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The complex process of melting in the Earth’s interior is studied by combining a

multiphase numerical flow model with the program AlphaMELTS which provides a

petrological description based on thermodynamic principles. The objective is to address

the fundamental question of the effect of the mantle and melt dynamics on the

composition and abundance of the melt and the residual solid. The conceptual idea is

based on a 1-D description of the melting process that develops along an ideal vertical

column where local chemical equilibrium is assumed to apply at some level in space

and time. By coupling together the transport model and the chemical thermodynamic

model, the evolution of the melting process can be described in terms of melt distribution,

temperature, pressure and solid and melt velocities but also variation of melt and residual

solid composition and mineralogical abundance at any depth over time. In this first

installment of a series of three contributions, a two-phase flow model (melt and solid

assemblage) is developed under the assumption of complete local equilibrium between

melt and a peridotitic mantle (dynamic equilibrium melting, DEM). The solid mantle is

also assumed to be completely dry. The present study addresses some but not all

the potential factors affecting the melting process. The influence of permeability and

viscosity of the solid matrix are considered in some detail. The essential features of

the dynamic model and how it is interfaced with AlphaMELTS are clearly outlined. A

detailed and explicit description of the numerical procedure should make this type of

numerical models less obscure. The general observation that can be made from the

outcome of several simulations carried out for this work is that the melt composition

varies with depth, however the melt abundance not necessarily always increases moving

upwards. When a quasi-steady state condition is achieved, that is when melt abundance

does not varies significantly with time, the melt and solid composition approach the

composition that is found from a dynamic batch melting model which assumes the

velocities of melt and residual solid to be the same. Time dependent melt fluctuations

can be observed under certain conditions. In this case the composition of the melt

that reaches the top side of the model (exit point) may vary to some extent. A

consistent result of the model under various conditions is that the volume of the first

melt that arrives at the exit point is substantially larger than any later melt output.
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The analogy with large magma emplacements associated to continental break-up or

formation of oceanic plateaus seems to suggest that these events are the direct

consequence of a dynamic two-phase flow process. Even though chemical equilibrium

between melt and the residual solid is imposed locally in space, bulk composition of

the whole system (solid+melt) varies with depth and may also vary with time, mainly as

the result of the changes of the melt abundance. Potential factors that can influence the

melting process such as bulk composition, temperature and mantle upwelling velocity at

the top boundary (passive flow) or bottom boundary (active flow) should be addressed

more systematically before the DEM model in this study and the dynamic fractional

melting (DFM) model that will be introduced in the second installment can be applied

to interpret real petrological data. Complete data files of most of the simulations and four

animations are available following the data repository link provided in the Supplementary

Material.

Keywords: petrology, mantle melting, geodynamics, multiphase flow, thermodynamics, AlphaMELTS, numerical

modeling

INTRODUCTION

Melting in the Earth’s interior is a complex process that involves
rocks which are essentially multiphase and multicomponent
chemical systems. The process is usually non-stationary in the
sense that the solid and the melt products are dynamical systems.
These systems may also experience different levels of chemical
equilibration and the associated thermal state can be transient.

Traditionally from a petrological point of view melting
is described by a system in which the solid and local
melt product are in complete chemical equilibrium. As the
temperature or pressure or a combination of both varies,
the sum of the melt products either remains constantly in
chemical equilibrium with the local residual solid (batch
melting) or the whole melt is assumed to be chemically
isolated from the local solid (fractional melting). In these
models the spatial and temporal settings are usually not
significant. The chemical evolution of igneous rocks has been
quantified by parameterized compositional models based mainly
on petrological experimental studies (e.g., Langmuir et al.,
1992; Herzberg et al., 2007; Herzberg and Asimow, 2008).
More comprehensive models have been also presented (Spera
and Bohrson, 2001). The chemical thermodynamic approach
developed over several years by Ghiorso (Ghiorso, 1985; Ghiorso
and Sacks, 1995; Ghiorso et al., 2002) specifically includes
the melt phase and provides a more rigorous understanding
of the petrological evolution at different P,T,X,fO2 conditions.
Recently new thermodynamic descriptions of mantle melting
have been presented (Ueki and Iwamori, 2014; Jennings and
Holland, 2015). An advantage of the thermodynamic formulation
is that, within certain limits, it creates a framework that
allows also to make predictions at conditions not interested
by experimental studies. The petrological evolution over time
and space remains still undefined or it can only be inferred
qualitatively. This is a recurrent shortcoming of qualitative and
quantitative inverse studies that rely only on petrological and
geochemical evidences from field observations and a simplified

description of the process involved. Few studies (Asimow and
Stolper, 1999; Asimow, 2002) made a serious attempt to interface
transport principles with the thermodynamic melt approach. The
experience from these studies has been somehow translated in
the program AlphaMELTS (Smith and Asimow, 2005) which is
a powerful interface of Ghiorso’s thermodynamic model with
additional features, such as melt focusing, melting along an
adiabatic thermal gradient and modeling of trace elements.

The dynamic nature of melting has been investigated for some
time using two-phase flow models (McKenzie, 1984; Scott and
Stevenson, 1984, 1986; Spiegelman, 1993a; Richardson, 1998;
Ghods and Arkani-Hamed, 2000; Schmeling, 2000; Bercovici
et al., 2001; Bercovici and Ricard, 2003; Šrámek et al., 2007;
Hewitt and Fowler, 2008; Katz, 2008; Hewitt, 2010; Rudge et
al., 2011) all derived from a more general analysis of the two-
phase flow process (Ishii and Hibiki, 2006). The scope was
mainly to understand the physical behavior of melt from an ideal
standpoint. Usually the characterization of the melt products
has been associated to ideal or simplified chemical systems not
necessarily related to any specific crustal or mantle rock.

The idea of combining a more realistic petrological
description of melt with a transport model is conceptually
very simple although the actual implementation is not quite
straightforward. For instance the thermodynamic formulation
developed by Ghiorso cannot be easily combined with a
numerical transport model. Beside an early attempt using a
parameterized petrological formulation (Cordery and Morgan,
1993), the few studies that overcome these difficulties (Katz, 2008;
Tirone et al., 2009, 2012) applied simplified thermodynamic
formulations. The obvious shortcoming is that the petrological
results of these models may not be sufficiently accurate to
interpret real petrological field data. In addition, because
thermodynamic equilibrium principles are applied, chemical
equilibrium needs to be necessarily imposed at some spatial and
temporal scale. It remains to be seen whether this is the correct
approach to describe the melting process in the Earth’s interior.
A different approach that would consider a kinetic formulation
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perhaps in combination with a thermodynamic model could
be a valid alternative. However such general formulation for a
multi-mineral system (mantle rock assemblage+melt) described
by several chemical components is not quite available yet. A first
attempt using a simplified kinetic model for binary systems has
been applied to dynamic disequilibrium melting (Rudge et al.,
2011). One major difficulty is that experimental data to constrain
any possible kinetic model are scarce. A possible solution that
could make this type of modeling more tractable would require
to impose thermodynamic equilibrium on a certain spatial
and temporal scale determined by (existing and future) kinetic
experimental data. An example of interfacing thermodynamics
and kinetics, but for a much more limited purpose, can be found
in a recent study (Tirone et al., 2016b), where the program
AlphaMELTS (Smith and Asimow, 2005) was used to constrain
the compositional growth of olivine phenocrystals during a
cooling process. The phenocrystals were considered chemically
isolated from the melt although not physically removed from it,
and at the same time chemical diffusion was allowed to develop
within individual crystals.

One of the objectives of this study is to understand how the
composition and distribution of melt and solid are affected by
the dynamic evolution of the system assuming a 1-D mantle
column. To go beyond a theoretical or ideal case study and to
open up the possibility of interpreting real field geochemical and
petrological observations, AlphaMELTS (Smith and Asimow,
2005) and the included thermodynamic model have been chosen
as the petrological tool that is coupled with the dynamic model.
The aim is also to present the dynamic formulation in a simple
and practical form that describes with reasonable accuracy (a)
the transport of a solid dynamic phase (mantle), and one or
two fluid phases (specifically melt and water-based fluid), (b)
the evolution of the composition of each dynamic phase and (c)
the thermal state over time and space. While the simultaneous
numerical solution of several coupled differential equations may
seem a formidable task, the motivation for this study is also to
illustrate how a numerical procedure applied to the equations
describing the transport model can be accomplished without a
very advanced knowledge of numerical methods. In this first of
a series of three studies the local thermodynamic equilibrium
between solid and melt is assumed on the spatial scale defined
by the numerical grid on a certain time interval in a 1-D
mantle column (Figure 1). Certain parameters discussed in the
following sections are varied to investigate the effect on the melt
production and chemical evolution over time and space. The
second contribution of this series will consider an alternative
scenario, that is the case in which, once the melt is formed,
it does not interact chemically any further with the residual
solid while still affecting the dynamic model. The melt products
converge into a different system that still evolves according to
equilibrium principles but separately from the residual solid.
This can be accomplished by applying the thermodynamic
formulation to two local sub-systems separately. In the third and
last contribution of the series the effect of water on the melting
process is investigated by combining chemical thermodynamics
with a three-phase flow model.

Perhaps at this point it is worth summarizing the different
models that will be described. The general definition of dynamic

equilibrium melting (DEM) is not entirely accurate but it
captures the essence of a combination of a transport model
and a thermodynamic approach. The more correct definition,
something like “1-system 2 (or 3)-phase flow thermo mechanical
and chemical equilibrium melting model” is clearly impractical.
Similarly a dynamic batch melting model that is defined when
the velocity of the solid and melt are assumed to be equal is also
quite intuitive although not necessarily rigorous. These two type
of models can be considered an extension of concepts developed
in a previous study (Asimow and Stolper, 1999). For the dynamic
batch melting model (υs = υm), chemical exchange between the
solid andmelt is associated to themass transfer between these two
components but also to chemical re-equilibration, for example
Fe-Mg redistribution, as the external conditions, such as P and T,
are allowed to vary. It should be clear that everything is confined
within the local system (i.e., spatial grid point), in other words
the system solid+melt is closed to external mass transfer and
the local bulk composition is fixed. When the dynamics of the
solid assemblage and melt phase are different (υs 6= υm), the
principles dictating the chemical evolution remain the same but
the local system solid+melt is open to mass transfer from outside
(i.e., nearby spatial grid points), hence the relative abundance
is not only controlled by the local melting process and the bulk
composition of the system may vary.

To complete the model definitions in the second contribution
of the series a dynamic fractional melting (DFM) model will
be introduced to describe a dynamic melting process in which
the chemical equilibrium approach applies to two separate sub-
systems, one for the residual solid and one for the sum of the
melt products. The last model that considers dynamic fractional
melting when the velocity of the solid and melt are assumed to be
equal is simply named dynamic fractional melting with υs = υm.
This idealization of the fractional melting concept is not new
since it was first introduced in an earlier study (Asimow, 2002).

DESCRIPTION OF THE MULTIPHASE
DYNAMIC MODEL

The relevant transport equations for a 1-D multiphase dynamic
model are introduced in this section. While none of the material
is entirely new, it may be useful to review the essential features
of the formulation. In the Eulerian description the properties are
determined at fixed points in space where each point represents
a small control volume. Since multiple assemblages (solid rock,
melt, water) are considered simultaneously and their dynamic
evolution is treated separately, the distribution of each of these
assemblages or dynamic phases can be described by a different
differential equation for the conservation of mass (Ishii and
Hibiki, 2006):

∂ (ρaφa)

∂t
+

∂ (υaρaφa)

∂z
= Ŵa (1)

where the superscript a stands for the dynamic phase or
assemblage “s⇒solid,” “m⇒melt,” or “w⇒water.” ρ is the mass
density of the dynamic phase, φa is the fraction of the control
volume occupied by the dynamic phase a and υ is the velocity
of the dynamic phase. The product ρφ, later labeled 8, can be

Frontiers in Earth Science | www.frontiersin.org 3 October 2017 | Volume 5 | Article 81

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Tirone and Sessing Petrological Geodynamics of Mantle Melting I

FIGURE 1 | (Left) Schematic view of the mantle column. In the dynamic equilibrium melting (DEM) model at each grid point local equilibrium is assumed between

melt and solid. Dynamic and thermodynamic properties represent the average spatial values within each grid point. The drawing describes only the concept of the

model, distribution of melt and minerals in the figure not in scale. (Right) Illustration of the two spatial grids, the j-grid used for the pressure or the pressure gradient,

and the i-grid for all the other variables. Boundary conditions at the top and bottom of the model are also reported. The zero gradient condition, for example

∂ (ρφ)/∂z = 0, means that (ρφ)top boundary = (ρφ)i=1 or (ρφ)bottom boundary = (ρφ)i=last.

seen as the mass of a certain dynamic phase per unit volume that
is associated to the fraction φ of the control volume occupied by
the dynamic phase. For instance, if ρ is 3,000 kg/m3, φ is 0.3 and
the control volume is 2 m3 then the total mass of the dynamic
phase in the fraction φ of the total volume would be 3,000 × 0.3
× 2. Each assemblage is allowed to exchange mass, for example
when at a particular point in space melting of the solid takes
place, the total mass of the solid should decrease and the total
amount of melt should correspondingly increase. This process
is accounted for by the term Ŵa which is the cumulative mass
transfer rate that includes the exchange between the transport
phase a with the other transport phases (e.g., for solid a = s then
Ŵs = Ŵs−m + Ŵs−w). Mass transfer to a certain dynamic phase
(e.g., from m to s) has a counterpart (from s to m) and the two
quantities are related, Ŵs−m = −Ŵm−s.

The equation of motion for the solid assemblage is described
in a 1-D problem by the following relation:

− φs ∂P

∂z
+ φsρsg −Ms−m −Ms−w + S = 0 (2)

where the acceleration terms have been ignored (∂(ρsφsυs)/∂t+

∂(ρsφsυs2 )/∂z ≈ 0) (Bird et al., 2002). The first and last term
in Equation (2) describe the change by pressure (P) and viscous
forces (S), the second term describes the effect of gravitational
forces and the M terms are similar to the mass transfer rate
introduced in the mass conservation equations and they describe
the dynamic coupling of motion of the assemblages. Unlike the
mass transfer rate, M can assume different forms, depending on

the nature of the dynamic systems and the type of interaction
among them. The presence of a third dynamic phase (water) will
be considered in the third and last contribution of the series,
however the relevant relations are introduced here since the
formulation of the two-phase flow model, specifically addressed
in this study, can be derived by simply assuming that no water is
present in the system (φw = 0). Themotion coupling between the
solid and melt assemblages is described by the following relation

Ms−m = −(φm2
µm/km)(υm − υs) where µm is the viscosity of

melt. The permeability is defined as km = φm3
�m4

/C where
�m = φm/(φm + φw) and C is a permeability constant. When
water is ignored the above equation for the permeability km is
similar to the relation used in several studies on melt porous
flow (e.g., McKenzie, 1984; Spiegelman, 1993a; Schmeling, 2000;
Rudge et al., 2011). An expression similar to Ms−m can be used
for the interaction between solid and water Ms−w, while no
interaction is assumed between melt and water. The permeability

for water assumes a slightly different form, kw = φw3
�w2

(1 −

�m2
)/C where �w = φw/(φm + φw). The relations just outlined

here describe a simplified formulation borrowed from reservoir
modeling which typically involves several phases like oil, gas and
water (Corey et al., 1956; Stone, 1970; Peaceman, 1977; Dria et al.,
1993; Abreu et al., 2006).

In two-phase flow problems alternative physical
interpretations of the pressure and viscous forces S have
been proposed in the past. In the earliest the pressure has been
referred to the whole system and the generalized Newton’s
law of viscosity includes a bulk (or dilatational) viscosity term
(McKenzie, 1984). A different formulation considered distinct
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pressures in the fluid and solid and an explicit definition of the
bulk viscosity (Scott and Stevenson, 1986; Bercovici et al., 2001;
Bercovici and Ricard, 2003; Simpson et al., 2010). The two can be
reconciled under certain assumptions. A discussion on this point
can be found elsewhere (Bercovici and Ricard, 2003; Rudge et al.,
2011), It is only mentioned here that the pressure P would need
to assume the meaning of an interfacial pressure between the
fluid and the solid (Rudge et al., 2011). The standard definition
of the pressure acting on the system would apply instead when
the fluid is completely removed.

The expression for the variation of the viscous forces in a 1-D
Cartesian geometry assumes the following form: S = −∂φsτzz/∂z
where τzz is the vertical stress component. When no formal
distinction is made between shear viscosity and bulk viscosity,
the generalization of the Newton’s law of viscosity (Bird et al.,
2002) for the stress component τzz is τzz = −(7/3)µ∂υs/∂z.
Considering for simplicity the following relation µs = (7/3)µ
where µs is assumed to represent the viscosity of the solid in the
system, then the viscous Newtonian forces S can be described
for a 1-D problem by the following simplified equation S =

∂φsµs∂υs/∂z2. McKenzie (1984) suggested that µs could be
related to the viscosity of the solid in absence of any fluid µs

0 (i.e.,
µs = µs

0). An alternative formulation that includes a dependence
on the volume of the fluid has been also proposed (Scott and
Stevenson, 1984, 1986; Bercovici et al., 2001; Bercovici and
Ricard, 2003). In this study the dependence on melt is expressed
by the following relation µs = µs

0(1 + 1/φm) which includes
a term representing the relation between the bulk viscosity and
the melt volume fraction. Similar but more complex expressions
have been used in previous studies (Schmeling, 2000; Rudge et
al., 2011). The essential feature of this expression for the viscosity
is that the second term becomes dominant when the fluid or
melt abundance is small. For practical purposes, below a certain
threshold value for φm, the above equation is replaced by µs =

µs
0. Both definitions ofµ

s have been considered in this study, and
a discussion on the results using the two viscosity models will be
presented in a later section.

The equation of motion for melt is similar to the one for the
solid phase but with few differences. The interaction between
melt and water (Mm−w) and the term related to the viscous forces
are ignored, hence:

− φm ∂P

∂z
+ φmρmg +Ms−m = 0 (3)

The above equation for melt, and the similar equation for water,
can be rearranged to express υm (and υw) explicitly:

υm = −
km

φmµm

(

∂P

∂z
− ρmg

)

+ υs (4)

where the relation forMs−m introduced earlier has been applied.
Note that in the limiting case in which the solid assemblage
is immobile and water is not present, the above equation
describes the well-known Darcy flow equation. It is convenient

to introduce also the total equation of motion (sum of three
Equations, 2, 3 and the similar one, not shown here, for water):

−
∂P

∂z
+ φsρsg + φmρmg + φwρwg + S = 0 (5)

where the antisymmetric relationsMs−m = −Mm−s andMs−w =

−Mw−s and the constraint provided by the sum of the volume
fractions φs + φm + φw = 1 have been used.

Since the chemical composition of the solid and melt (and
water) are not expected to remain constant in space and time,
an expression for the evolution of the chemical composition in
the two (or three) assemblages is also needed. Oxides have been
chosen to describe the bulk composition in each assemblage,
although alternative definitions are possible (e.g., fictious end-
members, elemental abundance). For the chemical components
c in the solid and melt the following relation can be applied:

∂ (ρsφsθ sc)

∂t
+

∂ (υsρsφsθ sc)

∂z
= Ŵsc−mc;

∂ (ρmφmθmc)

∂t
+

∂ (υmρmφmθmc)

∂z
= Ŵmc−sc (6)

where for example θ sc is the wt% of the oxide c in the solid
assemblage s. Assuming that the dynamic phase water is made
of pure water, the above equation is not necessary and only the
mass conservation equation for water, in the form introduced
earlier, should be considered. The transfer rate Ŵ has the same
meaning of the other exchange quantities and clearly it may
assume different values for different oxide components c.

The temperature is described by the following relation:

∂T

∂t

a
∑

Cpaρ
aφa +

∂T

∂z

a
∑

υaCpaρ
aφa =

∂2T

∂z2
Ksys + T

∂P

∂t
αsys

+T
∂P

∂z
υsysαsys (7)

where Cpa is the heat capacity at constant pressure of the
assemblage a. Ksys and αsys are the thermal conductivity and
thermal expansion of the whole system. The last two terms
describe the reversible adiabatic effect due to compression or
expansion (Bird et al., 2002). With the above expression at every
time thermal equilibrium is assumed among the dynamic phases
included in a discrete volume. The effect of viscous dissipation
has been ignored because it has a minor effect on the thermal
profile over the limited depth interval considered in this study
(less than hundred kilometers) (Asimow and Stolper, 1999).
The heat change induced by chemical transformations (mainly
melting) has been also excluded from the thermal model, but
for a different reason. If the melting model ignores the thermal
contribution of heat conduction and viscous dissipation and the
dynamic transport of melt and solid are the same, the process
can be assumed to be isentropic. With this constraint the thermal
effect of the latent heat can be accounted for in a relatively simple
way. This is the procedure followed in the program AlphaMELTS
(Smith and Asimow, 2005). However when the velocity of the
melt and the solid are different, which is often the case in a two-
phase flowmodel, then the entropy does not remain constant and
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the problem needs to be approached differently. More in general
in a dynamic model with complex petrology involved, the effect
of the latent heat has to be implemented self-consistently with
themelt-temperature relation determined by the thermodynamic
model at the given pressure. Because there is no easy way to
properly implement such general procedure (Tirone et al., 2012),
in this study the thermal change due to melting or solidification
has been ignored. Without a correct formulation the risk is
to overestimate the thermal change or, even worse, to wrongly
predict that melt would be completely crystallized in some areas
of the mantle column. It would affect the dynamic model and
potentially create a feedback of uncontrolled errors propagating
through all the parts of the melting model.

NUMERICAL SOLUTION

This section aims to clearly outline the numerical solution of the
coupled geodynamic and thermodynamic melting model. It can
be readily disregarded if the primary interest is the outcome of
the DEMmodel.

Solution of the Transport Model
The numerical solution of the differential equations given in
the previous section together with some auxiliary relations
determines at discrete space intervals and time steps the following
quantities, φs, φm, φw,8s,8m,8w, υs, υm, υw, P, Pg , θ sl, θml,2sl,

2ml, T. Some of these variables have been introduced already,
others will be defined later in this section. Additional properties,
retrieved from the thermodynamic model, will be discussed in
the second part of the section.

The numerical solution scheme presented here is the result
of several attempts trying various finite difference algorithms
and numerical procedures. Figure 1 illustrates the general melt
model, the right panel in particular shows how the vertical
mantle column is discretized in space and the condition that are
typically imposed at the top and bottom boundary. The most
challenging part of the dynamic solution is to find the local
flow pressure together with the mass abundance and velocity
of each dynamic phase. Since these quantities appear in more
than one differential equation and they affect each other, at every
time step some of the differential equations need to be solved
simultaneously. Practically an iterative procedure is implemented
for this purpose. The method that has been applied is based on
a modified version of the SIMPLER algorithm (Semi-Implicit
Method for Pressure Linked Equations Revised) (Patankar,
1980) in combination with the SIMPLEC algorithm (Semi-
Implicit Method for Pressure Linked Equations-Consistent) (Van
Doormaal and Raithby, 1984). For simplicity the scheme is called
SIMPLECR.

The numerical scheme begins by solving the mass
conservation equation (Equation 1) to find the mass abundance
of melt (and water, if present as an independent dynamic phase).
The numerical solution follows the MacCormack two-steps
algorithm which is second order accurate in time and second
order accurate in space O(1t2,1z2) (MacCormack, 1969;
Tannehill et al., 1997). The first step is a forward (upwind) finite
difference scheme (Tannehill et al., 1997) that makes use of the

values at the previous time step (explicit solution). At the space
grid point i and current time t the discretized equation assumes
the following form:

8m∗
i,t = 8m

i,(t−1) −

(

1t

1z

)

(

8m
i,(t−1)υ

m
i,(t−1)

−8m
(i−1),(t−1)υ

m
(i−1),(t−1)

)

(8)

where 8m is the product of the density and volume fraction
8m = ρmφm, the previous time step is specified by the subscript
t − 1. All the quantities on the right hand side (rhs) are known
therefore the solution for 8m∗ at each grid point is explicit. The
uppercase symbol ∗ in 8m∗ indicates that this is not the final
solution. In all the following equations the velocity is referred
to the current time step t and the subscript for time is dropped
altogether. Note that the spatial i-indexing starts at the top side
of the model and the velocity is negative upwards (Figure 1). The
second step of the MacCormack method consists of a half-time
advancement using a backward finite difference and the starred
value 8m∗

i,t :

8m
i,t = 0.5 (8m

i,(t−1) + 8m∗
i,t )

−

(

1t

21z

)

(

8m∗
(i+1),tυ

m
(i+1) − 8m∗

i,t υm
i

)

(9)

8m
i,t can be directly computed from the above equation starting

the solution from the bottom up since all the quantities on the
rhs are already known. The mass transfer between transport
phases Ŵa introduced in Equation (1) is not explicitly accounted
for but instead the mass transfer is absorbed in the 8m

i,(t−1)
term, which represents the value from the previous time step
incremented by an additional quantity 18m

i . This additional
quantity is related to the thermodynamic model and it will be
defined later. The condition imposed at the top and bottom
boundaries is either 8m

boundary
= 0 or ∂8m/∂z|boundary = 0

(Figure 1). Once8m
i,t has been found, the volume fraction of melt

can be easily computed from φm
i,t = 8m

i,t/ρ
m
i,t , where the density

ρm
i,t is known from the thermodynamic calculation. The same

procedure also applies to free water, if it is present in the system
as an independent dynamic phase. The volume fraction of solid
is retrieved using φs

i,t = 1 − φm
i,t − φw

i,t and then, knowing the
density of the solid assemblage, 8s

i,t is computed from 8s
i,t =

ρs
i,tφ

s
i,t . A more elaborate numerical scheme aiming to reduce

numerical diffusion and other numerical instabilities has been
also implemented. This alternative procedure based on the flux
corrected transport algorithm (FCT) (Boris and Book, 1973;
Book and Boris, 1975; Zalesak, 1979) is discussed in Appendix
1 (Supplementary Material).

The SIMPLER (and SIMPLECR) algorithm consists of four
steps that need to be approached in a sequential manner. In the
first step the equation of motion for the whole system (Equation
5) is used in the following discretized form based on a central
difference scheme for the first and second derivatives (Tannehill
et al., 1997):

− Si−1 + Si − Si+1 = −

(

Pj+1 − Pj
)

1z
+ g8s

i,t + g8m
i,t

+g8w
i,t (10)
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where Si−1, Si and Si+1 are the terms representing the
discretization of the variation of the viscous force S that was
introduced in the previous section. The pressure gradient is
dP/dz|i ≈ (Pj+1 − Pj)/1z. Note that S and 8 are computed
on grid points with index i while the pressure is retrieved on a
staggered grid defined by the index j. The relation between the i
and j grid is shown in Figure 1. Recalling the two expressions for
the viscosity of the solid matrixµs = µs

0 andµs = µs
0(1+1/φm),

and the definition of S, S = ∂φsµs∂υs/∂z2, then for the first
definition of the viscosity, the terms Si−1, Si, Si+1 are:

Si−1 =
µs
0 υs

i−1

1z2
0.5
(

φs
i,t + φs

(i−1),t

)

Si =
µs
0 υs

i

1z2
0.5
(

2φs
i,t + φs

(i−1),t + φs
(i+1),t

)

Si+1 =
µs
0 υs

i+1

1z2
0.5
(

φs
i,t + φs

(i+1),t

)

(11)

For the second viscosity model, the S terms assume the following
discretized form:

Si−1 =
µs
0 υs

i−1

1z2

[

0.5
(

φs
i,t + φs

(i−1),t

)

+
φs
i,t + φs

(i−1),t

φm
i,t + φm

(i−1),t

]

Si =
µs
0 υs

i

1z2

[

0.5
(

2φs
i,t + φs

(i−1),t + φs
(i+1),t

)

+
φs
i,t + φs

(i−1),t

φm
i,t + φm

(i−1),t

+
φs
i,t + φs

(i+1),t

φm
i,t + φm

(i+1),t

]

(12)

Si+1 =
µs
0 υs

i+1

1z2

[

0.5
(

φs
i,t + φs

(i+1),t

)

+
φs
i,t + φs

(i+1),t

φm
i,t + φm

(i+1),t

]

Equation (10) is applied to find a pseudovelocity νsi defined as:

νsi = υs
i − λi

Pj+1 − Pj

1z
(13)

where λi is:

λi = −
υs
i

Si
(14)

Equation (13) is used in the equation of motion (Equation 10)
to replace υs

i with the expression for the pseudovelocity. After
some rearrangements, Equation (10) can be directly solved for νsi
at each grid point:

νsi = −λi
[

Si−1 + Si+1 + g8s
i,t + g8m

i,t + g8w
i,t

]

(15)

where all the terms on the rhs are known and the solution is
explicit. Note that the true velocities υs

i−1 and υs
i+1 have been

retained on the rhs in the terms Si−1 and Si+1. These true
velocities are assumed to be known either from the previous
time step or from the previous iteration (more on this point
further below). The boundary conditions usually are set in a
way that the velocity either at the top or bottom side is kept
fixed at a certain value while the opposite boundary side is set
to ∂υs/∂z|boundary = 0.

Equation (15) does not include any pressure term because P
was absorbed in the definition of the pseudovelocity (Equation
13). The pressure is determined using the equation for the
mass conservation of the dynamic solid phase which introduces
the second step of the SIMPLER (and SIMPLECR) approach.
Using the upwind finite difference scheme, the mass conservation
equation for the solid is discretized as follows:

8s
i,t − 8s

i,(t−1)

1t
+

8s
(i+1),tυ

s
(i+1) − 8s

i,tυ
s
i

1z
= 0 (16)

where 8s
i,t = ρs

i,tφ
s
i,t . The velocity υs is replaced in Equation

(16) by the expression with the (known) pseudovelocity υs
i =

νsi + λi(Pj+1 − Pj)/1z. After some rearrangement:

8s
(i−1),t − 8s

(i−1),(t−1)

1t
+

8s
i,tν

s
i − 8s

(i−1),tν
s
(i−1)

1z
+

8s
i,tλi

(

Pj+1 − Pj
)

1z2
−

8s
(i−1),tλi−1

(

Pj − Pj−1
)

1z2
= 0 (17)

Note that the above equation is not centered around the index
point i but instead all the i indexes have been translated by -1 (i.e.,
in Equation 16, i is replaced with (i−1) and (i+1) is replaced with
i). Following the translation of the index i for the velocities and
pseudovelocities, the index j for the pressure must be changed
accordingly. The reason for the shift of the indexes is that now
Equation (17) is centered around j and the three pressure terms
are Pj−1, Pj, Pj+1. After some rearrangement to put the terms
related to the unknown pressure variables on the left side, the
equation assumes the final form:

Pj
−8s

i,tλi − 8s
(i−1),tλi−1

1z2
+ Pj−1

8s
(i−1),tλi−1

1z2
+ Pj+1

8s
i,tλi

1z2
=

−
8s

(i−1),t − 8s
(i−1),(t−1)

1t
−

8s
i,tν

s
i − 8s

(i−1),tν
s
(i−1)

1z
(18)

The values for the pressure P can be found by writing at every
grid point an equation like the one above here and solve the
system of equations simultaneously. The system of equations in
this case is linear in the variables Pj−1, Pj, Pj+1 and it forms a
tridiagonal matrix for which the solution is rather simple (Press
et al., 1992). An important point is that a solution for the above
system of equations can be found only by fixing the value of
the pressure at one grid point. Usually the pressure at this fixed
point is set to zero. A discussion on this issue, omitted here
for brevity, can be found for example in Patankar (1980). The
relative nature of the pressure is not a major problem since only
the pressure gradient is needed in order to have a complete
description of the dynamic model. From a practical standpoint,
when the velocity at the top boundary is fixed, Equation (18) on
the opposite side is defined in a way that at the last grid point
Plast+1 = 0. This is accomplished by setting the rhs equal to 1 and
setting to 0 all the terms multiplying Plast , Plast+1 and Pboundary.
Additionally in the equation centered at the point (last), the term
that multiplies Plast+1 is set to 0. The top boundary condition is
then ∂P/∂zt−boundary = 0. Alternatively, when the velocity at the
bottom boundary is fixed, then P1 = 0, which is accomplished
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by setting to 0 the terms multiplying Pboundary, P1 and P2 in the
equation at the first point. Then for the equation centered at
j = 2, the termmultiplying Pj−1 must be also set to 0. The bottom
boundary is set to ∂P/∂zb−boundary = 0.

Once the pressure has been found, the pressure gradient can
be easily retrieved, for instance at the grid point i, dP/dz|i ≈

(Pj+1 − Pj)/1z.
The pressure gradient is then used in the third step of the

SIMPLER procedure. The discretized equation of motion for the
whole system is used to find an approximate velocity υs∗

i (noted
by the superscript ∗):

S∗i − S∗i−1 − S∗i+1 = −

(

P∗j+1 − P∗j

)

1z
+ g8s

i,t

+g8m
i,t + g8w

i,t (19)

The superscript ∗ has been introduced also for S and the pressure
P to indicate that they are related to the approximated velocity
field. The definition of the S∗ terms is the same given for S
(Equation 11 or 12) but with υs replaced by the unknown υs∗.
A tridiagonal matrix based on Equation (19) needs to be solved
to find υs∗

i . The imposed boundary conditions are similar to
those discussed for the solution of Equation (15). The reason
for considering the velocity as an approximate quantity is that
the pressure obtained from Equation (18) was computed using
the pseudovelocity νs that was obtained from Equation (15)
assuming that the velocities on the rhs of the equation were
known.

The velocities now can be improved by correcting the pressure
field using the procedure discussed here below. Once the
correction to the pressure field has been retrieved, the improved
velocity can be computed from the following relation:

υs
i = υs∗

i + λi
P′j+1 − P′j

1z
(20)

where P′ is the difference between the correct pressure P and the
approximated pressure P∗, that is P′ = P− P∗. The correction to
the pressure gradient dP′/dz is approximated as (P′j+1 − P′j)/1z.

Similarly the velocity correction is defined as υs′

i = υs
i − υs∗

i .
The relation given in Equation (20) is obtained by writing an
expression for the equation of motion (Equation 10) using the
correct velocity υs and pressure P and a similar expression using
the approximate velocity and pressure υs∗, P∗. The difference
between these two expressions is:

S
′

i − S
′

i−1 − S
′

i+1 = −
P′j+1 − P′j

1z
(21)

where S
′
is the difference between S and S∗. In the SIMPLER

algorithm S
′

i−1 and S
′

i+1 on the left hand side (lhs) are ignored

therefore by replacing υs′

i with υs
i − υs∗

i in S
′

i and using the
definition of λi (Equation 14), the above expression leads to
Equation (20).

The equation for the conservation of the solid mass now can
be discretized and solved for the pressure correction P′j after

replacing the velocity υs with Equation (20) (and shifting the
i-index and j-index by -1):

P′j
−8s

i,tλi − 8s
(i−1),tλi−1

1z2
+ P′j−1

8s
(i−1),tλi−1

1z2
+ P′j+1

8s
i,tλi

1z2
=

−
8s

(i−1),t − 8s
(i−1),(t−1)

1t
−

8s
i,tυ

s∗
i − 8s

(i−1),tυ
s∗
(i−1)

1z
(22)

The above expression applied to every grid point forms a
tridiagonal matrix that defines the fourth and last step of the
SIMPLER (or SIMPLECR) procedure. It is very similar to the
previous equation used to retrieve the pressure (Equation 18) and
the same boundary conditions apply as well. The main difference
is that on the rhs approximate values for the velocity field are
used instead of pseudovelocities. Once the pressure correction is
found, Equation (20) can be used to compute new values for υs.

This whole procedure needs to be repeated or iterated until it
reaches convergence according to a certain criteria, for instance
convergence can be established when the pressure correction P′

at every spatial grid point becomes very small.
The entire solution method will be summarized later, however

few remarks are made here. The critical part of the fourth
and final step is that in the derivation of Equation (20) from
Equation (21), S

′

i−1 and S
′

i+1 have been ignored, which implies

that υs′

i−1 = υs
i−1 − υs∗

i−1 = 0 and υs′

i+1 = υs
i+1 − υs∗

i+1 = 0.
The consequence of such approximation is that the convergence
may be very slow and a large number of iterations are needed
to find a self-consistent solution for υa, P (and φa). The
SIMPLEC algorithm (Van Doormaal and Raithby, 1984) was
introduced to mitigate this problem, however it was only applied
to improve the SIMPLE algorithm (Patankar, 1980), which is
an alternative numerical scheme used for the pressure-velocity
solution. Here the SIMPLEC algorithm is applied instead on
the SIMPLER procedure described so far in this section (hence
the new acronym SIMPLECR). The essence of the SIMPLEC
algorithm is that the velocity corrections υs′

i−1 and υs′

i+1, instead

of being ignored, are assumed to be equal to υs′

i . There is a slight
complication, because for the type of equation of motion used
in this study, the assumption leads to an unwanted situation
in which λi would be zero everywhere except under certain
conditions at the boundary. This can be easily verified by
replacing υs′

i−1 and υs′

i+1 with υs′

i in S
′

i−1 and S
′

i+1 in Equation (21).
It follows that no correction for the pressure could be found and
the problem would become unsolvable. A possible remedy is to
approximate λi in Equation (22) as follows:

λi = −
1z2

µs
0

(

2φs
i,(t−1) − φs

(i−1),(t−1) − φs
(i+1),(t−1)

) (23)

which is simply the discretized form of −1/(µs
0 ∂2φs∂z2). For

the case in which S and S
′
are defined by Equation (11), it is

easy to show that Equation (20) would still approximate Equation
(21), provided that υs′

i = υs′

i−1 = υs′

i+1 and that the terms
0.5(2φs

i,t + φs
(i−1),t + φs

(i+1),t), 0.5(φ
s
i,t + φs

(i−1),t) and 0.5(φs
i,t +

φs
(i+1),t) in Equation (11) are replaced with 2φs

i,t , φs
(i−1),t and
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φs
(i+1),t , respectively. Even though the new definition of λi given

by Equation (23) incorporates the contribution of the terms
related to υs′

i−1 and υs′

i+1 only in some approximate form, it was
found that the rate of convergence of the whole procedure was
improved when compared to the rate of convergence using the
definition of λi given by Equation (14).

There is an additional complication. During the iterative
process, in particular when the melt fraction is relatively large,
numerical instabilities could lead to a poor convergence (even
with the new definition of λi) or no convergence at all. One
trouble spot is the term 8s

(i−1),t that appears in the discretized
time derivative (8s

(i−1),t −8s
(i−1),(t−1))/1t of Equation (22). The

reason is that8s
(i−1),t depends on υs (or υs′ ) and ultimately on the

pressure (or pressure correction P′). This interdependence is not
accounted for in Equation (22). A relation between 8s

(i−1),t and

P′ can be established by recalling that 8 = ρφ, then 8s
(i−1),t =

(1 − 8m
(i−1),t/ρ

m
i−1)ρ

s
i−1 (assuming no water is present) and the

correction 8s′

(i−1),t is given by 8s′

(i−1),t = −8m′

(i−1),tρ
s
i−1/ρ

m
i−1. If

the melt correction 8m′

(i−1),t is written as:

8m′

(i−1),t = −
1t

1z

(

8m
i,tυ

m′

i − 8m
(i−1),tυ

m′

i−1

)

(24)

where υs′ ≈ υm′
, and using the relation between 8m′

(i−1),t and

8s′

(i−1),t in the above equation, then:

8s′

(i−1),t =

(

ρs
i−1

ρm
i−1

)

1t

1z

(

8m
i,tυ

s′

i − 8m
(i−1),tυ

s′

i−1

)

(25)

By using Equation (20) to replace the correction to the solid
velocity in the above expression, then the correction to 8s

(i−1),t
can be related to the pressure correction P′:

8s′

(i−1),t =

(

ρs
i−1

ρm
i−1

)

1t

1z

[

8m
i,tλi

P′j+1 − P′j

1z

−8m
(i−1),tλi−1

P′j − P′j−1

1z

]

(26)

Now 8s
(i−1),t in the discretized time derivative term of Equation

(22) is set to 8s
(i−1),t = 8s∗

(i−1),t + 8s′

(i−1),t where the superscript
(*) in8s∗

(i−1),t simply indicates that the value is approximated and
that the pressure correction for this quantity has been included
separately, After some rearrangements the mass conservation
equation assumes the following form:

P′j

[

−8s
i,tλi − 8s

(i−1),tλi−1

1z2
−

(

ρs
i−1

ρm
i−1

)

8m
i,tλi + 8m

(i−1),tλi−1

1z2

]

+P′j−1

[

8s
(i−1),tλi−1

1z2
+

(

ρs
i−1

ρm
i−1

)

8m
(i−1),tλi−1

1z2

]

+P′j+1

[

8s
i,tλi

1z2
+

(

ρs
i−1

ρm
i−1

)

8m
i,tλi

1z2

]

=

−
8s∗

(i−1),t − 8s
(i−1),(t−1)

1t
−

8s
i,tυ

s∗
i − 8s

(i−1),tυ
s∗
(i−1)

1z
(27)

The above equation, replacing Equation (22), usually provides a
better convergence rate and reduces certain numerical problems
that may occur during the solution of the dynamic model.

Finally the velocity of melt (and water if present as a dynamic
phase) can be computed using the following expression (and
similar for water):

υm
i = −

kmi
φm
i µm

i

(

Pj+1 − Pj

1z
− ρm

i g

)

+ υs
i (28)

In summary the coupling of φa, υa, P requires at each time step an
iterative solution that is for the most part based on the SIMPLER
algorithm. The procedure proposed in this study is summarized
by the following points:

1) Find 8m (and 8w, if water is present in the system) using
the MacCormak method (Equations 8 and 9) with or without
the FCT algorithm described in Appendix 1 (Supplementary
Material).

2) Determine the volume fraction of melt, solid (and water) φm,
φs (and φw) and compute 8s.

3) Solve Equation (15) for the pseudovelocities of the solid
assemblage νs.

4) Solve Equation (18) to determine the pressure field.
5) Use the discretized pressure gradient in the total equation of

motion (Equation 19) to find the approximate velocity of the
solid assemblage υs∗.

6) Find the pressure correction P′ by solving the mass
conservation equation for the solid assemblage (Equation 22
or 27) and apply the correction to the velocity field, Equation
(20).

7) Compute the velocity field for melt using Equation (28) (and
in case a similar expression for water).

8) Back to step 1) until convergence.

Appendix 2 in Supplementary Material presents an alternative
solution for Equations (18, 22, and 27) where, instead of the
pressure and pressure correction, the unknown variables are the
pressure gradient and the correction of the pressure gradient.

To reduce the possibility that the overall numerical solution
becomes unstable, the time step is usually set to a fraction of the
time required to move across a length equal to the grid space 1z
at the maximum velocity υmax found in the previous time step,
1t = f 1z/|υmax|, the fraction f typically varies from 0.5 to 0.01.

The final remark is that, during the iterative procedure, certain
values obtained from the numerical solution of the various
differential equations should be underelaxed. For example after
8m

i is found by solving the differential equation, the following
underelaxation scheme is suggested: 8m

i (new) = 8m
i (old) +

δ[8m
i − 8m

i (old)], where 8m
i (old) is the value from the previous

iterative step (not to be confused with the previous time step),
8m

i is the solution of the differential equation, 8m
i (new) is the

value that should be accepted for the current iterative step and
δ is a scaling factor (ranging from 0.5 to 0.1). The scaling factor
for the pressure (or pressure gradient) applied to Equations (18,
19) varies from 0.02 to 1e-9. No underelaxation is applied to the
solution values of µs, υs′ , υm υw. When melt is present in the
system, the number of iterations needed to reach convergence
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(defined as
∑

i |(dP
′/dz|i)|/#grid points ≤∼1e-6 Pa/m, can vary

approximately between 1,000 and 1,000,000.
Once the procedure for φa, υa, P has reached convergence,

the transport equations for the composition in the solid and
melt should be solved at the current time step. The simplest and
effective approach is theMacCormack method introduced earlier
for the solution of the mass conservation (Equations 8, 9). In the
first step of the MacCormack method a temporary value 2sc∗

i,t is
found using:

2sc∗
i,t = 2sc

i,(t−1) −

(

1t

1z

)

(

2sc
i,(t−1)υ

m
i,(t−1) − 2sc

(i−1),(t−1)υ
m
(i−1),(t−1)

)

(29)

where 2sc
i,t = ρs

i,tφ
s
i,tθ

sc
i,t and θ sci,t is the wt % of the component c

defining the bulk composition of the solid. The final solution 2sc
i,t

is found by solving the second step using the starred values:

2sc
i,t = 0.5 (2sc

i,(t−1) + 2sc∗
i,t )

−

(

1t

21z

)

(

2sc∗
(i+1),tυ

m
(i+1) − 2sc∗

i,t υm
i

)

(30)

An explicit solution at every grid point is obtained when the
above equation is applied from the bottom up since all the terms
on the rhs are known. Similar equations are also used for the
composition of the melt, 2mc

i,t . More accurate results may be
obtained by applying a procedure based on the FCT algorithm
(see Appendix 1 in Supplementary Material).

Since the dynamic model is coupled with the program
AlphaMELTS which uses oxides to define the equilibrium
chemical composition, θ sci,t and θmc

i,t represent the wt% of the 12
oxides used in AlphaMELTS: SiO2, TiO2, Al2O3, Fe2O3, Cr2O3,
FeO, MgO, CaO, Na2O, K2O, P2O5, H2O. It follows that if
all oxides are used and melt is present, then Equations (29,
30) (with or without the FCT algorithm) are solved for 2ac

i,t
24 times, one for every c oxide in the two assemblages (a =

solid, melt). The oxide composition is then easily retrieved,
for example for MgO in solid the following relation applies

θ
sMgO
i,t = 100 2

sMgO
i,t /

∑

c 2
sc
i,t . In analogy with the approach used

for the total mass conservation equations, the oxides transfer
rate between different transport phases 12sc

i is included in the
value of 2sc

i,(t−1) at the previous time step. Boundary conditions
at the top and bottom side vary depending on the problem, for
instance if no melt is present at the bottom 2mc

bottom
= 0, and

θ sc
bottom

= fixed value.
The temperature field is found by discretizing Equation (7)

with the following simplifications, ∂P/∂t ≈ 0, ∂P/∂z ≈ 1P/1z,
and 1P ≈ 1Pg = g1z

∑

a ρaφa = g1z
∑

a 8a, where
the flow pressure P is replaced with the lithostatic pressure
Pg . Furthermore the following assumptions is made υ

sys
i,t α

sys
i,t ≈

α
sys
i,t (
∑

a υa
i,tφ

a
i,t). The first step of the MacCormack method

applied to the temperature equation assumes the following form:

T∗
i,t = Ti,(t−1) −

(

1t

1z
∑

a C
a
pi,t8

a
i,t

)

∑

a

υa
i,tC

a
pi,t

8a
i,t

(

Ti,(t−1)

−T(i−1),(t−1)
)

(31)

and the second step of the MacCormack method is given by:

Ti,t = 0.5
(

Ti,(t−1) + T∗
i,t

)

−

(

1t

2 1z
∑

a C
a
pi,t8

a
i,t

)

∑

a

υa
i,tC

a
pi,t

8a
i,t

(

T∗
(i+1),t − T∗

i,t

)

(32)

The FCT algorithm discussed in Appendix 1 (Supplementary
Material) can be also applied for the temperature solution. The
effect of the reversible adiabatic gradient is introduced separately
at every grid point:

Ti,t = Ti,t + 1tǫi,t
∑

a

υa
i,tφ

a
i,t (33)

where ǫi,t = Ti,tgα
sys
i,t

∑

a 8a
i,t/
∑

a C
a
pi,t

8a
i,t . The term describing

the heat conduction is also added in a later stage by using the
Crank-Nichols discretization scheme (Tannehill et al., 1997):

Ti,t = T⋆
i,t +

1t

21z2
∑

a C
a
pi,t8

a
i,t

(34)

{

K
sys
i,t

[

T(i−1),t − 2 Ti,t + T(i+1),t
]

+K
sys

i,(t−1)

[

T(i−1),(t−1) − 2 Ti,(t−1) + T(i+1),(t−1)
]

}

where for simplicity K
sys
i,t ≈

∑

a K
a
i,tφ

a
i,t . The upper case ⋆

symbol in T⋆
i,t indicates that this is the temperature that has been

computed from Equations (31–33). After some rearrangements,
it assumes the following form:

Ti,t

{

1+
1t K

sys
i,t

1z2
∑

a C
a
pi,t8

a
i,t

}

− T(i−1),t

{

1t K
sys
i,t

21z2
∑

a C
a
pi,t8

a
i,t

}

−

T(i+1),t

{

1t K
sys
i,t

21z2
∑

a C
a
pi,t8

a
i,t

}

= (35)

T⋆
i,t +

1t K
sys

i,(t−1)

21z2
∑

a C
a
pi,t8

a
i,t

[

T(i−1),(t−1) − 2 Ti,(t−1) + T(i+1),(t−1)
]

The final temperature that includes the contribution of the heat
conduction term is found by solving the tridiagonal matrix
problem (Press et al., 1992). The boundary conditions usually
involve a fixed temperature at the top or bottom and a zero
gradient on the opposite side. Density, heat capacity and thermal
expansion in the above expressions are retrieved from the
thermodynamic model.

The lithostatic pressure Pg that is used in the thermodynamic
model, is computed at each spatial grid point by a simple
numerical integration of dP = ρgdz:

Pgi = Pgi−1 + g1z
∑

a

8a
i,t (36)

A Test of the Dynamic Model

The numerical solution without the thermodynamic
contribution can be used to understand the basic behavior
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of the two-phase flow model. The test case applied here assumes
that 0.02% volume fraction of melt is present at the bottom of the
mantle column. The top and bottom depths are 15 and 90 km
and the lithostatic pressure at top side is set to 5 kbar. Velocity
of the solid matrix at the bottom is set to −3 cm/yr (negative
upwards), the density of the solid is 3,200 kg/m3 while the density
of the melt is 2,600 kg/m3, both are kept fixed. The first model
considers the case with µs = µs

0. Fixed viscosities of the solid
and melt are 1e21 Pa s and 1 Pa s, respectively. The permeability
coefficient is equal to 1010 m−2. The number of spatial grid points
varies from 100 to 500 for different simulations and the time step
is kept fixed to 250 years. The computation of 8m is performed
using the FCT algorithm and the pressure discretization involves
simulations using either the pressure variable solution or the
alternative pressure gradient variable solution (see Appendix 2
in Supplementary Material). Composition and temperature are
not necessary therefore Equations (29 and 31–35) are ignored.

Figure 2, compares the arrival of the first melt wave
(Figures 2A-1,A-2) and second melt wave (Figures 2B-1,B-2)
at the top side of the model for simulations using different
number of grid points. Figures 2C-1,C-2) show some of the
quantities that control the transport model, in particular
Figure 2C-2 includes the three components forming the equation
of motion (Equation 2). It is noteworthy that the points of
maximum of the melt flux ρmφmυm (orange line in Figure 2C-1)
correspond to the peaks of the melt volume fraction (blue line
in Figure 2C-1) and the peaks of the solid velocity (blue line
in Figure 2C-2). The depths where the melt content is at the
lowest coincide with the points of minimum melt flux. These are
the locations where the largest variation of the viscous forces is
compensated by the combination of pressure and gravitational
forces. Figures 2D-1,D-2 show a comparison with the second
model that assumes µs = µs

0(1 + 1/φm). In this model melt
has the effect of decreasing the viscosity of the matrix, however
when µs

0 is the same for the two models and the amount of melt
is small, µs is much greater than µs

0. For this reason the reference
viscosity µs

0 for the new model is set to 1e20 Pa s, one order
of magnitude lower than the viscosity assumed in the previous
model. The figure shows that the melt volume fraction of the first
wave is significantly higher, which is expected since the effective
viscosity µs is much lower. Then when the effective viscosity of
the solid becomes comparable for the two models, the rest of the
wave train behaves quite similarly. The model setup for the test
case that has been presented here is similar to the setup of a test
case discussed in a different study (Tirone et al., 2012). However
in the previous study a numerical error created a wave train that
did not decrease in amplitude over time.

The movie file mf1-movie1.PHASE33B.YRC5.avi that
can be downloaded following a link to a data repository provided
in the Supplementary Material, shows the time evolution and
vertical variation of melt abundance, melt and solid velocity
computed with the first model (µs = µs

0).

Thermodynamic Computation
The importance of adding the thermodynamic computation is
twofold. It defines some of the parameters that are used to
constrain the dynamic model. It also provides the petrological

results that could be compared with geochemical or petrological
field observations. When the dynamic model is interfaced
with chemical thermodynamics, the essential input quantities
necessary to run the thermodynamic model are not arbitrarily
defined by the user, but they are obtained directly from the
solution of the transport model.

The necessary data required to perform a chemical
equilibrium computation based on thermodynamic principles
are pressure, temperature and bulk composition of the system.
At every spatial grid point these quantities are readily available
from the dynamic model. Lithostatic pressure Pg computed
from Equation (36) is used in this study, although the flow
pressure would be the correct choice. If the dynamic pressure
does not represent the pressure of the system but the interfacial
pressure between melt and solid, then further assumptions
should be made. However, beside more rigorous justifications,
Pg is chosen at this point mainly because it provides a more
stable solution from a numerical point of view. In any case the
difference between the flow pressure and the lithostatic pressure
is not very large for solid Earth problems (few kbars at most).
The link provided in the Supplementary Material allows to
access the data files from which the difference can be evaluated
for every simulation included in this study. Temperature is
treated following the common practice of assuming that thermal
equilibrium is established among the dynamic phases of the
system.

The bulk composition of the whole system at each grid point
is given by the normalized sum of the composition of all the
dynamic phases: bulk component c(system) = 100 (2sc

i,t + 2mc
i,t +

8w
i,t)/(8

s
i,t + 8m

i,t + 8w
i,t) where s,m,w stand for solid, melt, free

water and 8w
i,t is applied only to define the bulk amount of water

(c = 12). The bulk composition computed with this expression is
always expressed in wt %. The total mass of al the mineral phases
in chemical equilibrium that are provided in the the output
of the thermodynamic model is 100 (units of grams according
to AlphaMELTS). The definition of the bulk composition is
critical for the outcome of the melt model because it implies
that thermodynamic chemical equilibrium is achieved within a
certain physical domain and temporal interval among certain
dynamic phases. If a different type of equilibrium condition
is imposed, a different bulk composition should be used and
the outcome of the thermodynamic model would be clearly
different.

The following discussion outline the information applied to
the dynamic model that have been retrieved specifically after
running the program AlphaMELTS. The total mass and the wt
% of oxides forming the bulk composition of the residual solid
are extracted from the output file solid_comp_tbl.txt.
If melt is present in the system, the mass of the liquid
and wt % of the oxides of the liquid are retrieved from
liquid_comp_tbl.txt. Thermal expansion (combining
the partial derivative of the total volume with temperature
and total volume of the system) and the whole system heat
capacity at constant pressure (J/K) are found in the output file
system_main_tbl.txt.

Mass, volume, oxide composition and heat capacity at
constant pressure are extracted for eachmineral component from
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FIGURE 2 | Dynamic two-phase flow model without thermodynamics. (A-1,A-2) Describe the melt volume fraction, melt (solid lines) and solid (dotted lines) vertical

velocities when the first melt-wave arrives at the top side of the model. Different colors refer to simulation using different number of spatial grid points (100, 200, 300,

400, 500). Time step is set to 250 years except for the case indicated by the dashed green line (1t = 500years). All the simulations assume µs = µs0, the viscosity of

the solid is set to µs0 = 1e21 Pa s. (B-1,B-2) Show the same simulation with 400 grid points when the second melt-wave arrives at the top side. The dashed lines in

panel (A–1) (barely noticeable) show the result using only the MacCormack method for the melt transport. (C-1,C-2) Summarizes some key quantities related to the

simulation with 500 spatial grid points at the arrival of the first melt wave (see main text for additional information). A movie for this model is available following the

instructions in the Supplementary Material (movie file mf1-movie1.PHASE33B.YRC5.avi). (D) Comparison of the first and second wave arrival at the top

between the previous simulation with µs = µs0 = 1e21 Pa s and the one with the alternative viscosity model, µs = µs0(1+ 1/φm), µs0 = 1e20 Pa s (400 grid points for

both models).

the output file phase_main_tbl.txt. The total volume of
the solid is the sum of the volumes of all the mineral phases.
When melt is present, the volume and total heat capacity are also
retrieved.

If free water is present in the system, mass, volume
and total heat capacity are also found in the output file
phase_main_tbl.txt. If water is present in the solid and
also as a free phase, the solid oxide componentH2O in the output
file solid_comp_tbl.txt provides the sum of the two in wt
%. The mass of the total solid also includes free water. With the
AlphaMELTS option ALPHAMELTS_DO_TRACE_H2O true,

nominally dry minerals may contain a certain amount of water
which is treated as a separate mass from the rest of the solid.
The total amount of water in wet and nominally dry minerals is
a quantity that can be retrieved from mass H2O(total solid) =

input bulk H2O(system) − mass free H2O − mass(total melt) ×
melt oxide(H2O)/100 where the first term is the input water
in the system, the second term is the mass of the free
water phase and the last term is the amount of water
in the melt. The total mass of the solid then needs to
be recalculated to include the water in the nominally dry
minerals, is mass(total solidR) = mass H2O(total solid) +
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∑

i solid oxide|imass(total solid)/100. As shown in this equation
the sum does not involve the oxide for water in the solid
which is added separately. The oxides in the solid, except
water, are also recalculated solid oxide|iR = solid oxide|i ×
mass(total solid)/mass(total solidR). The water oxide in the solid
is computed using the following relation solid oxide(H2O) =

mass H2O(total solid)× 100/mass(total solidR). When melt is the
only phase in the equilibrium assemblage and water is present
in the system, it should be always verified that in the output file
liquid_comp_tbl.txt melt oxide(H2O) is not erroneously
set to zero.

The density of melt (kg/m3) is retrieved by dividing the
mass of the melt by the volume of melt and multiplied
by 1,000. The heat capacity in 1,000 grams of melt (J/(K
Kg)) is obtained by dividing the total heat capacity in melt
by the total mass of melt and then multiplied by 1,000.
Similar relations are applied to free water, when it is present
in the equilibrium assemblage. The total density of the
solid is given by the following relation: 1/density(solid) =

0.001 ×
∑

(volume of the mineral phases)/mass(total solid).
The total heat capacity of the solid (J/(K Kg)) is:
1, 000

∑

(heat capacity of the mineral phases/mass(total solid)).
The volume fraction of each assemblage (solid, melt, water) can
be easily computed by dividing the volume of the phase by the
sum of the volumes of all the phases.

The product of the density and volume fraction for solid,
melt or water computed from the thermodynamic model can
be directly compared with the equivalent quantity 8a from
the dynamic model. Any difference between the two indicates
that a certain amount of mass transfer has taken place. For
example, the mass transfer of melt 18m can be compute
using the following relation: 18m = [(density of the melt ×
volume fraction of the melt) − 8m], clearly when new melt is
formed, 18m > 0, conversely the solid mass transfer will
be negative, 18s < 0. Similar to the total mass transfer, the
chemical mass transfer in solid and melt is defined as: 12ac =

[(density of phase a × volume fraction of phase a ×

bulk composition of oxide c in phase a) − 2ac], where a =

s,m. The change of the density and heat capacity after chemical
equilibration can be determined by the difference between the
density and heat capacity from the thermodynamic model and
density and heat capacity used in the dynamic model that were
defined in the previous thermodynamic computation.

A question that may arise is how often the thermodynamic
computation should be applied? In the DEMmodel the chemical
equilibration is assumed at a scale defined by the numerical
grid size, however the timescale remains undefined. A long time
interval between two thermodynamic computations does not
mean that the local system is completely out of equilibrium. The
chemical and mass transfer 18s and 12al computed during
the previous thermodynamic calculation still apply, although
they are maintained constant over a longer period of time.
For example if the thermodynamic computation is performed
every 10 time steps, 18s/10 and 12ac/10 are applied to
the dynamic model for 10 time steps. Ignoring the potential
effects of dynamic changes of the local system (e.g., bulk
composition, temperature) on the mass and chemical transfer

over a large period of time may have some consequences. Various
simulations have been performed considering a range of time
step intervals between thermodynamic calculations. With time
intervals ranging between 2 and 32, the results in general appear
to be very similar suggesting that local dynamic changes have
a small influence on the chemical and mass transfer properties.
However in the Supplementary Material a plot for one particular
simulation illustrates the potential effect of varying the interval
between thermodynamic computations on the composition of
melt (Figure S1). A more thorough comparison can be made
by retrieving the data of all the simulations performed for this
study following the instructions provided in the Supplementary
Material.

While only the petrological information needed by the
dynamic model are considered in this study, AlphaMELTS
includes additional tools to evaluate trace elements and isotopes
composition based on equilibrium principles. These geochemical
data do not directly affect the dynamic evolution but they
could be useful to provide additional constraints to the melt
model by comparing the results with real observations. It is only
mentioned here that each new chemical component would need
additional transport equations similar to Equation (6) and new
set of chemical transfers similar to those discussed in this section
(e.g., 12ac).

RESULTS FROM THE DYNAMIC
EQUILIBRIUM MELTING MODEL

The simplest dynamic melt model which also includes the
thermodynamic formulation assumes the same velocity for the
solid assemblage and melt. Practically it means that Equations
(4) and (28) could be ignored. This type of melt model has
been defined earlier dynamic batch melting. While this model
probably describes an unlikely physical scenario, it cannot be
dismissed a priori. For example when melt does not focus in
larger channels but instead it remains in small poorly connected
veins, the transport of melt may follow closely the dynamics
of the mantle (e.g., big permeability constant C means small
permeability, hence υm ≈ υs, see Equation 28).

One test case is illustrated here assuming only a specific set of
conditions and parameters. The viscosity of the solid is constant
and equal to 1e21 Pa s. Like all the models in this study, the top
and bottom depth are 15 and 90 km, respectively. The model
has been tested with 100, 200, and 300 spatial grid points to
estimate the accuracy of the numerical solution. The time step
is not fixed and it is computed using the following relation: 0.5
1 z/|v(max)|. Lithostatic pressure at the top boundary is 5 kbar
and the bottom temperature is 1,450◦C. The initial temperature
varies linearly from 750◦C (top) to 1,300◦C (bottom). It may
seem arbitrary but practically it has little effect on the dynamic
evolution of the model (viscosity is kept constant although the
density is not). The main reason for the particular thermal profile
at the starting time is to avoid the formation of extensive melting
inside this initial portion of the mantle during the upwelling.
Thermal conductivity for the solid and melt is set to Ks = 3 and
Km = 1 W/(m K). The velocity of the solid mantle at the bottom
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is fixed to−0.03 m/yr (negative upwards). While the exact origin
of the imposed velocity is beyond the scope of this study, one
could imagine that it is the result of thermochemical buoyancy,
typically a dynamic feature of a mantle plume. The initial and
bottom boundary bulk composition defining a relatively fertile
mantle peridotite is: SiO2 = 45.20, TiO2 = 0.20, Al2O3 =

3.94, Fe2O3 = 0.20, Cr2O3 = 0.40, FeO = 8.10, MgO =

38.40, CaO − 3.15, Na2O = 0.41, K2O = 0, P2O5 = 0,
H2O = 0 in wt %. Since the solid mantle and melt have the same
velocity, the bulk composition of the system does not change,
provided that the initial bulk composition at every point in the
model and the composition of the mantle that enters at the
bottom of the model are the same and the input composition
at the bottom does not vary over time. In this scenario the
solution of the equation for the chemical components (Equations
6, 29, 30) would be unnecessary. Nevertheless by solving the
chemical transport equations it is possible to verify the accuracy
of the numerical procedure by comparing the initial bulk
composition with the composition at any point in time and space
computed with the relation outlined in the previous section:
bulk component c(system) = 100 (2sc

i,t + 2mc
i,t )/(8

s
i,t + 8m

i,t)
(water is ignored). The thermodynamic computation determines
the local equilibrium melt and solid density, mass, and allows
to determine the chemical and mass transfer properties. It also
provides the heat capacity and thermal expansion of the solid
and melt assemblages which are needed for the definition of the
thermal field. The thermodynamic model is invoked every eight
time steps. Note that because the time steps are variable, the
time interval between two thermodynamic computations is not
constant.

Figure 3 summarizes the results of the model after reaching a
steady state condition when no further variations are observed
over time. The steady state condition however does not mean
that melting does not occur anymore but it simply means that the
amount of melt formed locally is balanced by the amount that is
mobilized by the dynamic process. Two cases are illustrated in
Figure 3 which consider 300 and 100 spatial grid points (nz) and
the number of time steps between thermodynamic computations
is set to 8 (nthermo = 8, nthermo = 16 steps). Additional
simulations performed assuming nz = 200 and nthermo = 8
and nthermo = 16 did not differ significantly from those shown
in Figure 3. The results of the model with 200 grid points and
nthermo= 16 time steps completely overlap with the results with
100 grid points and nthermo = 8. It is not entirely a surprise
considering that the time step is defined based on the grid size
and maximum velocity in the model. If the maximum velocity
in the two simulation models is similar, when 200 grid points
are used, the grid size is reduced by half. Hence the transported
properties would cover after 16 time steps approximately the
same distance that is covered by the model with 100 grid points
after 8 time steps.

For completeness Figure 3 reports also the results of an
isentropic melting model computed with AlphaMELTS. The
differences between the two models are almost entirely due to
the absence of the latent heat of melt in the dynamic batch
melting model. It is evident that when large amount of melt
is formed under isentropic conditions the latent heat effect on

the thermal profile, and consequently on the melt composition,
can be quite substantial. However the general trends illustrated
in Figures 3D–G for SiO2, TiO2, Na2O and MgO in melt and
solid are not too dissimilar, in particular for the incompatible
components but also for SiO2 in melt. Figure 3X shows that
the temperature difference between the two models follows
approximately a linear relation with the amount of melt obtained
from the dynamic batch melting model.

The Supplementary Material provides a
data repository link to access the movie (file
mf1-movie2.PHASE3-P.BRC4-5.avi) showing the
behavior of various melt properties along the vertical
column over time computed with the dynamic batch
melting model (300 spatial grid points and nthermo=8).
The data file PHASE3-P.BRC4-5.DAT (zip file
max-front1-data.zip) related to the animation can
be also retrieved following the link in the Supplementary
Material. See the Supplementary Material for a description of the
data file.

The fully implementation of the model presented in this
study includes a two-phase flow transport model that is coupled
with the thermodynamic computation performed at every spatial
grid point and at variable time intervals. Figure 4 illustrates
some of the results of one model that belongs to a group
of several simulations with the viscosity of the solid matrix
defined by the relation µs = µs

0. As discussed in section
“Description of the Multiphase Dynamic Model” the variation of
the viscous forces in 1-D is described by a simplified expression,
∂µsφs∂υs/∂z2. Various conditions have been tested by several
numerical models, in particular the effect of the solid viscosity
without melt µs

0 and the permeability parameter C. A complete
list of all the simulations is reported in Table 1 and the data
files of most of the listed simulations are accessible following
the instructions provided in the Supplementary Material (zip
file max-front1-data.zip). Parameters not specified in the
table, in particular related to the initial and boundary conditions,
are similar to those used for the batch dynamic melt model
discussed earlier. The model shown in Figure 4 is particularly
interesting because the melt variation with depth never reaches
a steady condition, Figure 4A illustrates the point by reporting
themelt distribution at three different times. Another noteworthy
feature is that the first melt arrival a the top of the model after
∼2.09 Myr is characterized by the largest volume fraction, a
similar behavior was observed in the simple dynamic model
reported in Figure 2.

It was previously mentioned that the thermal effect of the
latent heat of melting has been neglected in the thermal model.
The contribution can be significant when large amount of melt
is created under isentropic conditions which can be achieved
essentially when υs = υm. In a two-phase flowmodel the velocity
of the melt and the solid are not the same and the isentropic
condition is not maintained but the latent heat still has a role on
the definition of the thermal profile. However since the amount
of melt that is locally formed is substantially lower than in a
dynamic batch melting (or isentropic) model, it is possible to
approximately estimate from Figure 3X that the temperature is
overestimated by no more than few tens of degrees.
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FIGURE 3 | Dynamic batch melting, υmelt = υsolid . Latent heat of melting is not included in the model. (A) Temperature vs. lithostatic pressure, (B) variation of the

melt volume fraction over depth, (C) solid and melt velocity, (D–G) composition of the solid and melt (wt %) (D) SiO2, (E) TiO2, (F) Na2O, (G) MgO. The dotted lines

show the results for an isentropic melting model using AlphaMELTS. Solid and dashed lines illustrate the results of dynamic batch melting model using different

number of grid points nz = 300, 100. The number of time steps between two thermodynamic calculations (nthermo) is 8. Using nz = 100, nthermo = 8 or nz = 200,

nthermo = 16 the results are very similar and they are not included in the plot. (X) Quantifies the temperature difference between the dynamic batch melting and the

isentropic model as a function of the melt volume fraction obtained using the dynamic batch melting model. A movie of a dynamic batch melting simulation is available

following the link provided in the Supplementary Material (movie file mf1-movie2.PHASE3-P.BRC4-5.avi).

Figure 4B shows that there is no direct correlation between
the melt distribution and the velocity of the residual solid
although, as expected, the broad effect of the melt is to reduce the
upwelling velocity of the mantle (velocity negative upwards). The
numerical simulation includes the complete chemical evolution
of the solid residual mantle and the melt over time at every depth
point. Figures 4C,D report just two components, TiO2 andMgO
(wt %). Except for the first melt arrival, the temporal variation of
the melt abundance seems to have a negligible influence on the
composition of the melt and a small effect on the variation of the
composition of the residual solid (and bulk composition). The
general variations of the chemical components in the melt and
solid with depth are also very similar to the variations observed
in the dynamic batch melting model, which is quite remarkable
considering the large difference in the melt distribution between
the two models and the change of the bulk composition with
depth. The implication is that the interpretation of petrological
observations can be assumed to be rather independent from the
dynamic evolution of the melting process. The drawback is that

real petrological data may not be able to provide a robust insight
on these processes. The results for all twelve oxide components
are reported in the data file PHASE3-P.YRC4.DAT included
in the zip file max-front1-data.zip. Details to retrieve a
movie of the DEM simulation can be found in the Supplementary
Material (mf1-movie3.PHASE3-P.YRC4.avi).

Not all the information created by the simulations have
been saved in the output data files. The thermodynamic
calculation provides the complete mineralogy of the solid
mantle at equilibrium at every spatial grid point over time.
This information is not included in the output files that
store only the essential data: melt, whole solid and bulk
(melt +solid) composition. However with these data after the
dynamic simulation is completed, it is possible to re-calculate
the mineralogical assemblage at any point from the output data
file using AlphaMELTS. This is shown for example in Table 2

where the mineral composition at six depth locations denoted
by black dots in Figure 4A has been computed using the bulk
composition, temperature and pressure stored in the data file
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FIGURE 4 | Two-phase flow dynamic melting with thermodynamic computation applied every 8 time steps, solid viscosity model: µs = µs0 with µs0, equal to 1e21 Pa

s. Additional details related to this simulation are discussed in section “Results from the Dynamic Equilibrium Melting Model.” (A) Melt volume fraction vs. depth at 3

different times. Earliest time corresponds approximately to the first arrival of melt at the top. Black dots mark the locations at which mineralogical compositions and

volume fractions are reported in Table 2. (B) Velocity of the solid matrix. (C) Variation of TiO2 in solid and bulk (melt + solid) (wt %). (D) Variation of MgO in solid and

bulk (melt + solid) (wt %). (E) Variation of TiO2 in melt (wt %). (F) Variation of MgO in melt (wt %). The complete data for all 12 oxides in melt solid and bulk, at every

depth over time can be found in the data file PHASE3-P.YRC4.DAT (zip file max-front1-data.zip). A movie of this simulation is also available (movie file

mf1-movie3.PHASE3-P.YRC4.avi). Both files can be retrieved following the data repository link included in the Supplementary Material.

PHASE3-P.YRC4.DAT (point#: 12, 36, 58, 69, 80, 99. Zone:
5111). In accordance with the variation of the residual solid
composition, the results reported in the table suggests that
minerals occurrence and their abundance don’t seem to be
related to the variations of the melt fraction with depth.

In section “Description of the Multiphase Dynamic Model” it
was mentioned that the solid viscosity may depend also on the
inverse of the melt abundance and the following equation was
proposed µs = µs

0(1 + 1/φm). Several numerical simulations
have been performed with this description of the viscosity
(Table 1), an example of the outcome is presented in Figure 5.
One general observation is that, for the range of conditions
applied to the various numerical models, the melt distribution
with depth tends to always reach a time-invariant condition. The
first melt arrival (Figure 5A) time∼2.1 Myr) is characterized by
large volumes, a similar development has been also observed
in the previous model shown in Figure 4. After the arrival
of the first melt wave (Figure 4A) time∼3.2 Myr), the melt
distribution shows little variation with time. The animation
mf1-movie4.PHASE3-P2.YRC13.avi that can be found
following the instructions in the Supplementary Material clearly
illustrates the point. The time invariant melt distribution defines
two inversions of the gradient with depth that occur at ∼45
km and ∼27 km depth. In Figures 4C,D it is shown that only
MgO in the solid correlates with the melt distribution while the
other components in the solid and all the components in the
melt seem to follow a pattern unrelated to the melt and its slope
inversions. The compositional difference between the first melt
arrival and later melt advancements is quite significant. It can be

also observed that in the near steady state regime the composition
of the solid and melt is very similar to the composition observed
in the previous models (Figures 3, 4).

The presence of one or more inversion points where the
gradient with depth of the melt volume fraction turns from
negative to positive is a recurrent feature of many simulations
carried out for this study. The first impression is that the
inversion is simply due to a change of the mass transfer rate,
that is the mantle regime changes from partial melting to
partial crystallization. However the inspection of the data files,
for example PHASE3-P.YRC4-2.DAT, reveals that the melt
transfer 18m is always positive at any depth, which implies that
no crystallization is taking place. Predicting this melt behavior
based on the model setup may not be possible, however the
dynamic factors that control the inversion can be analyzed.
The equation of motion for melt −φm∂P/∂z + φmρmg −

φm2
/km(υm−υs) = 0 (Equation 3) can be rearranged as follows:

−φm2
∂P/∂z+φm2

ρmg−C(υm−υs) = 0 where km = φm3
/C and

water is not present. By taking the partial derivative with respect
to depth and after some rearrangements, the following expression
is obtained:

∂φm

∂z
=

φm2 ∂2P
∂z2

+ C
(

∂υm

∂z − ∂υs

∂z

)

− φm2
g ∂ρm

∂z

2φm
(

− ∂P
∂z + ρmg

) (37)

If we consider the denominator on the rhs as a scaling factor, the
equation allows to determine the condition at which the inversion
of the melt gradient may occur, that is when ∂φm/∂z = 0.
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TABLE 1 | List of the dynamic melting simulations with thermodynamic computation.

# Data file # Grid Thermo every Perm. const. Solid visc. Tbottom Solution

points n steps C (m−2) µ
s
0
(Pa s)(¶) (oC) for

µs = µs0

PHASE3-P.BRC4-1 100 8 N/A(υs = υm) 1021 1450 Pi

PHASE3-P.BRC4-3 200 8 N/A(υs = υm) 1021 1450 Pi

PHASE3-P.BRC4-4 200 16 N/A(υs = υm) 1021 1450 Pi

(*) PHASE3-P.BRC4-5 300 8 N/A(υs = υm) 1021 1450 Pi

(*) PHASE3.YRC1 200 16 109 1021 1450 dP/dzi

(*) PHASE3-P.YRC2(§) 200 16 109 1021 1450 Pi

(*) PHASE3-P.YRC3(†) 200 8 109 1021 1450 Pi

(*) PHASE3-P.YRC4(‡) 200 8 109 1021 1450 Pi

PHASE3-P.YRC5 300 16 109 1021 1450 Pi

PHASE3-P.YRC6 200 4 109 1021 1450 Pi

(*) PHASE3-P.YRC7 200 8 109 1020 1450 Pi

(*) PHASE3-P.YRC8 200 8 509 1021 1450 Pi

(*) PHASE3.YRC9 200 8 109 1021 1475 dP/dzi

PHASE3-P.YRC11 400 16 109 1020 1450 Pi

PHASE3-P.YRC12 500 16 109 1020 1450 Pi

(*) PHASE3-P.YRC17 200 8 108 1020 1450 Pi

(*) PHASE3-P.YRC21 200 8 1010 1020 1450 Pi

(*) PHASE3-P.YRC24 200 8 108 1022 1450 Pi

(*) PHASE3-P.YRC25 200 8 1010 1019 1450 Pi

(*) PHASE3-P.YRC26 200 8 109 1022 1450 Pi

(*) PHASE3-P.YRC27 200 8 108 1021 1450 Pi

(*) PHASE3-P.YRC28 200 8 1010 1022 1450 Pi

PHASE3-P.YRC29 200 8 108 1019 1450 Pi

(*) PHASE3-P.YRC32(§) 200 8 109 1020 1450 Pi

(*) PHASE3-P.YRC33(§) 200 8 1010 1020 1450 Pi

(*) PHASE3-P.YRC36 200 8 109 1019 1450 Pi

PHASE3-P.YRC42 200 8 1011 1020 1450 Pi

(*) PHASE3-P.YRC43 200 32 109 1020 1450 Pi

PHASE3-P.YRC44 400 16 108 1020 1450 Pi

µs = µs0(1+ 1/φm)

(+) PHASE3-P2.YRC10 200 8 109 1021 1450 Pi

(+) PHASE3-P2.YRC13(‡) 200 8 109 1020 1450 Pi

(+) PHASE3-P2.YRC14 200 8 109 3019 1450 Pi

(+) PHASE3-P2.YRC15 200 8 109 1020 1475 Pi

(+) PHASE3-P2.YRC18 200 8 108 1020 1450 Pi

(+) PHASE3-P2.YRC19 200 8 1010 1020 1450 Pi

(+) PHASE3-P2.YRC20 200 8 108 1021 1450 Pi

PHASE3-P2.YRC23 500 16 109 3019 1450 Pi

(+) PHASE3-P2.YRC30 200 8 108 1019 1450 Pi

PHASE3-P2.YRC31 200 8 108 1018 1450 Pi

(+) PHASE3-P2.YRC35 200 8 1010 1019 1450 Pi

(+) PHASE3-P2.YRC37(§) 200 8 108 1020 1450 Pi

(Continued)
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TABLE 1 | Continued

# Data file # Grid Thermo every Perm. const. Solid visc. Tbottom Solution

PHASE3-P2.YRC38 200 8 107 1020 1450 Pi

PHASE3-P2.YRC39 200 8 107 1019 1450 Pi

(+) PHASE3-P2.YRC40(§) 200 8 108 1019 1450 Pi

PHASE3-P2.YRC45 400 16 108 1019 1450 Pi

(*) Data included in max-front1-data.zip, (+) data included in max-front1-data2.zip.
(§) FCT algorithm disabled.

(¶) All simulations assume fixed µs
0.

(‡) All simulations assume fixed solid velocity (−0.03 m/yr) at the bottom except PHASE3-P.YRC3 (fixed top velocity).

(‡) Additional files PHASE3-P.YRC4-2 and PHASE3-P2.YRC13-2 in max-front1-data.zip.
include also ∆8s, ∆8m, ∆8s/(ρs∆t) and ∆8m/(ρm∆t) (columns 51–54) during a small time interval of the simulation.

Selected data files are included in the zip files max-front1-data.zip and max-front1-data2.zip. Additional information are provided in the Supplementary Material.

Figure 6A-1) includes, along with the melt distribution for the
simulation presented in Figure 4, the scaled ∂φm/∂z computed
using Equation (37). The black dots highlight some of the
inversion points where ∂φm/∂z is zero. Figure 6A-2 illustrates
the three components forming the scaled gradient of the
melt fraction defined on the rhs of Equation (37). The third

component φm2
g∂ρm/∂z is rather small but the other two are

comparable. The interesting observation is that the condition
∂φm/∂z = 0 is not obtained by self-cancellation of the two
dominant terms but instead all terms are zero at the inversion
points. While the dynamic coupling effect betweenmelt and solid
exemplified by the permeability constant C is explicitly included
in Equation (37), the effect of the viscous forces is not quite clear.
Considering the total equation of motion −∂P/∂z + φmρmg +

φsρsg + S = 0 (Equation 5), by taking the partial derivative with
respect to depth, the following expression can be found:

∂2P

∂z2
=

∂S

∂z
+ g

∂φm

∂z

(

ρm − ρs
)

+ φmg
∂ρm

∂z
+ φsg

∂ρs

∂z
(38)

where the relation ∂φm/∂z = −∂φs/∂z has been applied. The
above relation provides the connection between the derivative
of the variation of the viscous forces and the derivative of the
pressure gradient which also appears on the rhs of Equation (37).
A further consideration can be made. If the viscous forces are not
included in the description of the melting process (S is ignored,
hence ∂S/∂z = 0), an inversion point could not appear because
if ∂φm/∂z was zero, then from Equation (38) the derivative of the
pressure gradient would be ∂2P/∂z2 = φmg∂ρm/∂z+φsg∂ρs/∂z,
which could never be zero, unless the density of melt and solid are
assumed to be constant.

In some cases the numerical models show that the melt
variation with depth is time dependent. To understand the nature
of such behavior and how it is related to the viscous forces
and the dynamic coupling term or the permeability constant,
the equation of motion for melt can be written as follows:

−φm3
∂P/∂z + φm3

ρmg − Cφmυm + Cφmυs = 0, where water
is not considered. By taking the partial derivative with respect to

depth and after some rearrangements:

−
∂(φmυm)

∂z
= −

3φm2

C

∂φm

∂z

(

−
∂P

∂z
+ ρmg

)

−
φm3

C

(

−
∂2P

∂z2
+ g

∂ρm

∂z

)

−
∂(φmυs)

∂z
(39)

which is simply an alternative for the expression given in
Equation (37). However in this form it can be related to the
change of the melt volume fraction over time, using the mass
conservation equation. Assuming φm∂ρm/∂t and φmυm∂ρm/∂z
to be negligible, the following approximation of the mass
conservation equation ∂φm/∂t ≈ −∂(φmυm)/∂z provides
the connection between the temporal variation of the volume
fraction and the dynamic parameters given in Equation (39).
Note that the variation of the melt abundance by melting (or
crystallization) is not included, hence the melting rate needs to
be added in order to find ∂φm/∂ttotal. Figure 6A-3 shows the
total melt variation over time and the two components that
form it. Since the melt production (positive melting rate) does
not compensate for the change of the melt flux, the amount
of melt is expected to vary over time. The three components
defining the variation of the melt flux which can be related to
the physical properties of the model (Equation 39), are shown in
Figure 6A-4). The first and second term on the rhs of Equation
(39) are clearly the largest but they have opposite sign and they
tend to cancel out. The same analysis can be applied to the
model that assumes µs = µs

0(1 + 1/φm) (Figures 6B-1–B-4).
In this case the local melt production compensates the
variation of the melt flux, hence ∂φm/∂ttotal is close to zero
at any depth and a condition of dynamic steady state is
observed.

The model presented in this study opens up the possibility
of a comparison with real petrological data. For this purpose
perhaps the most useful result from the simulations is the
composition and the amount of the melt at the exit point, that
is the point of extraction at the top of the mantle column.
Figure 7 illustrates the variation over time of the melt flux,
melt velocity, and three melt components, SiO2, MgO and
CaO at the extraction point. The results of three models are
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TABLE 2 | Mineral data at 6 depths for the model shown in Figure 4.

Time = 4.27 myr, depth = 19.5, 28.4, 36.6, 40.7, 44.8, 51.9 km. The table includes phase compositions, volume and volume fractions, mass % and abundance of the mineral

components (wt%). Mineral components in the order listed in the table: (ol) fayalite, monticellite, forsterite. (opx, cpx) diopside, clinoenstatite, hedenbergite, alumino-buffonite, buffonite,

essenite, jadeite. (sp) chromite, hercynite, magnetite, spinel, ulvospinel. Note that the MELTS thermodynamic model allows for negative abundance of the mineral components. Input data

for the thermodynamic computation, bulk composition, pressure and temperature are included in PHASE3-P.YRC4.DAT, zone 5111 (zip file max-front1-data.zip).
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FIGURE 5 | Two-phase flow dynamic melting with thermodynamic computation applied every 8 time steps, solid viscosity model: µs = µs0(1+ 1/φm) with µs0 = 1e20

Pa s. Additional details related to this simulation are discussed in section “Results from the Dynamic Equilibrium Melting Model.” (A) Melt volume fraction vs. depth at

2 different times. Earliest time indicates approximately the first arrival of melt at the top. (B) Velocity of the solid matrix. (C) Variation of TiO2 in solid and bulk (melt +

solid) (wt %). (D) Variation of MgO in solid and bulk (melt + solid) (wt %). (E) Variation of TiO2 in melt (wt %). (F) Variation of MgO in melt (wt %). The complete data for

all 12 oxides in melt solid and bulk, at every depth over time are included in the data file PHASE3-P2.YRC13.DAT (zip file max-front1-data2.zip). A

movie of this simulation is available (movie file mf1-movie4.PHASE3-P2.YRC13.avi). The instructions to retrieve both files are provided in the

Supplementary Material.

included. The main difference is the viscosity of the solid
without melt (µs

0) which is set to 1020, 1021 and 1022 Pa s.
The three models assume µs = µs

0 and permeability constant
C = 10−9 m−2. In addition the results of the dynamic batch
melting model (υs = υm, 300 grid points) are also included for
reference. The main differences that can be observed between
the batch melting model and the three DEM models are mainly
related to the first melt arrival. Once the melt column is fully
developed, periodic oscillations are clearly visible for the model
with µs

0 = 1021. Complete data sets related to these models
can be found in the zip file max-front1-data.zip, data
files: PHASE3-P.BRC4-5.DAT, PHASE3-P.YRC7.DAT,
PHASE3-P.YRC3.DAT and PHASE3-P.YRC26.DAT

(for additional information see Table 1 and Supplementary
Material).

The same plot is also shown for three simulations that
assume µs = µs

0(1 + 1/φm) with µs
0 equal to 1019, 1020

and 1021 Pa s and permeability constant C equal to 10−9

m−2 (Figure 8). After the arrival of the first melt wave,
the melt flux and melt composition approach the values
found for the batch melting model. The complete data sets
included in the zip file max-front1-data2.zip are:
PHASE3-P2.YRC14.DAT, PHASE3-P.YRC13.DAT and
PHASE3-P.YRC10.DAT.

While the results of different models appear to be similar,
it may be worth to comment on the implications regarding
the thermodynamic equilibrium assumption. Considering two
cases with similar flux, in one case the melt velocity is low
and the melt abundance is high, it means that chemical

equilibrium with the residual solid is imposed on large
amount of melt moving slower. In the other case the
melt velocity is comparably higher and the melt abundance
is lower, in other words smaller amount of melt moving
faster is also chemically equilibrated with the residual solid.
Clearly these are two different physical scenarios but it
is still unclear which one in reality may approach closer
the imposed condition of thermodynamic equilibrium. The
difference between the two cases becomes even more significant
considering that the time step in the simulations depends
on the inverse of the maximum velocity. If the applied
number of time steps defining the interval between two
thermodynamic calculations is the same, then in the first case
the time step would be larger hence thermodynamic equilibrium
would be assumed to be achieved over a longer period
of time.

DISCUSSION AND CONCLUSIONS

It is common to use petrological data (mainly geochemical
data) to investigate some aspects of the Earth’s interior and
the processes that led to the formation and evolution of
igneous and metamorphic rocks. However simple models not
necessarily very realistic are often applied to explain how the
conditions in the Earth’s interior influence the petrological
evolution and how these processes affect the geochemical
signature.

This work, which is an extension of a previous study (Asimow
and Stolper, 1999), begins to address the petrological evolution
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FIGURE 6 | Flow analysis of the simulations shown in Figures 4, 5. (A-1–A-4) Refer to the model with µs = µs0 and µs0 = 1e21 Pa s. (A-1) Variation with depth of

the melt fraction at 4.27 Myr and scaled ∂φm/∂z which characterizes the inversion point at ∂φm/∂z = 0. (A-2) The three components defining the scaled ∂φm/∂z.

(A-3) Temporal variation of the melt fraction. The total variation ∂φm/∂t|total is the sum of −∂ (φmvm)/∂z ≈ ∂φm/∂t and the melting rate retrieved from the

thermodynamic and dynamic models (see section Thermodynamic Computation). (A-4) Components forming −∂ (vmφm/∂z. See section “Results from the Dynamic

Equilibrium Melting Model” for a discussion of these quantities. (B-1–B-4) same as (A-1–A-4) but for the model with µs = µs0(1+ 1/φm) and µs0 = 1e20 Pa s that is

shown in Figure 5 at 3.2 Myr.
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FIGURE 7 | Variation of selected melt properties over time at the top side (exit point) of the simulation for three models with µs = µs0. The permeability constant is

C=10−9 m−2, µs0 is set to 1020, 1021, 1022 Pa s. Results from the batch melting model are also included. (A) The melt flux (φmvm) shows the amount of melt per

year that is extracted from the mantle column. (B) Melt velocity (m/yr). (C) Melt composition: SiO2 (wt %). (D) Melt composition: MgO (wt %). (E) Melt composition:

CaO (wt %). Complete data can be found in PHASE3-P.BRC4-5.DAT, PHASE3-P.YRC7.DAT, PHASE3-P.YRC4.DAT, and

PHASE3-P.YRC26.DAT (zip file max-front1-data.zip).

of mantle melting combining perhaps the most well-calibrated
thermodynamic model for melt developed by Ghiorso with a
multiphase transport model. The main motivation is to try
to understand how the melt dynamics affect the petrology
and geochemistry of igneous rocks. The model presented here
is based on a 1-D mantle column defined in a restricted
pressure range. The limitations are mainly dictated by the
thermodynamic model. The attractive point of using a 1-
D model interfaced with an accurate petrological description

rather than a 2-D or 3-D dynamic model with a simplified
petrological representation is that it becomes possible to
make a better comparison with real petrological data. The
limitation of a 1-D model however implies that the description
of the melting process is restricted to the vertical axis of
a plume or a mid-ocean ridge, hence lateral melt focusing
and other lateral variations are effectively ignored. If a new
version of the thermodynamic melt model with expanded
pressure range will become available, the effect of viscous
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FIGURE 8 | Variation of selected melt properties over time at the top side of the simulation for three models with µs = µs0(1+ 1/φm). The permeability constant is C =

10−9 m−2, µs0 is set to 1019, 1020, 1021 Pa s. For comparison the results from the batch melting model are also reported in the plot. (A) Melt flux (φmvm). (B) Melt

velocity (m/yr). (C) Melt composition: SiO2 (wt %). (D) Melt composition: MgO (wt %). (E) Melt composition: CaO (wt %). Complete data can be found in

PHASE3-P.BRC4-5.DAT, PHASE3-P2.YRC14.DAT, PHASE3-P2.YRC13.DAT and PHASE3-P2.YRC10.DAT (zip file

max-front1-data2.zip).

dissipation on temperature transport Equation (7) may become
significant (Tirone, 2016) and should be included. It is still
a challenging task to include the contribution of chemical
transformations to the temperature equation because the
required self-consistency with the variation of melt production
with temperature. For two-phase flow models the effect may

not be too dramatic and possibly limited to few tens of
degrees.

Only a small set of parameters (mainly related to the
permeability and the rheology of the solid mantle) were
varied for this study. The input composition at the bottom
of the mantle column is assumed to be homogeneous over
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time and to represent a fertile peridotite. An heterogeneous
mantle has been considered elsewhere (Katz and Weatherley,
2012). However without convincing arguments, even the
assumption of a chemical heterogeneous mantle in local
equilibrium (Tirone et al., 2015) may require further
investigation.

In this first installment it was only considered the scenario
in which the melt and the residual solid are always in
thermodynamic equilibrium within a finite volume in space
and time interval. In a certain way the idea replicates the
traditional petrological approach of assuming a batch melting.
The clear improvement is that with the dynamic equilibrium
melting model (DEM) introduced in this study, the process is
located in space and time. It is therefore possible to follow the
melt evolution and how certain conditions (e.g., temperature,
upwelling velocity) may or may not affect the outcome. From
a dynamic point of view, the association of melt porous flow
with a thermodynamic model seems to be reasonable because
in the porous flow regime the minerals surface in contact
with melt would be large, hence it would become easier to
establish chemical equilibrium between the solid and the melt.
The obvious question is whether the DEM model describes with
some degree of confidence the reality of a process that occurs in
the Earth’s interior where melt velocity and abundance can vary
considerably. The answer cannot be found here but perhaps once
the model is applied to specific geological problems a more clear
picture will emerge.

Understanding the nature of the rheological interaction
between the solid mantle and melt is beyond the scope
of this study, it is a problem that pertains to theoretical
or perhaps experimental fields. Here it is merely shown
what would be the consequence of adopting a certain
function for the bulk (dilatational) viscosity or ignore its
effect.

The solution of the set of dynamic equations that are
needed to address the melting process may seem difficult
even for a 1-D problem. In previous studies usually very few
details on the numerical procedure are provided. Certain
simplifications have been also applied, for instance regarding
the variation of the density (e.g., Schmeling, 2000). The
numerical scheme presented in this study should be relatively
easy to follow and does not rely on simplifications. The
output data files for most of the simulations are available
following the data repository link provided in the Supplementary
Material. Independent browsing of the data may help to
unravel features of the melt model not specifically discussed
here. In addition the data may be helpful for a comparison
of the results with alternative and perhaps better numerical
procedures. The implementation of the FCT algorithm
presented in Appendix 1 (Supplementary Material), has
provided a better numerical solution in certain situations
(see for example a comparison between the results in
PHASE3-P.YRC7.DAT and PHASE3-P.YRC32.DAT

or between PHASE3-P.YRC21.DAT and
PHASE3-P.YRC33.DAT).

One of the results from the application of the DEM model
is that the first melt arrival is characterized by a large volume

and that the composition is quite different from the composition
of later melt products. It appears to be a consistent observation
within the conditions imposed to the model. This melt behavior
which has been also discussed in previous studies, although
for a different model setup (Spiegelman, 1993b), is a direct
consequence of the physical (not petrological) nature of the two-
phase melt model. The possible connection with the formation
of large igneous provinces and emplacement of flood basalts
or oceanic plateaus (e.g., White and McKenzie, 1989; Kerr and
Mahoney, 2007) with or without the presence of a thermal
plume seems to be quite reasonable. The comparison of several
DEM simulations at different conditions suggests that the
melt distribution with depth is significantly affected by the
permeability and viscosity of the solid rocks. It also appears
that the composition of the melt computed with the two-phase
flow model is not significantly different than the composition
obtained from a dynamic batch melt model where υs = υm.
Some variations may still be observed, in particular when the
melt distribution changes with time. The implication is that
a more complex dynamic melt model like the DEM may not
be always necessary to describe the petrological evolution of
melt under the assumption of local thermodynamic equilibrium.
Although a two-phase flow model would be still necessary
in order to quantify the melt abundance. It also implies that
geochemical or petrological data may not be the most reliable
source of information to discern the dynamic of the melt
process, at least after the first melt arrival. However before
drawing major conclusions more work would be needed, in
particular to explore the effect of the temperature, initial
mantle composition and the velocity of the mantle imposed
at the boundary of the model. Regarding this last point, all
the simulations presented in this study (with one exception,
see Table 1) assumes a fixed velocity of the mantle at the
bottom of the 1-D column, essentially considering a condition
of active flow that can be imagined to be the result of a
thermochemical mantle plume. In alternative the boundary
condition that assumes an imposed velocity at the top of
the mantle column may represent instead a passive flow. For
example it could be the result of pulling forces which are
dominant in mid-ocean ridges. The two scenarios, although
similar (i.e., mantle moving upwards), may lead to different
results.
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