise date is not as
skillful as the forecast of the onset date (Figure 3C). In contrast,
the forecast of the demise date over India (Figure 9E) is much
more skillful than the forecast of the onset date (Figure 3E),
consistent with the fact that the demise date of the Indian
monsoon is more variable than its onset date (Syroka and Toumi,
2004).

In terms of forecast skill, the regions that show the most
consistency among the models are South America (Figure 10B),
East Asia (Figure 10F), and Northern Australia (Figure 10G).
There is less consistency among the models over North
America (Figure 10A), West Africa (Figure 10C), East Africa
(Figure 10D), and India (Figure 10E). However, the NCEP
model shows a consistent increase in forecast skill as the lead-
time approaches the observed demise date for all monsoon
regions considered, with HSS above 0.3 at least a month
in advance (Figure 10). These results are consistent with the

FIGURE 8 | (A) Median demise date [DOY or Julian day] and (B) Interquartile range of demise dates calculated from CPC_UNI data (1979–2014). The boxes indicate

monsoonal regions of interest. We mask regions where explained variance of the first harmonic of the mean annual cycle of observed precipitation is small (<30%).
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FIGURE 9 | Lead-time RMSE of rainy season demise date forecasts.

The figure shows results for (A) North American Monsoon, (B) South American

Monsoon, (C) West African Monsoon, (D) East African Monsoon, (E) Indian

Monsoon, (F) East Asian Monsoon, and (G) Northern Australian Monsoon.

Lead-time 0 (zero) refers to the observed demise date. Thick lines show lead

times where the RMSE of hindcasts is smaller than the RMSE related to the

climatology and their difference is statistically significant at 5% level according

to an f-test of the squared errors. The dashed line shows the RMSE in relation

to the climatology for the CMA model grid for the sole purpose of visualization.

forecast error (Figure 9), suggesting that the demise of the rainy
season over most monsoonal regions is predictable in current
models on sub-seasonal scales.

To evaluate demise date forecast error for the global monsoon,
Figure 11 shows the ratio between the mean squared error of

FIGURE 10 | HSS for onset date hindcasts. The dashed lines show HSS

equal to 0.3 and 0.5. The figure shows results for (A) North American

Monsoon, (B) South American Monsoon, (C) West African Monsoon, (D) East

African Monsoon, (E) Indian Monsoon, (F) East Asian Monsoon, and (G)

Northern Australian Monsoon. Lead-time 0 (zero) refers to the observed onset

date.

simulated demise dates for lead-times during week 4 and the
mean squared error calculated using the climatology as predictor.
Considering only the twomore reliable sets of simulations, NCEP
(Figure 11A) andCMA (Figure 11B), themodels outperform the
climatology overmost of South America, East Asia, andNorthern
Australia. The climatology outperforms the models over parts
of South America, most of the African Sahel, and India. The
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FIGURE 11 | Ratio between the mean squared error of simulated demise dates for lead-times during week 4 and the mean squared error calculated

using the climatology as predictor. The figure shows the results for (A) NCEP, (B) CMA, (C) JMA, and (D) MME. We mask regions where explained variance of the

first harmonic of the mean annual cycle of observed precipitation is small (<30%). Shading indicates the squared errors are statistically different at 5% level according

to an f-test.
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NCEP model outperforms the climatology over most of East
Africa (Figure 11A) while the climatology outperforms CMA
over East Africa and Madagascar (Figure 11B). These results
correspond well to the map of demise date variability (Figure 8B)
and are consistent with the notion that regions with relatively
low demise date variance are regions that show the lowest
relative forecast skill. The demise results are also consistent when
the same analyses (Figure 11) are performed with the TRMM
precipitation dataset, with exception of Africa (not shown). As
with onset, results over Africa should be interpreted carefully due
to the scarcity of precipitation observations.

PRECIPITATION BIAS AND TIME SERIES
DISCONTINUITY

This section explores the role of model precipitation bias
and discontinuities in the time series of precipitation on the
predictability of the onset and demise dates of the rainy
season. Since we used a combination of observed and simulated
precipitation to forecast the onset and demise dates of the rainy
season, precipitation bias and discontinuities in the time series

might play a role in the perceived predictability. For brevity, we
will only focus on the MME results in this section.

We start by analyzing simulated precipitation bias. Figure 12
presents the MME precipitation bias for lead-times of 1, 2,
3, and 4 weeks for hindcasts initialized close to the observed
onset (Figures 12A–D) and demise (Figures 12E–H) dates of the
rainy season (i.e., all hindcasts with predictions of the observed
onset or demise date of the rainy season). Most regions show
positive precipitation biases around the onset date, except for
South America, India, parts of East Asia, and northern Australia,
which show negative precipitation biases in the first 2–3 weeks
of the hindcasts (Figures 12A–D). Most regions show positive
precipitation biases around the demise date as well, except for
northern South America (Figures 12E–H).

We now compare the behavior of the S curve (Equation 1,
Figure 1) between observations and hindcasts. Figure 13 shows
the S curve for both observations and hindcasts spatially averaged
over the monsoonal regions of interest. The S curve was also
averaged over simulations with lead times of up to 4 weeks (28
days) in relation to the observed onset or demise date of the
rainy season. It is important to note that these are relatively
large regions and long lead-times. For the onset of the rainy

FIGURE 12 | Precipitation bias [mm/day] around the time of the onset (left) and demise (right) of the rainy season for simulation lead-times within

week 1 (A,E) , 2 (B,F), 3 (C,G), and 4 (D,H). We mask regions where explained variance of the first harmonic of the mean annual cycle of observed precipitation is

small (<30%).
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FIGURE 13 | Observed (solid) and simulated (dashed) S curve [mm] for the onset (left) and the demise (right) of the rainy season. The figure shows

results for (A,H) North American Monsoon, (B,I) South American Monsoon, (C,J) West African Monsoon, (D,K) East African Monsoon, (E,L) Indian Monsoon,

(F,M) East Asian Monsoon, and (G,N) Northern Australian Monsoon. The S curve was spatially averaged over the monsoonal regions of interest and averaged over all

hindcasts initialized up to 4 weeks before the observed onset or demise dates. Note y-axis.

season, we find that regions where the simulated precipitation
shows positive bias are regions where the inflection in the S curve
(Equation 1; Figure 1) happens earlier in the hindcasts than in
the observations (Figures 13A,C,D). In contrast, the S curve
for places like South America, East Asian, India, and northern
Australia (Figures 13B,E,F,G) experience a late inflection in the

hindcasts compared to the observations, corresponding to a
negative precipitation bias. We find a similar correspondence
of early versus late inflection of the S curve associated with
positive and negative precipitation bias in the demise dates of
the rainy season, but not as pronounced as in the onset dates
(Figures 13H–N). Since the S curve consists of accumulated
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precipitation anomalies, the main impact of precipitation bias is
simply to change the rate of change of S. Given that the S curve is
smoothed prior to the calculation of the onset and demise dates
the effect of the discontinuity between the time series of observed
and simulated precipitation also contributes only to change the
rate of change of S.

CONCLUSIONS AND DISCUSSIONS

In this work we evaluated the retrospective forecasts of three
global coupled models participating in the S2S project. We show
that the onset and demise dates of the rainy season over several
monsoonal regions can be skillfully forecasted on sub-seasonal
timescales. South America, East Asia, and Northern Australia are
monsoonal regions where we find that skillful forecasts for the
onset date exists as much as 1 month in advance. On the other
hand, the Indian monsoon region shows low forecast skill for
the onset date. The demise dates show sub-seasonal forecast skill
over parts of North and South America, East Asia, and Northern
Australia as much as 1 month in advance. The NCEP model also
shows good demise date forecast skill over the Indian monsoon
region by at least 3 weeks. The forecast skill for the onset and the
demise dates over East Africa, West Africa, and the African Sahel
should be interpreted with caution due to the scarcity of in-situ
precipitation observations in these regions.

Consistent daily model initializations are crucial for the
proper evaluation of lead-time forecast skill of the onset and
demise dates of the rainy season. Onset and demise dates vary
seasonally from region to region and long intervals between
initializations (such as 10 days in the JMA hindcasts) can have
a large impact in the detection of the simulated onset or demise
dates over certain regions.

This method for predicting the onset and demise dates
of the monsoons is relatively simple since it depends only
on precipitation data. Although skillful model precipitation
predictions remain challenging in many regions, we have
demonstrated that (when combined in a hybrid approach) they
are skillful enough to identify onset and demise dates of the rainy
season in many monsoon regions at sub-seasonal lead-times in
retrospective forecasts of current operational models.

Another advantage of our method is the fact that the
characteristics of the rainy season can be determined over every
grid point, providing the user with information at higher spatial
resolution than methods using large-scale indices for monsoon
prediction. It is worth mentioning that the representation of the
rainy season does not guarantee an accurate representation of a
monsoon system as a whole (Soman and Kumar, 1993; Joseph
et al., 1994) since monsoons are complex large-scale phenomena.

However, our method provides information that can be used at
the local level.

The combination of observations and model predictions
in the calculation of the onset and demise dates provides a
practical hybrid methodology for predicting monsoon onset
and demise over the model or observations alone, since the
predictions are of a cumulative quantity rather than a single

arbitrary event. However, this could create a challenge for real-
time predictions in regions where real-time quality controlled
precipitation observations are scarce, but could be a useful
methodology in well-observed regions.

This method works well for regions with precipitation regimes
composed of a single well-defined rainy and dry season per year
(Bombardi and Carvalho, 2008, 2009) and is thus most suitable
for tropical monsoonal regions. For regions with two rainy
seasons, such as some equatorial regions, the method is slightly
less accurate as it tends to capture the most predominant rainy
season. This method is the least accurate for regions without
a well-defined rainy and dry season, such as most mid-latitude
regions.

Since our method can provide detailed (at every grid point)
forecasts of the onset and demise dates of the rainy season, it
is a useful tool for providing information to decision makers.
This is especially true when combined with methods that can
provide forecasts for the large-scale aspect of monsoons, such as
statistical methods (e.g., Moron et al., 2009a,b; Stolbova et al.,
2016), dynamic prediction of monsoon indexes (e.g., Vellinga
et al., 2013; Alessandri et al., 2015), and even the integration of
statistical and dynamical prediction (e.g., Coelho et al., 2006).
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APPENDIX

Forecast Error and Skill Using Ensemble
Means and TRMM Data
We also investigated the results shown in Figures 3, 4

using TRMM data and ensemble means (Figures A1, A2).

FIGURE A1 | Lead-time RMSE of rainy season onset date forecasts.

The figure shows results for (A) North American Monsoon, (B) South American

Monsoon, (C) West African Monsoon, (D) East African Monsoon, (E) Indian

Monsoon, (F) East Asian Monsoon, and (G) Northern Australian Monsoon.

Lead-time 0 (zero) refers to the observed onset date. Thick lines show lead

times where the RMSE of hindcasts is smaller than the RMSE related to the

climatology and their difference is statistically significant at 5% level according

to an f-test of the squared errors. The dashed line shows the RMSE in relation

to the climatology for the NCEP model grid for the sole purpose of

visualization.

We calculated two different ensembles: Ensemble 1 (ENS)
was calculated by computing the ensemble mean of daily
precipitation prior to the calculation of the onset and demise
dates. Ensemble 2 (ENS 2) was calculated by first calculating
the onset and demise dates and then calculating the ensemble
average. Ensemble 1 and 2 were calculated with CPC_UNI data.
The ensemble means are slightly more skillful than considering
all the hindcast members individually. All results presented in
this appendix were calculated using the NCEP hindcasts.

FIGURE A2 | HSS for onset date hindcasts. The dashed lines show HSS

equal to 0.3 and 0.5. The figure shows results for (A) North American

Monsoon, (B) South American Monsoon, (C) West African Monsoon, (D) East

African Monsoon, (E) Indian Monsoon, (F) East Asian Monsoon, and (G)

Northern Australian Monsoon. Lead-time 0 (zero) refers to the observed onset

date.
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The results using CPC_UNI data, TRMM data, and ensemble
means are very similar to the results presented in Figures 3, 4
(Figures A1, A2, respectively). Although there are differences
in forecast error and forecast skill of onset dates between
results using CPC_UNI data and results using TRMM data,
these differences are usually small. However, some regions show
larger differences (e.g., West Africa and South America) than
others.

Regarding the forecast of the rainy season demise, when we
consider TRMM data or ensemble means the results are very
similar to the results presented in Figures 9, 10 (no shown).
Although there are differences in forecast error and forecast skill
of demise dates between results using CPC_UNI data and results
using TRMM data, these differences are usually small. However,
some regions show larger differences (e.g., North America, West
Africa, and India) than others.
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