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Deep-sea geofluid systems, such as hydrothermal vents and cold seeps, are key to

understanding subseafloor environments of Earth. Fluid chemistry, especially, provides

crucial information toward elucidating the physical, chemical, and biological processes

that occur in these ecosystems. To accurately assess fluid and gas properties of

deep-sea geofluids, well-designed pressure-tight fluid samplers are indispensable and

as such they are important assets of deep-sea geofluid research. Here, the development

of a new flow-through, pressure-tight fluid sampler capable of four independent sampling

events (two subsamples for liquid and gas analyses from each) is reported. This new

sampler, named WHATS-3, is a new addition to the WHATS-series samplers and a

major upgrade from the previous WHATS-2 sampler with improvements in sample

number, valve operational time, physical robustness, and ease of maintenance. Routine

laboratory-based pressure tests proved that it is suitable for operation up to 35 MPa

pressure. Successful field tests of the new sampler were also carried out in five

hydrothermal fields, two in Indian Ocean, and three in Okinawa Trough (max. depth

3,300m). Relations of Mg and major ion species demonstrated bimodal mixing trends

between a hydrothermal fluid and seawater, confirming the high quality of fluids sampled.

The newly developed WHATS-3 sampler is well-balanced in sampling capability, field

usability, and maintenance feasibility, and can serve as one of the best geofluid samplers

available at present to conduct efficient research of deep-sea geofluid systems.

Keywords: fluid sampler, gas-tight sampler, deep-sea research, hydrothermal fluid, fluid chemistry

INTRODUCTION

The extremely important role played by the subseafloor fluid advection system in Earth’s element
cycle and ecosystem development has been widely recognized (e.g., Elderfield and Schultz, 1996;
German and Seyfried, 2014). The total water mass below the seafloor is estimated to constitute∼2%
of the entire seawater mass (Johnson et al., 2006; Mottl et al., 2007). Subseafloor fluid advection and

http://www.frontiersin.org/Earth_Science
http://www.frontiersin.org/Earth_Science/editorialboard
http://www.frontiersin.org/Earth_Science/editorialboard
http://www.frontiersin.org/Earth_Science/editorialboard
http://www.frontiersin.org/Earth_Science/editorialboard
https://doi.org/10.3389/feart.2017.00045
http://crossmark.crossref.org/dialog/?doi=10.3389/feart.2017.00045&domain=pdf&date_stamp=2017-06-07
http://www.frontiersin.org/Earth_Science
http://www.frontiersin.org
http://www.frontiersin.org/Earth_Science/archive
https://creativecommons.org/licenses/by/4.0/
mailto:kawagucci@jamstec.go.jp
https://doi.org/10.3389/feart.2017.00045
http://journal.frontiersin.org/article/10.3389/feart.2017.00045/abstract
http://loop.frontiersin.org/people/444591/overview
http://loop.frontiersin.org/people/418929/overview
http://loop.frontiersin.org/people/39393/overview
http://loop.frontiersin.org/people/418876/overview


Miyazaki et al. Deep-Sea Geofluid Sampler WHATS-3

the associated fluid-rock interaction cause elemental flux
between the lithosphere and the ocean, regulating the
chemical composition of the ocean. In addition, since some
of the subseafloor-derived reducing species are available
for chemolithoautorophic metabolism, subseafloor fluid
advection, and mixing with the overlying seawater plays
an important role in supporting the unique (sub)seafloor
biosphere.

Geofluids discharging from sources such as hydrothermal
vents and cold seeps serve as windows for looking into this
dynamic system developing below the seafloor, not directly
reachable without enormous efforts through scientific drilling
(e.g., Fisher et al., 2003; Yanagawa et al., 2017). Properties of
discharged geofluids, particularly the fluid chemistry, can be
interpreted as a representation of processes occurring within the
subseafloor environment across tectonic scale (e.g., magmatism
and crustal recycling; Sakai et al., 1990; Lilley et al., 2003; Mottl
et al., 2004), regional hydrogeological scale (e.g., hydrothermal
fluid circulation; Fisher et al., 2003; Pester et al., 2011; Kawagucci
et al., 2011) and field scale (e.g., chemosynthetic ecosystem; Le
Bris et al., 2006; Wankel et al., 2011). Deep-diving operations
utilizing submersibles and Remotely Operated Vehicles (ROVs)
allow direct investigation of the geofluids by accessing the
deep seafloor. In addition to in situ chemical analyses, shown
to be beneficial especially for obtaining high-resolution spatial
distributions of chemically and biologically unstable compounds
in the seawater column (Le Bris et al., 2000; Okamura et al.,
2001, 2015; Wankel et al., 2010), fluid sampling followed by
on-board/on-shore chemical analyses has been and remains
an important asset for revealing compositional and isotopic
characteristics of the fluid in its entirety.

Obtaining high-quality fluid sample is, however, difficult—a
key hindrance in fluid chemistry research. The collection of vent
fluids must be completed without mixing with the surrounding
seawater, and the preservation of chemical species must be
ensured during recovery of the sampler onto the research vessel.
The latter is a substantial issue as a few hours generally pass
between collection and recovery; both pressure and temperature
condition of the laboratory is also usually quite different
from that of the sampled fluid. Limited opportunities for dive
operation and limited time on the seafloor during a dive are also
obstacles in studying fluid chemistry.

A number of deep-sea geofluid samplers have been developed
so far to overcome these hindrances (Table 1). It is vital
that the sampler actively draws the fluid concerned, because
contamination from the surrounding seawater cannot be reliably
avoided with passive samplers such as Niskin bottles (e.g.,
Connelly et al., 2012). The actively fluid drawing geofluid
samplers developed so far can be further classified by the sample
container style (semi-closed and flow-through) and their gas
tightness (gas-tight and non-gas-tight; Table 1). A semi-closed
sampler is defined as a fluid sampler where the sample container
is open at only one end. Such semi-closed samplers have a
drawback, the fluid pre-filled in the tubes and containers before
the dive commences (seawater or pure water) is unavoidably
incorporated partly into the collected geofluid. Although, this
contamination can be calibrated based on analytical data with

appropriate assumptions, some bias at the calibration stage
is unavoidable. This issue can be overcome by using a flow-
through type sampler, in which the fluid container is purged
and rinsed by the in situ geofluid prior to formal sampling.
One risk concerning high-temperature hydrothermal fluid is
that metals and sulfide may precipitate in flow-through tubes
prior to reaching the sampling container, resulting in the
underestimation of their concentrations. Gas tightness of the
sampler is necessary for the accurate assessment of chemical
conditions concerning subseafloor fluid-rock interactions and
magmatism, gas flux from solid Earth to Ocean, and potential
functioning of chemosynthetic ecosystems in consuming and
producing gas species such as H2 and CH4 (Von Damm and
Lilley, 2004; Proskurowski et al., 2008; Nakamura and Takai,
2014).

“Major” and “Bag” samplers are two widely-utilized semi-
closed fluid samplers. The “Major” sampler, developed byWoods
Hole Oceanographic Institution (WHOI; Von Damm et al.,
1985), is essentially a titanium syringe consisting of a ∼750 mL
fluid chamber with an internal piston to draw the fluid from
the inlet nozzle. The “Bag” sampler collects geofluids via an
impeller pump (or a peristaltic pump) into a flexible-volume
plastic container (∼20 L), capable of quantifying elements and
molecules present only in low concentration and also used
to collect suspended particles including microbes and viruses
(Huber et al., 2002; AEM; Lang et al., 2006; Yoshida-Takashima
et al., 2012). The “ORI” sampler is another semi-closed sampler
with the inlet nozzle connected to a manifold for multiple
sampling events, each into a ∼750 mL titanium or acrylic glass
container (Tsunogai et al., 1994; Ishibashi et al., 1995). The
recently developed “ANEMONE” sampler (Okamura et al., 2014)
is a further flow-through type sampler with 40 mL-volume
plastic tubes as fluid containers and is capable of collecting 128
samples during each dive. All the samplers mentioned above
are, nevertheless, not gas-tight and therefore do not prevent
dissolved gas components escaping from the collected fluid
during recovery from the deep-sea, due to decreasing pressure
and thus gas decompression.

The “vacuum” sampler is a simple and comparatively
inexpensive sampler consisting of a stainless-steel (or titanium)
container and a manually operated three-way valve (Sedwick
et al., 1994; Kawagucci et al., 2013a). The sample chamber is
evacuated prior to a dive (i.e., vacuum is maintained within)
and draws the geofluid simply by opening the valve. The “gas-
tight” (GT) sampler has a titanium cylinder body equipped with
a gas-tight titanium valve actuated by hydraulic power supplied
from the vehicle (Edmond et al., 1992). The “isobaric gas-tight”
(IGT) sampler (Seewald et al., 2001) consists of an inlet nozzle, an
electrically or hydraulically manipulated needle valve (Wu et al.,
2011), and a titanium cylinder. The cylinder includes a∼150 mL
sample container as well as the mechanics for maintaining the
internal pressure of the collected fluid sample up to 450 bar prior
to subsampling on-board. The IGT sampler is, to date, the only
sampler capable of subsampling for both gas and liquid analyses
from a single sample chamber. However, these gas-tight samplers
described above are all semi-closed and without a flow-through
system.
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TABLE 1 | Comparison of deep-sea geofluid samplers.

Name Gas-tight Fluid path Numbers of chambers

(series × parallel)

Volume (mL) Drawing force References

WHATS 3 Yes Flow through 8 (2 × 4) 20 or 50 Peristalic pump (pull) This study

WHATS 2 Yes Flow through 4 (1 × 4) 150 Peristalic pump (pull) Saegusa et al., 2006

Isobaric Yes Semi-closed 1 150 Pulling piston by internal low pressure Seewald et al., 2001

Vacuum (GT) Yes Semi-closed 1 150 Internal low pressure Edmond et al., 1992; Sedwick

et al., 1994

Major No Semi-closed 1 750 Pulling piston by hydraulic ram Von Damm et al., 1985

ORI No Semi-closed 6 (1 × 6) 750 Pulling piston by DC motor Tsunogai et al., 1994

Bag No Semi-closed 1 (∼20,000) Peristalic or impeller pump (push) Huber et al., 2002; Lang et al.,

2006

ANEMONE No Flow through 128 (1 × 128) 40 Diaphragm pump (push) Okamura et al., 2015

Niskin No Flow through 1 1,000–12,000 (passive)

The WHATS-2 sampler (Saegusa et al., 2006), modified from
the first-generation WHATS sampler (Tsunogai et al., 2003),
is a flow-through, gas-tight fluid sampler (Table 1) capable of
multiple sampling events under hydrostatic pressure up to 40
MPa. The WHATS-2 consists of four 150 mL stainless-steel
containers, a motor-driven arm to manipulate the valves on the
containers, a peristaltic pump, a control unit, and a flexible tube
manifold connected by a titanium inlet. The mechanism of using
a single electronic motor-driven arm to manipulate all eight
valves reduces efforts required in both routine maintenance and
operation. However, theWHATS-2 still had several shortcomings
in terms of sample numbers and physical robustness of the
system. As subsampling for gas analysis consumes an entire
fluid container, two of the four containers are required at
each sampling location in order to reveal both liquid and
gas compositions of the geofluid concerned. As a result, the
WHATS-2 can practically only obtain geofluid sample from two
locations during one dive. Moreover, this shortcoming brings
about two further unavoidable issues. One is that two temporally
different fluid samples from each sampling point may not be
entirely homogeneous, which is a potential source of bias in
the interpretation of fluid chemistry. The other is that relatively
longer sampling time is required at each fluid discharge location
in order to fill two containers. In terms of physical robustness, the
complicated mechanical geometry required for valve operation
in the WHATS-2 is rather troublesome. As outlined above, the
WHATS-2 is a superior system, but these issues still remain to
be solved in order to maximize efficiency during limited deep-sea
sampling opportunities.

We here report the development of a new version of
the WHATS sampler, named WHATS-3 (Figure 1). The most
notable improvement fromWHATS-2 is the increased number of
samples, by development of a system consisting of four sampling
bottles with two separate chambers in each bottle. This enables
collection of two gas-tight subsamples simultaneously from each
sampling location, and from four different locations during one
dive. In addition, there are several improvements, including
(1) reduction of area required for equipment on vehicles, (2)
reduction of valve operation time (from a few minutes to a
few seconds), (3) improved physical robustness by modifying

geometry involved in valve-manipulation, and (4) adoption of a
new cylindrical outer frame to effortlessly prepare and maintain
the sampler.

INSTRUMENT DESIGN

Overview of the System
TheWHATS-3 system consists of five components, including (1)
a fluid inlet (so-called “pistol”), (2) four sets of dual-chambered
sampling bottles, (3) a valve-manipulating system (Figure 1B),
(4) an impeller pump unit, and (5) an electric control unit
to operate the valve-manipulating digits and the impeller
pump. The main body (including the sampling bottles and the
manipulating system) is a titanium frame, semi-cylindrical in
shape, with a dimension (H × W × D) of 700 × 375 ×

395 (mm) (Figure 1A). A rectangular face 700 × 375 (mm) in
size is required for tight attachment onto submersible vehicles;
WHATS-2 had a larger attachment face of 595 × 560 (mm)
(Saegusa et al., 2006). So far, the WHATS-3 has been attached
on the payload space behind the right manipulator of the ROV
Hyper-Dolphin, the rear payload space of ROV Kaiko (vehicle
Mk-IV), and between the two manipulators of the Human
Occupied Vehicle (HOV) Shinkai 6500 (Figure 2). Unlike most
other fluid samplers including the WHATS-2, the pistol, the
impeller pump unit, and the control unit are isolated from the
main body. This is beneficial as it reduces the space required
in the main payload space, usually in the front of submersible
vehicles.

The pistol consists of a T-shaped titanium tube (O.D. 10mm,
I.D. 9mm) and a thermometer (Pt 100�) blanketed with a steel
shell. The thermometer, inserted from right side of the T tube
through to the fluid inlet on the left and sealed with double
silicon O-rings at the insertion end, is responsible for real-time
monitoring of the fluid temperature during sampling, with a
precision of ±1◦C. Incoming fluid from the inlet on the left
side flows to bottom end of the T tube, completely flushing
any possible residues at the right side. For sampling of diffusive
fluids, a funnel (>300 mL) is mounted on the inlet end as a
reservoir of the geofluid to avoid mixing and contamination by
ambient seawater. The impeller pump unit contains, in addition
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FIGURE 1 | Illustrations of the WHATS-3. (A) Dimensions (mm). (B) Valve manipulating mechanics (upper part only). (C) Sampling bottle.

to the pump, an electronic motor contained within a pressure-
resistance chamber sealed against a maximum pressure of 40
MPa. The pumping speed can be adjusted at three steps: ∼400,
∼200, and ∼100 mL/min. In general, a slower pumping speed
better avoids contamination of ambient seawater.

Fluid flow pathways of the pistol, the sampling bottles, and
the impeller pump unit are connected in this order using
polypropylene tubes (PP-PS-M, AS ONE, Osaka, Japan) and T-
shaped connections (PP-PT-M, AS ONE, Osaka, Japan). These
can also be made with Teflon, if necessary. The length of
the plastic tube depends on attachment locations of each
component, but is typically ∼5m. The inner volume of a 5 m-
long tube is ∼100 mL. The impeller pump unit is located at the
most downstream part of the fluid pathway in order to avoid
contamination from potential exfoliation of the tube in the pump.

Sampling Bottle
Each sampling bottle consists of two ball valves (SS-4SKPS4,
Swagelok, Ohio, US) mounted on the two ends of the bottle,
two spherical fluid chambers, and two ball valves (SS-4SKPS4)
located between the chambers in a series (see Figure 1C). The SS-
4SKPS4 valve has a gas-tight capacity for pressure difference up
to 41.3 MPa (guaranteed by Swagelok), the same valve has been
used without problem in the former WHATS-series samplers.
The bottle is of a stainless-steel construct, the surface is treated
with a SilicoNert coating (Silcotek Corporation, Bellefonte,

Pennsylvania, USA) to avoid corrosion and metal contamination
(particularly Fe, Cr, and Ni). Blank of H2 from the stainless-steel
bottle has been examined and confirmed to be as low as 0.03µM
(Kawagucci et al., 2010). As in the WHATS-2, specific gingko-
leaf-shaped discs are mounted as handles of the outside valves
(see Saegusa et al., 2006 for a detailed description; Figure 1C).
The two spherical fluid chambers differ in volumes (20 and 50
mL) but they may be attached in either order. When sampling,
the two fluid chambers are connected and function as a single
fluid container. When the WHATS-3 is recovered on-board, the
two chambers aremanually isolated using inner valves. This dual-
chamber system allows separation of a single fluid sample into
two discrete subsamples, each to be used for chemical analyses of
gas or liquid.

Construction of Electric Motor-Driven
Valve Manipulation
The construction of the valve manipulation system is newly
designed for rapid and smooth operation, as well as increasing
the robustness of the system (Figure 1B). As a common feature
of theWHATS-series samplers, the handles mounted outside ball
valves of the sampling bottles are operated by valve-manipulating
digits. Specifically, the digits move horizontally at a right angle
against the valves, rotating the valve handles for opening and/or
closing them (see Saegusa et al., 2006 for detailed description).
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FIGURE 2 | Photograph showing the WHATS-3 being installed directly below

the center window of the HOV Shinkai 6500.

In the WHATS-2, the four sampling bottles were aligned on
a plane, and the narrow and elongate valve manipulating arm
(with one and two digits on each end) was mounted on a small
block moving linearly by means of a rotating screw pole powered
by an electronic motor. The delicate shape of the arm was
vulnerable to external forces. Indeed, it was sometimes bent due
to accidents during routine maintenance on-board, resulting in
errors manipulating the valves in situ. The force transformation
to linear movement was time-consuming with more than 1 min
being required to manipulate the valves of a bottle. In addition,
the sampling bottles were attached on the main body using
stainless-steel tubes that also functioned as a fluid path. These
tubes were sometimes bent or broken due to the sheer weight of
the bottles when they were attached or detached. To resolve these
issues, the WHATS-3 adopted a new semi-circular alignment
with the sampling bottles set in 60◦ intervals (see Figure 1B). The
valve-manipulating digits are mounted directly on blocks and
rotate on a fixed axis via a roller-chain powered by an electronic
motor. The sampling bottles are held on the built-in ports of the
main frame, independent from tubes that make up the fluid path.
The sturdy construction and the simplified geometry of valve
manipulation in the WHATS-3 reduce potentials of inadvertent

failures during operation, and the time required for manipulating
the valves of a bottle is reduced to just a few seconds.

Construction of the Electronics
A power supply of DC24V is independently required for: (1)
main electric system for valve manipulation, fluid pumping, and
signal communication with the submersible vehicle (Figure 3)
and (2) the thermometer. Cables and connectors used are made
by SEACON (El Cajon, CA, US) and/or IMPULSE (San Diego,
CA, US). The operating software for the main system and the
thermometer was developed for Microsoft Windows operating
systems and has been confirmed to function normally and
successfully onWindows XP andWindows 7. Themain functions
of the software are: (1) to switch pumping ON/OFF, (2) to
change the speed of pumping, (3) to operate the manipulator for
opening/closing of the valves, and (4) to display and record the
fluid temperature.

ON-SHORE TESTS

Pressure Resistance
The WHATS-3 system is designed to resist a pressure of 35 MPa,
corresponding to 3,500m water depth, with a safety coefficient
of 1.7. It has been successfully operated under 33 MPa in deep-
sea field testing. The 35 MPa resistance covers ∼50% of the
global seafloor, including most of Mid-Ocean Ridges, Arc, and
Back Arc where hydrothermal activity is expected (German and
Seyfried, 2014; Beaulieu et al., 2015; Ishibashi et al., 2015).
The three sealed chambers (the pump unit, valve-manipulating
motor, and electronic unit) are designed to resist an external
pressure of 40 MPa while the sampling bottles withstand 30 MPa.
The actual external high-pressure resistance of the whole system
was examined in a laboratory pressure bath and confirmed to
match the designed levels. Successful operations of the valves and
manipulator were confirmed under 32 MPa external pressure in
the laboratory.

For the sampling bottles, in reality, resistance against external
high pressure is not important because all sampling bottles are
open to ambient seawater during the descent to the seafloor (see
Saegusa et al., 2006 for detailed description). Rather, resistance
against internal high pressure post-sampling is more crucial for
successful gas-tight fluid sampling because the pressure sealed
sampling bottles, containing sampled fluids with dissolved gases,
must be recovered intact from the deep-sea. The actual internal-
high pressure resistance was examined by connecting a hydraulic
pump (TP-500, Syn Corporation, Kyo-tanabe, Japan) and a
digital pressure gage (VSMC series, VALCOM, Osaka, Japan) to
the two ends of a sampling bottle. When pure water was filled at
40 MPa and stored for 22 h at room temperature, the sampling
bottle did not show any visible leakage. Furthermore, when the
sampling bottle was filled with pure water at 35 MPa and 2◦C
(mimicking the deep-sea environment), closed, and heated up
to 20◦C, as expected at the sea surface and during the recovery,
the internal pressure increased to 38 MPa but there was again
no visible leakage. These examinations demonstrate that the
newly designed sampling bottle is suitable for use under deep-sea
condition at a depth of 3,500m.
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FIGURE 3 | Construction of electronics in Japanese deep-diving vehicles.

Fluid Substitution
Sufficient substitution of the pre-filled fluid in the bottle (usually
pure water) with the target geofluid was examined because
unlike the simple rod-shaped sampling bottles in the WHATS-
2, the relatively complex dual spherical chamber design of
the sampling bottles in the WHATS-3 may make smooth and
complete substitution difficult. In the WHATS-series samplers,
the sampling bottles are positioned vertically (Figure 1) while
the more dense seawater is introduced from the bottom for
efficient substitution. During testing, pure water and seawater
were used as the pre-filled fluid and the target fluid, respectively
(Figure 4). Chloride concentrations of the fluid in the bottle
were determined by ion chromatography (IC) (Dionex ICS-
2100, Thermo Fisher Scientific) after 2,500 times dilution, within
analytical errors of 2%. Substitution, represented by relative
Cl concentration against seawater, was analyzed in relation to
the amount of fluid pumping. The analyses were conducted
in all three pumping speeds and both possible attachment
orders of the two spherical chambers (large-small chamber
and vice versa). The examination results proved that >98%
substitution was achieved with 300 mL pumping under all
settings of the pumping speed and both chamber attachment
orders (Figure 4). Here, more than 98% substitution practically
indicates complete substitution, when the 2% analytical errors
is taken into consideration. In actual field usage, more than 600
mL of fluid is generally pumped to provide extra assurance of a

complete substitution. The required time for pumping 600 mL
was only 1.5, 3, and 6 min at high, mid, and slow speed pumping,
respectively.

ONBOARD APPLICATION

Procedure for Sampling at the Seafloor
At the beginning of a cruise, the main body, the pump unit,
and the control unit of the WHATS-3 are mounted on the
submersible vehicle to confirm electronic power supply and
communication. Just before the actual dive, the four sets of
sampling bottles and plastic tubes are connected and filled by
water, as any internal air bubbles may cause disastrous crushing
of the bottles and tubes during descent. At the same time, tubes
and connections are carefully checked for any fluid leakage. As
the vehicle approaches the seafloor, the first sampling bottle
is opened, and fluid pumping is started to sufficiently flush
and substitute the pre-filled water in the fluid pathway with
ambient seawater (Figure 5A). In the case of high-temperature
hydrothermal fluid sampling, fluid temperature monitored in
real-time gives an indication of the relative position of the pistol
inlet with regards to fluid effluent. Fluid collection is undertaken
at the highest possible temperature in order to collect as close to
pure geofluid as possible. After successfully collecting geofluids
into the last (fourth) sampling bottle, all external valves are closed
to avoid fluid leakage from sampling bottles. When the vehicle
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FIGURE 4 | Results of fluid substitution examinations. (A,B) Represent the

smaller chamber of a bottle at top and bottom, respectively. Two-characters

labels shown in the legend represent a combination of pump speeds (High,

Mid, Low) and analyzed chambers (Large and Small). Analytical errors (<2%)

are comparable to the size of the symbols.

is recovered on-board, all sample bottles are detached from the
main body, and then all the internal valves are closed manually
to separate the two chambers of a bottle (Figure 5B). The bottles
are stored in a refrigerator prior to subsequent subsampling, as
heating of the bottles increase the internal pressure and therefore
risks leakage and explosion. After subsampling (see below), each
of the fluid-path tubes (usually remains on the vehicle) and
sampling bottles are sufficiently flushed with tap water to remove
any remaining fluids and particles, and then rinsed with pure
water prior to the subsequent dive.

The two chambers in a sampling bottle serves as subsamples
for liquid and gas analyses. Subsampling procedure for the
WHATS-3 is the same as the WHATS-2, as presented elsewhere
(e.g., Kawagucci et al., 2016). Although the current sampling
chamber volumes of 20 and 50mL in the WHATS-3 is less than
the previous versions of WHATS (150mL), these are already
sufficient for subsequent analyses, described as follows.

For liquid subsampling (Figure 5C), a ∼5mL aliquot of the
fluid sample is used without filtration for on-board analyses of

pH, alkalinity, H2S, and NH3 concentration. The remaining fluid
in the bottle (either 15 or 45mL) is filtered through a 0.2 µm
pore sized filter and used for major cation and anion analyses
with Inductively Coupled Plasma Atomic Emission Spectroscopy
(ICP-AES) and IC. Both ICP-AES and IC analyses generally
consume ∼0.1mL of the sample because the sample is subjected
to >1,000 times dilution with pure water prior to the analyses.
The Cl concentration is sometimes quantified by the Mohr
titration method without dilution (as it is more precise than
IC) which consumes ∼1mL of the filtered subsample. For gas
subsampling (Figure 5D), a chamber is connected to a vacuum
line typically consisting of a glass-constructed gas extraction
portion, subsampling bottles, pressure gauges, and a vacuum
pump. Entire body of fluid in a chamber is introduced into the
extraction portion and mixed with solid reagents, sulfamic acid
(H3NSO3) and cadmium acetate [Cd(CH3COO)2, respectively,
to extract inorganic carbon as CO2 and precipitate H2S as sulfide
mineral. Subsampling bottles are optional, although 100mL glass
ampule, 50mL stainless-steel bottle, and 2 L glass canister are
usually used for general, He, and 14C analyses, respectively. The
total gas content of a fluid sample is determined barometrically
in the vacuum line. The volume of the vacuum line is adjusted
to maintain an internal pressure not exceeding atmospheric
pressure (0.1 MPa), because internal high pressure may cause
gas leakage or explosion of the line. For example, a fluid sample
collected in the larger chamber (containing 50mL fluid) and
expected to have a total gas content of 200mM (likely for example
in the hydrothermal fluids from the Okinawa Trough vents
(Kawagucci, 2015)] requires a volume more than 250mL in the
vacuum line. For safety reasons, when processing the first sample
from a new geofluid site where the total gas content is unknown,
a 2 L glass canister is applied to the line to ensure sufficient
volume is achieved. Although the small chamber of WHATS-3
is only one-tenth in volume compared to many other gas-tight
samplers (Seewald et al., 2001; Saegusa et al., 2006), the amount of
recovered major gases (CO2, CH4, H2, etc.) are usually sufficient
to quantify their concentrations and isotope compositions using
commercially available detectors via gas chromatography (e.g.,
Helium Ionization Detector; VICI, Houston) and continuous-
flow isotope-ratio mass spectrometry (e.g., Proskurowski et al.,
2006; Reeves et al., 2011).

Examples of Results from In situ Sampling
at Deep-Sea Hydrothermal Fields
Pressure resistance and field operational feasibility of the
WHATS-3 system were tested and confirmed at Kairei (2,450 m)
and Edmond (3,300 m) hydrothermal fields in the Indian Ocean
(Gamo et al., 2001; Van Dover et al., 2001). The whole system
operated under a maximum external pressure of 33 MPa and
experienced no operational or visible damage when inspected
closely after recovery. Fluids collected from black smoker
vents in each field were completely depleted in Mg (Table 2),
suggesting successful samplings of “pure” hydrothermal fluids
(Von Damm et al., 1985). Their fluid chemistry, including gas
composition, showed good agreement with previously reported
values (Kumagai et al., 2008; Kawagucci et al., 2016), despite
limited sample numbers.
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FIGURE 5 | Illustrated walk-through of deep-sea geofluid sampling and on-board subsampling procedures using the WHATS-3. (A) Presents the situation within the

second bottle at the time of geofluid sampling. (B) Shows bottle separation procedure for storage in refrigerator after sample recovery on board. (C,D) indicate

methods of subsampling for liquid and gas analyses, respectively.

Furthermore, the WHTAS-3 was applied together with
previous versions of theWHATS-series samplers [WHATS-2 and
Cheap-WHATS (Kawagucci et al., 2016)], to determine the fluid
chemistry of three recently discovered deep-sea hydrothermal
sites in the mid-Okinawa Trough. These include Aki site in
the Iheya North field (Kasaya et al., 2015) and Hitoshi and
pseudo-Noho (pNoho) sites in the Sakai field (Nakamura et al.,
2015).

The “Mg diagram” (Von Damm et al., 1985) for major
ion species in each site demonstrated bimodal mixing trends
between a hydrothermal fluid and seawater, regardless of the
samplers used (Table 2). Gas concentrations show scattering
on the Mg diagram, similar to observations from other
Okinawa Trough hydrothermal sites reported in previous
studies (Konno et al., 2006; Kawagucci et al., 2013a; Toki
et al., 2016). This is because the Mg concentration is
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TABLE 3 | Endmember fluid chemistry of Iheya North and Sakai fields.

Field Iheya North Iheya North Iheya North Sakai Sakai Sakai

Site Aki Natsu Original pNoho Hitoshi CLAM

Depth (m) 1,101 1,071 980 1,600 1,300 1,390

MaxT (◦C) 316 305 309 331 286 220

pH 4.45 4.81 4.65 4.7 5.3 5.3

Cl (mM) 594 593 599 678 595 550

Na (mM) 451 461 451 509 458

K (mM) 81.6 83.3 73 99 83 (50–60)

Ca (mM) 22.3 22.8 21.1 27.0 19.7 (∼20)

Li (mM) 1.44 1.40 1.32 3.7 4.1 (3–4)

Si (mM) 14.1 14.1 11.9 13.7 12.7 (∼10)

B (mM) 2.09 1.97 4.4 5.7 (5–6)

Sr (mM) 0.086 0.077 0.111 0.068

Fe (mM) <0.3 0.05 0.12 0.51 <0.15

Mn (mM) 0.76 1.02 0.69 1.01 0.88 (0.4–0.5)

Br (mM) 0.94 0.95 (1.0–1.5)

NH4 (mM) 1.97 1.73 2.1 7.6 7.8 (8–12)

H2S (mM) 1.9 1.5 3.6 0.6 0.2

CH4 (mM) 0.4–0.9 0.46 2.5 3.2 3.2

δ13C-CH4 (‰) −48.4 −52.8 −54.1 −27.8 −32.2

δD-CH4 (‰) −112 −114 −124 −111 −113

H2 (µM) 22–34 22.4 100 350 26.7

δD-H2 (‰) −373 −398 −394 −359 −428

CO (µM) <0.5 <3 <0.5

CO2 (mM) 43–63 62 63 116 89 (160–200)

δ13C-CO2 −9.0 −10 −9.6 −4.7 −2.8 –4.4

C2H6 (µM) <0.5 <0.2 <1 <0.5 1

δ18O-H2O 1.3 1.3 1.2

δD-H2O −1.4 −1.4 −1

References This study Kawagucci, unpub. Kawagucci et al., 2013b This study This study Gamo, 1995

For ion species, endmember composition is estimated as intercepts of the mixing line on the Mg diagram. For gas species, the observed values in Mg-depleted samples are regarded

as the endmember composition.

an indicator for bimodal mixing between high-temperature fluid
and seawater, but subcritical phase separation of CO2-enriched
fluids results in the formation of bubbles and CO2 droplets (Sakai
et al., 1990; Konno et al., 2006), serving as a third endmember
in the samples collected. Erroneously high and variable
gas concentrations, even in high-Mg samples, point to the
incorporation of bubbles together with vent fluid and seawater
because ambient seawater contains only ∼2 mM of CO2 and
negligible amounts of CH4 and H2 (see Discussion in Kawagucci
et al., 2013a). Iron concentrations also show scattering on the Mg
diagram. Similarly high Fe level in samples from both WHATS
samplers and Niskin bottles indicate possible Fe contamination
occurring during on-board or on-shore sample processing,
although the stainless steel used in the WHATS-3 and the deep-
diving vehicles cannot be entirely excluded as potential sources of
contamination.

The estimated endmember fluid composition of the Aki
site is generally identical to those of the Original and Natsu
sites, the other two sites located within the Iheya North field
(Table 3). The identical major fluid chemistry implies that the
three sites are connected through a subseafloor fluid reservoir,
despite the three sites being separated at ∼1 km horizontal

intervals in the North-South direction. This possible connection
among the three sites will be examined by future seafloor drilling
operations; previous drilling operations around the Original
site has already revealed a subseafloor high-temperature fluid
reservoir extending ∼500m in the East-West direction (Takai
et al., 2012; Kawagucci et al., 2013b). On the other hand, CH4

concentrations and carbon isotope ratios are notably different
among the three sites. This can be explained by a higher
contribution of 13C-depleted biogenic CH4 incorporation into
the venting fluid at the Original site.

The fluid chemistry of the pNoho and Hitoshi sites are
distinct from each other (Table 3). The uniformly higher major
ion concentrations in the pNoho site, compared to Hitoshi
and CLAM sites also in the Sakai field (Gamo, 1995), are
likely caused by the greater extent of vapor-lost phase formed
through subseafloor fluid boiling. Such intra-field variation of
fluid chemistry has also been confirmed in the Izena Hole and
Daiyon-Yonaguni fields, Okinawa Trough (Suzuki et al., 2008;
Ishibashi et al., 2014) and is considered to be a result of preferable
emanation of the more mobile vapor-rich phase. Both maximum
fluid temperature and endmember Cl concentration were highest
at the pNoho site, suggesting that this is the center of activity
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in the Sakai field. Possible subseafloor connections among the
three sites within the Sakai field will also be examined by a future
drilling project.
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