
PERSPECTIVE
published: 17 November 2017
doi: 10.3389/feart.2017.00095

Frontiers in Earth Science | www.frontiersin.org 1 November 2017 | Volume 5 | Article 95

Edited by:

Cristina Santin,

Swansea University, United Kingdom

Reviewed by:

Michael W. I. Schmidt,

University of Zurich, Switzerland

Philippa Louise Ascough,

Scottish Universities Environmental

Research Centre, United Kingdom

Michael Ian Bird,

James Cook University Cairns,

Australia

*Correspondence:

Andrew R. Zimmerman

azimmer@ufl.edu

Specialty section:

This article was submitted to

Biogeoscience,

a section of the journal

Frontiers in Earth Science

Received: 10 August 2017

Accepted: 06 November 2017

Published: 17 November 2017

Citation:

Zimmerman AR and Mitra S (2017)

Trial by Fire: On the Terminology and

Methods Used in Pyrogenic Organic

Carbon Research.

Front. Earth Sci. 5:95.

doi: 10.3389/feart.2017.00095

Trial by Fire: On the Terminology and
Methods Used in Pyrogenic Organic
Carbon Research
Andrew R. Zimmerman 1* and Siddhartha Mitra 2

1Department of Geological Sciences, University of Florida, Gainesville, FL, United States, 2Department of Geological

Sciences, East Carolina University, Greenville, NC, United States

Our understanding of the cycling of fire-derived, i.e., pyrogenic organic matter (pyOM),

as well as the goals of the community of researchers who study it, may be inhibited

by the many terms and methods currently used in its quantification and characterization.

Terms currently used for pyOM have evolved by convention, but are often poorly defined.

Further, each of the different methods now used to quantify solid and dissolved pyrogenic

carbon (pyC) comes with its own biases and artifacts. That is, each detects only a

fraction of the total pyrogenic products produced by fire, while, at the same time, include

some fraction of non-pyrogenic OM. This may be evident in the commonly observed

correlations between pyC and total organic C reported for both soils and dissolved

OM in many different systems. We suggest that our research area can be placed on

a stronger footing by: (1) agreement upon a common set of terms tied to the method

used for detection (e.g., of the form pyCmethod), (2) implementation of another “ring

trial” study with a wider set of natural soil and water samples that cross-compare

more recently developed methods, and (3) further investigation of the processes which

preserve/degrade/transport pyOM in the environment.

Keywords: pyrogenic carbon, black carbon, quantification, artifacts, biochar, ring trial

INTRODUCTION

The understanding that fire and pyrogenic organic matter (pyOM) have contributed to shaping
Earth’s biosphere is one that has evolved within a number of disparate fields including geology,
ecology, atmosphere science, agriculture/soil science, and anthropology. In each field, this
realization, along with associated terminology and methodology, has tended to evolve separately,
with limited cross-disciplinary communication. Humans have been using pyOM in industry
(charcoal used in the smelting of copper as early as 5,000 BCE) and medicine for thousands of
years (Scott and Damblon, 2010). However, formal research into charcoal’s properties began as
early the beginning of the twentieth century (e.g., Hedin, 1907; Sweetser, 1908; Homfray, 1910).
Charcoal was noted in soils even earlier (e.g., Heer, 1866; Fliche, 1907; Godwin and Tansley, 1941),
but was not treated quantitatively and used as an indicator of past vegetation and human settlement
by paleoecologists and archeologists, respectively, until much later (Western, 1963; Camps, 1971).
Detection and quantification of charcoal in marine and lake sediments led to the first use of pyOM
as a proxy for past fire-frequency and climate in the 1970’s (Smith et al., 1973; Herring, 1976; Swain,
1978), though there was some debate at this time as to its pyrogenic origin (Schopf, 1975).
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Consideration of the pyrogenic component of aerosols and
the development of the first instrument to measure aerosol soot
concentrations (Thomas, 1952) was sparked by the “London
fog” of December 1952 which killed at least 4,000 (Wilkins,
1954). The dark color of the filters used to collect the “soot”
derived from coal-burning led to use of the term “black carbon”
(BC) within the field of atmospheric chemistry (e.g., Novakov,
1981, 1984; Gundel et al., 1984). Novakov (1981, 1984) defined
BC as “combustion-produced black particulate carbon having a
graphitic microstructure” and soon, the term “BC” was applied
more broadly to pyOM in both its atmospheric and geological
forms (Goldberg, 1985). However, the term “elemental carbon,”
reflecting its C-rich character, was and is still also widely used by
the atmospheric community, which has largely been concerned
with its light absorption and associated direct radiative forcing of
Earth’s climate (Bond et al., 2004). Although there have been quite
a few inter-laboratory comparisons of methods used to quantify
aerosol BC (e.g., Countess, 1990; Birch, 1998; Hitzenberger et al.,
1999, 2006; Schmid et al., 2001; ten Brink et al., 2004), there is
still no universally accepted method for isolating aerosol pyOM
(discussed further in next section).

Awareness of elevated atmosphere CO2 and other atmosphere
greenhouse gas concentrations in the 1970’s led to consideration
of the role of fire in the global C cycle. The first estimate of global
biomass burning and charcoal production, 500–700 Tg yr−1

(Seiler and Crutzen, 1980) was an attempt to balance the poor
match between C inputs to the atmosphere with known removal
mechanisms. This estimate was since revised downward and
is now generally agreed to be in the range of 50–300 Tg yr−1

(Kuhlbusch and Crutzen, 1996; Forbes et al., 2006; Bird et al.,
2015; Santin et al., 2016). Another turning point in geochemists’
understanding of pyOM was the “BC combustion continuum”
first proposed by Hedges et al. (2000) and Schmidt and Noack
(2000) and later elaborated upon by others (Masiello, 2004;
Elmquist et al., 2006; Preston and Schmidt, 2006). It maintained
that pyOM is composed of a wide range of materials from slightly
charred biomass to highly condensed graphite and soot.With this
“continuum perspective” came the wider recognition that pyOM
cannot be wholly refractory, but is degraded to different extents
through a variety of abiotic and microbially-enhanced processes.

A call to compare methods used to quantify pyrogenic
carbon (pyC) in soils and sediments, which requires the use of
techniques different from those used in atmospheric sciences
due to the presence of interfering matrices, came at much
the same time. The first method comparison efforts examined
a limited range of sample types (Currie et al., 2002) or
resulted in widely ranging values for individual samples (Schmidt
et al., 2001). Thus, a “Steering Committee for Black Carbon
Reference Materials” was established and recommended a larger
set of pyrogenic and non-pyrogenic test materials (Schmidt
et al., 2003). The resulting comprehensive evaluation of pyC
quantification methods (Hammes et al., 2007), the so called “BC
ring trial,” made it clear that each analytical method is selective
for a different part of the pyOM continuum.

At the same time that soil scientists and agronomists were
realizing the potential of soil amendments of pyC to enhance
soil fertility and mitigate climate change through C sequestration

(Lehmann et al., 2002; Lehmann, 2007a,b), environmental
scientists identified substantial amounts of pyC in an ever-
widening range of settings including river water (Ding et al.,
2013; Jaffe et al., 2013), marshes (Dittmar et al., 2012b) and
the ocean (Dittmar, 2008; Stubbins et al., 2010; Ziolkowski and
Druffel, 2010). However, all of these pursuits require the ability
to accurately quantify pyC and to track the chemical evolution
and transport of pyOM in the environment.

PYROGENIC SUBSTANCES
QUANTIFICATION METHODS

The methods used to quantify pyC vary widely in their cost,
ease of application, and unfortunately, in the pyOM fraction
that they target. These methods can be categorized as those
that rely on pyOM detection of: (1) morphology, (2) light
absorption, (3) thermal or chemical stability, and (4) chemical
composition. Archeologists and some geoscientists commonly
use light microscopy and particle morphology to count the
number and size of charcoal particles (e.g., Smith et al., 1975;
Figueiral and Mosbrugger, 2000; Scott and Damblon, 2010).
However, these methods cannot quantify pyC and are biased
toward detection of particles of larger sizes (Masiello, 2004;
Crawford and Belcher, 2016). Atmospheric scientists quantify
pyC using optical techniques (Rosen and Novakov, 1977),
thermal heating combined with optical methods, or laser-
induced incandescence (Watson et al., 2005; for a historical
perspective, see Novakov and Rosen, 2013). While many of
these methods are subject to interferences introduced during
mixing of combustion-derived aerosols with non-pyrogenic OM
(Bond et al., 2013), quantification of pyC in soil or sedimentary
matrices is even more difficult due to the even greater presence of
minerals and complex non-pyrogenic geopolymers. To cope with
this, many approaches assume pyOM to be the most refractory
OM fraction. Thus, different thermal and/or chemical oxidation
techniques (e.g., CTO-375, dichromate oxidation, UV oxidation,
catalytic hydrogen pyrolysis (hy-py) have been used to remove
more labile OM and assume the residual to be pyOM (e.g., Lim
and Cachier, 1996; Gustafsson et al., 1997, 2001; Thevenon et al.,
2010).

A final group of methods identify pyOM using some aspect of
its chemical structure. The abundance of both levoglucosan, an
anhydrous sugar formed during cellulose combustion (Elias et al.,
2001; Kuo et al., 2008), and benzenepolycarboxylic acids (BPCAs)
which are formed via nitric acid oxidation (Glaser et al., 1998;
Brodowski et al., 2005; Dittmar, 2008) have been used as chemical
markers for lower temperature charred OM and condensed
aromatic C, respectively. Another technique infers the pyC
content of a sample using the sorptive characteristics of pyrene
onto the sample (Flores-Cervantes et al., 2009a,b). Spectroscopic
tools such as 13C-nuclear magnetic resonance (NMR) and
mid-infrared (MIR) spectroscopy provide information on the
structure and chemical bonds of OM present in a material. In
the case of NMR, it is generally aromatic C that is quantified
and associated with pyC (Simpson and Hatcher, 2004; Nelson
and Baldock, 2005), though specialized techniques have been

Frontiers in Earth Science | www.frontiersin.org 2 November 2017 | Volume 5 | Article 95

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Zimmerman and Mitra Pyrogenic Organic Carbon Research

developed to estimate the condensed aromatic fraction (Knicker
et al., 2005; McBeath et al., 2011). Though MIR also examines a
sample’s spectral characteristics, it requires calibration using one
of the other pyC methods in order to be quantitative (Janik et al.,
2007; Bornemann et al., 2008; Cotrufo et al., 2016). More detailed
reviews of methods used to quantify pyC can be found elsewhere
(Meredith et al., 2012; Bird et al., 2015).

PROBLEMS AND PERPLEXITIES

While the methods used to study pyOM production and cycling
have advanced greatly in the last decade, we believe that there
are still terminology, methodology/conceptual impediments to
further progress that urgently need to be addressed. This inhibits
both research funding opportunities and implementation of the
fire-science community findings and recommendations, be they
in settings of agriculture, policy, or climate/geochemical model
incorporation.

Terminology Issues
From the discussion above, it should be clear that different fire
research sub-communities have adopted various terms for pyOM
or pyOM fractions, often for historical reasons only. Confusion
arises because these terms are often not associated with specific
definitions, or because terms have been adopted across research
community boundaries without regard for their original narrow
definitions. For example, the atmospheric community refers to
BC as combustion-generated aerosols that absorb visible light,
are insoluble in water, and exist as aggregates of carbon spherules
(Novakov, 1984; Bond et al., 2013). On the other hand, BC
has come to be used by many as shorthand for pyrogenic C
of all forms. The term “dissolved black carbon” conflicts with
the atmospheric community’s definition that BC should not be
soluble in water. Organic compounds detected in the aqueous
fraction of combustion-derived aerosols are typically referred to
by the atmospheric community as water soluble organic carbon
(Decesari et al., 2000; Mayol-Bracero et al., 2002). In the past,
soot was defined as the total carbonaceous material produced
by combustion (Novakov, 1984). However, for others, soot is
the condensate of combustion gases and has graphitic structure
(Hammes et al., 2007). The materials referred to as charcoal,
biochar, and agrichar may all be the same, or somewhat different
(Lehmann and Joseph, 2015). While it is understood that
different analytical methods target different pyC fractions, there
is as yet no consistent method or property-based terminology
applied across different research communities. This lack of
consistency may inhibit cross-disciplinary communication and
fertilization of new concepts.

Methodology/Conceptual Issues
Several methodological issues and recent observations should
cause us to question our ability to quantify the amount of pyOM
(or pyC) in natural samples. The first issue is that many of
these methods require a “conversion factor” of some type to
transform measured parameters such as a post-treatment residue
weight or compound abundance to an amount of pyOM or
pyC present in a sample. For example, a conversion factor has
been calculated based on theoretical BPCA yields of organic

structures of marine DOM observed via ultrahigh-resolution
mass spectrometry (about 3, Dittmar, 2008; Stubbins et al.,
2012) or from the BPCA yields of various aromatic substances
including activated C (2.27, Glaser et al., 1998) PAHs, soot
and C nanotubes (about 4, Ziolkowski et al., 2011). However,
application of any single BPCA conversion factor to a variety
of pyOM types has been called into question (Brodowski et al.,
2005). For the dichromate oxidation procedure, a correction
factor derived from the residual yield of plant char oxidation was
used to account for pyC losses during the chemical treatment
(Knicker et al., 2008). A degree of uncertainty has been generated
in the fire science community because of the variety and range
of conversion and correction factors used, even within specific
analytical methods.

The second issue is that pyC can be falsely identified as
non-pyC and vice versa. Underestimates in pyC quantification
certainly occur because not all pyC is recalcitrant or purely
condensed aromatic, as assumed by most analytical methods
(e.g., Bostick et al., this issue, Nguyen and Lehmann, 2009;
Zimmerman, 2010; Singh et al., 2012). Some portion of pyC is
likely destroyed in the harsh thermal and chemical oxidation
steps used. Overestimates can occur in a number of ways.
Not all non-pyC is removed by thermal/chemical oxidation
steps (e.g., Knicker et al., 2007). Oxidative treatments can
even generate apparently “pyrogenic” OM (e.g., Derenne and
Largeau, 2001; Hammes et al., 2007; Novakov and Rosen,
2013). This has been shown to occur, for example, during
the oxidation required to form BPCA compounds (Brodowski
et al., 2005; Kappenberg et al., 2016) as well as in steps used
to remove non-pyrogenic aromatic C prior to NMR analysis
(Simpson and Hatcher, 2004). Other NMR quantification
approaches use spectral editing or molecular mixing models
to separate condensed aromatic from non-condensed aromatic
biomolecules, both of which require assumptions or corrections
that have not been fully validated (Cusack et al., 2012; Paetsch
et al., 2017). Light absorption-based methods used mainly by
atmosphere chemists suffer from uncertainties related to non-
linearities in the light attenuation coefficient which vary with
filter loading and particle type, as well as to interferences from
non-pyrogenic OM (reviewed in Kirchstetter and Novakov,
2007).

Light absorption, BPCA and some NMR quantification
techniques use the assumption that only pyOM, takes the form
of condensed aromatics structures. But increasingly, this has
been shown not to be the case. For instance, melanoidins,
several plants, fungi and pigments yielded quantities of BPCAs
(even highly-carboxylated BPCAs which are indicative of very
condensed aromatic OM) like that of charred plant material
(Brodowski et al., 2005; Glaser and Knorr, 2008). These may be
derived from lignin or tannin, which include a wide variety of
polycondensed aromatics (Hernes and Hedges, 2000; Waggoner
et al., 2015). Other non-pyrogenic OM sources of condensed
aromatic OM are abundant in the geosphere, including woody
peat, coal, kerogen, and oil (Yoshioka and Ishiwatari, 2005;
Hammes et al., 2007; Wang et al., 2012; Hartman et al.,
2015; Li et al., 2017). Still other studies have found that non-
pyrogenic OM can be readily transformed to condensed aromatic
OM, which would appear to be pyrogenic, through photolytic,
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microbial, or chemical degradative processes (Glaser and Knorr,
2008; Chen et al., 2014; Waggoner et al., 2015; DiDonato et al.,
2016).

Given that we are finding ever more ways in which pyOM can
cross the analytical window into non-pyOM and vice versa, it
is perhaps not surprising that many have observed correlations
between pyC and total C concentrations in soils regionally
(Glaser and Amelung, 2003; Jauss et al., 2015; Ahmed et al., 2017;
Qi et al., 2017) and globally (Reisser et al., 2016), and dissolved in
natural waters regionally (Dittmar et al., 2012a; Ding et al., 2013,
2014, 2015; Guerena et al., 2015) and globally (Jaffe et al., 2013;
Wagner et al., 2015) and even in aqueous leachates of marine
aerosols (Bao et al., 2017). These correlations indicate, as do
other more detailed statistical examinations (in the same studies),
a lack of dependence of pyC concentrations on fire history or
climate. A plot of data compiled by a recent literature review
(Reisser et al., 2016) shows a significant relationship between pyC
and total C in global soils across all quantification methods and
within each method (except CTO-375, Figure 1). The strongest
correlations are found for data derived from BPCA and NMR,
suggesting that these methods may have the greatest likelihood
for artifacts that misidentify pyC. Alternatively, the finding of
correlation between pyC and total C regardless of the analytical
method used, might suggest the relationship is present in nature.
That is, production, degradation/preservation or mobilization
processes may act on pyC and non-pyC in ways that cause them
to co-vary. For example, regions of higher productivity, thus
higher soil C, also have more biomass to burn and are therefore
likely to have greater pyC in soils and drainage waters (Alexis
et al., 2007; van Leeuwen et al., 2014). Soils with greater amounts
of clay or metal oxide mineral or even charcoals, are likely to
sorb and therefore protect both pyOM and non-pyOM from
microbial mineralization through sorptive protection (Kasozi
et al., 2010; Zimmerman et al., 2011) or aggregate stabilization
(Wang et al., 2017). And soil translocation, erosion, leaching, and
other hydrologic/climatic-related processes of a region are likely
to act to mobilize both pyOM and non-pyOM in similar ways
(Hilscher and Knicker, 2011; Jien and Wang, 2013), though not
necessarily to equal extents (Rumpel et al., 2009). Finally, it has
been suggested that pyC mobilization may occur via association
with other OM in dissolved (Jaffe et al., 2013) or perhaps colloidal
(Zand and Grathwohl, 2016; Kumari et al., 2017) form, but the
controlling mechanisms are still unknown (Wagner et al., 2017).

RECOMMENDATIONS

Despite, or possibly even because of the many issues facing the
pyC cycling research community, we may be on the brink of
making great advances in this field, but only if these issues are
acknowledged and dealt with. First, we suggest more stringent
use of terminology. The terms “pyOM” or “pyC” should be
used when referring to the totality of fire-derived carbonaceous
substances. These terms represent the broadest short forms
for the total substance of pyrogenic origin and the carbon in
these substances, respectively. When reporting analytical results,
we suggest that terms tied to the method or properties used

FIGURE 1 | Relationships between total soil organic carbon (SOC) and

pyrogenic carbon (pyC) as determined by different methods. Pearson linear

correlation coefficients (r) and levels of significance (p) are given in the legend.

Data are taken from Reisser et al. (2016), a compilation of results of global soil

data from 55 studies.

for detection should be used. For greatest clarity, we these
terms could take the form “pyCmethod” (Figure 2). For example,
substances quantified via light microscopy might be referred
to as pyCmic. Substances isolated based on their chemical
or thermal resistance could be designated pyCCTR. The term
“pyCLE” should be used for substances detected based upon their
near complete light extinction properties, but failing to convince
the mainly atmospheric community of this, we suggest that
terrestrial and aquatic scientists leave the term “black carbon”
to them. Use of these terms will serve as continuous reminder
that a quantity of C refers only to a portion of the substances
produced by fires and may even contain a non-pyrogenic
portion.

Regarding the potential for analytical artifacts that plague
pyC cycling research, we recommend, first, that another “ring
trial” study be conducted so that techniques that have been
developed since the last ring trial (such as MIR spectroscopy
and catalytic hydrogen pyrolysis and improvements in NMR
and BPCA analytical methods) can be compared and their
relative strengths and weaknesses re-evaluated. This ring study
should include not just geochemists, but also those that study
pyOM from the anthropology, atmosphere and agriculture
communities. Moreover, the new ring trial should also make
use of modern analytical techniques that can deconvolve
composition of pyOM at unprecedented levels (e.g., aerosol
mass spectrometer, Fourier transform ion cyclotron resonance
mass spectrometer). In addition to the set of pyrogenic and
“potentially interfering” materials included in the first ring trial
(Hammes et al., 2007), this new ring trial should include a
biochar thermal series, which would be expected to have a
regularly increasing degree of aromatic condensation (Cao et al.,
2012). Furthermore, we recommend a broader set of atmosphere-
derived samples such as the diesel soot standard (NIST
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FIGURE 2 | Proposed pyrogenic carbon terminology based upon methods used for identification/quantification and estimated placement of these materials on the

“combustion/stability continuum.” Dotted lines represent estimated uncertainly range.

SRM 2975) and aqueous samples (preferably not freeze-dried)
isolated from river and ocean water. Additional non-pyrogenic
materials such as wood biomass, leachate from this biomass,
and photodegraded biomass leachate should also be considered
for analyses. To evaluate matrix effects associated with each
method, a standard addition experiment should be added to
the method intercomparison, whereby different amounts of a
pyOM, such as wood char, are added to a soil-like mixture
containing no pyOM. This ring trial should be followed up
not only with a report of results, but with a best-practices
paper that includes consensus recommendations for use of
terminology.

Until now, the focus of many fire science studies has been to
establish properties of pyrogenic substances and their inventories
in different systems. Given the major question of the cause of the
often-observed pyC/TOC correlation, a greater focus should be
placed on studies that compare transformation and movement of
pyrogenic relative to different types of non-pyrogenic substances.
Mechanistic pyOM investigations are needed to understand both
preservation processes such as adsorption, metal-complexation
and aggregate formation, and transformation processes such as
solubilization, volatilization, and microbial, chemical and photo-
degradation. In addition, pyC mobilization studies should focus
not just on particle movement in soil via translocation and
erosion, but transport in aerosol, colloid, and dissolved forms

via atmosphere and aqueous processes. We hope this comment
stimulates greater dialog between research communities that
study various aspects of pyrogenic substances. The desired result
would be not only a more complete understanding of the
production and cycling of pyC, but also a greater application
of these insights in such areas as agriculture and climate
modeling.
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