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Rain gauges are widely used to obtain temporally continuous point rainfall records,

which are then interpolated into spatially continuous data to force hydrological models.

However, rainfall measurements and interpolation procedure are subject to various

uncertainties, which can be reduced by applying quality control and selecting appropriate

spatial interpolation approaches. Consequently, the integrated impact of rainfall quality

control and interpolation on streamflow simulation has attracted increased attention but

not been fully addressed. This study applies a quality control procedure to the hourly

rainfall measurements obtained in the Warwick catchment in eastern Australia. The

grid-based daily precipitation from the Australian Water Availability Project was used

as a reference. The Pearson correlation coefficient between the daily accumulation of

gauged rainfall and the reference data was used to eliminate gauges with significant

quality issues. The unrealistic outliers were censored based on a comparison between

gauged rainfall and the reference. Four interpolation methods, including the inverse

distance weighting (IDW), nearest neighbors (NN), linear spline (LN), and ordinary

Kriging (OK), were implemented. The four methods were firstly assessed through a

cross-validation using the quality-controlled rainfall data. The impacts of the quality

control and interpolation on streamflow simulation were then evaluated through a

semi-distributed hydrological model. The results showed that the Nash–Sutcliffe model

efficiency coefficient (NSE) and Bias of the streamflow simulations were significantly

improved after quality control. In the cross-validation, the IDW and OK methods resulted

in good interpolation rainfall, while the NN led to the worst result. In terms of the impact

on hydrological prediction, the IDW led to the most consistent streamflow predictions

with the observations, according to the validation at five streamflow-gauged locations.

The OK method performed second best according to streamflow predictions at the five

gauges in the calibration period (01/01/2008–31/12/2011) and four gauges during the

validation period (01/01/2012–30/06/2014). However, NN produced the worst prediction

at the outlet of the catchment in the validation period, indicating a low robustness. While

the IDW exhibited the best performance in the study catchment in terms of accuracy,

robustness, and efficiency, more general recommendations on the selection of rainfall

interpolation methods need to be further explored under different catchment hydrological

systems in future studies.
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INTRODUCTION

Hydrological modeling is an essential tool for understanding
hydrological systems. However, accurate and reliable model
predictions require high quality data input (Mair and Fares,
2011). Regarding catchment hydrological modeling and
forecasting, precipitation data are the most important input
(Zhang et al., 2007). In the past decade, techniques for
precipitation estimation based on ground radar stations and
satellite observations have experienced a rapid development
(Velasco-Forero et al., 2009; Vila et al., 2009). Despite the
increased availability of weather radar stations, the lack of
spatial and temporal coverage makes it hard to implement these
approaches nationally for streamflow forecasting, e.g., see the
radar coverage in Australia (Australian Bureau of Meteorology,
2017). On the other hand, although satellite techniques can
produce observations within a broad area, the accuracy can
be unsatisfactory due to the underlying physics, which is
largely based on interpreting cloud top properties (Romilly and
Gebremichael, 2011). Consequently, gauged rainfall remains a
fundamental data source for catchment hydrological modeling
and forecasting by the scientific and operational communities
(Zhang et al., 2007; Looper and Vieux, 2012; Yokoi et al., 2012; Li
et al., 2016).

High-quality rainfall observations are essential for
hydrological modeling and forecasting. In modeling historical
events, e.g., for catchment water resources estimation purposes,
the accuracy of input rainfall directly affects the surface and
subsurface flow assessment. In operational forecasting, low
quality rainfall records can degrade model calibration and
initialization, which can consequently lead to erroneous forecasts
and misleading warnings (Borga et al., 2006). There are various
factors affecting the quality and accuracy of rainfall data,
including instrument failures (e.g., recalibration, deterioration,
and inoperability of sensors), recording errors (e.g., incorrect
time stamps), change of environment (e.g., land use/cover
changes or location change) and spatial representativeness (e.g.,
density of rain gauges andmethods used for spatial interpolation;
Mair and Fares, 2011; Robertson et al., 2015). The collection of
rain gauge data is a mostly automatic process, which may lack the
identification of instrument defects and change of environment.
Therefore, rainfall records can contain anomalously high and
low values, as well as missing values (Robertson et al., 2015).
While missing data can be infilled using geostatistical methods
(Štěpánek et al., 2009), extreme value error correction relies upon
detection of abnormal values in time series (Peterson et al., 1998)
and by trimming the anomalous values to improve the quality
of the dataset (González-Rouco et al., 2001). As one of the first
steps in hydrological modeling, the effectiveness of the quality
control of rainfall data determines whether the modeling system
can yield simulations/forecasts with satisfactory accuracy.

There have been a number of studies on controlling the
quality of rainfall observations at hourly, daily, and annual time
steps (Steiner et al., 1999; Oudin et al., 2006; Chen et al., 2008;
Robertson et al., 2015; Bennett et al., 2016), some of which also
tested the impact on hydrological modeling (Oudin et al., 2006;
Robertson et al., 2015; Bennett et al., 2016). The selection of the

quality control approach depends on the types of errors to be
controlled. For hydrologic purpose, the primary task is to remove
gross errors, which can cause significant impact on streamflow
prediction (Oudin et al., 2006; Robertson et al., 2015). One widely
implemented approach for gross error removal is to compare
the rain gauge time series with surrounding gauges (Chen and
Xie, 2008). It does not rely on additional information and can be
implemented in any area with reasonable density of rain gauges.
Robertson et al. (2015) proposed an approach to control hourly
rain gauge data against a reference daily rainfall product which
had already been quality controlled. The advantage is that it
can be effectively and efficiently implemented for operational
purpose (Bennett et al., 2016).

Rainfall data need to be translated into a distributed data
network when applied to the hydrological modeling system
(Tait et al., 2006). Such a system takes spatial variability of
rainfall within the range of a large catchment into consideration.
The quality and accuracy of the interpolated results, which
typically have a strong impact on the prediction reliability of a
distributed/semi-distributed model, are affected by the density
and location of the rain gauges and the interpolation method
applied (Green et al., 2012). Therefore, the interpolation method
plays an important role in hydrological modeling.

Under most circumstances, an areal rainfall amount in
a catchment/sub-catchment can be estimated using either
deterministic or geostatistical interpolation methods. There are
three commonly used deterministic methods, including the
inverse distance weighting (IDW), which assumes that the
rainfall at a location is more sensitive to the rainfall of nearby
locations than to that of distant ones (Dirks et al., 1998;
Goovaerts, 2000), the nearest neighbor (NN), also known as
Thiessen polygon method, which simply estimates rainfall at a
location by the nearest rain gauge (Nalder and Wein, 1998), and
the spline method, which employs a piecewise polynomial to
produce an interpolated surface from point inputs. Geostatistical
methods, including Kriging and its variants, derive the spatial
autocorrelation based on the analysis of the data itself, and
they give the mean estimation as well as the uncertainty range
(Webster and Oliver, 2001; Tsintikidis et al., 2002; Cheng
et al., 2008). Although those spatial interpolation methods have
been widely applied for areal rainfall estimation, the relative
performances of the different interpolation techniques vary with
different station density and rainfall event scales. Therefore, there
has been little consensus on the relative superiority of these
methods. For instance, Camera et al. (2014) showed that different
interpolation methods work better for local and large scale events
(frontal or convective, etc.).

A number of studies have been conducted on the impacts
of rain gauged data quality control (e.g., Oudin et al., 2006;
Robertson et al., 2015; Bennett et al., 2016) and spatial
interpolation (e.g., Haberlandt and Kite, 1998; Bell and Moore,
2000; Ruelland et al., 2008) on streamflow forecasting. The
combined impact of quality control and interpolation of hourly
rainfall data on streamflow prediction has attracted increased
attention but the research is still limited (Bell and Moore, 2000).
The primary objective of this paper is to assess the impact of
rain gauge data quality control and interpolation on hydrological
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prediction. The impact was assessed from three aspects: (i) the
impact of quality control of gauged rainfall on streamflow
prediction; (ii) the impact of different interpolation methods on
areal rainfall estimation and streamflow prediction; and (iii) the
combined impact of quality control and interpolation methods.
The quality control algorithm by Robertson et al. (2015) was
applied to 35 rain gauges in the Warwick catchment in Australia.
Four interpolation methods, including the NN, LN, IDW, and
OK, were then applied and compared through cross-validation.
The impact of the quality control and spatial interpolation on
streamflow prediction was then assessed through the evaluation
of streamflow prediction using an hourly semi-distributed
hydrological modeling system that is based on coupling the
GR4H rainfall runoff model (modèle du Génie Rural à 4
paramètres Horaire) and the linear Muskingum channel routing
model (Li et al., 2015).

STUDY CATCHMENT AND DATA

Warwick catchment is an upstream catchment of the Condamine
River basin in southeast Queensland, Australia. The catchment
area is 1,360 km2. The catchment is delineated into 39 sub-
catchments according to the river network and flow gauge
locations using the Australian Hydrological Geographic Fabric
(Bennett et al., 2016). Within the study catchment, rivers drain
from the northeast to the southwest with the elevation ranging
from 446 to 1,361m. Figure 1 shows the catchment and sub-
catchment delineation, as well as the flow and rain gauge
locations.

Table 1 shows the data source used in this study. Five flow
gauges and 35 rain gauges located within or near the catchment,
with the distance to the catchment boundary ≤20 km, were
used in this study. Rain gauges are relatively randomly located

FIGURE 1 | The study catchment and location of gauges.
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TABLE 1 | Data source.

Data Units Source Step Time

Rainfall (P) mm BoM Hourly 04/01/2007-30/06/2014

AWAP Daily 04/01/2007-30/06/2014

Discharge (Q) m3/s DNRM Hourly 04/01/2007-30/06/2014

(one gauge per 3–4 sub-catchments). Hourly gauged rainfall
data from January 4, 2007 to June 30, 2014 were obtained from
the Australian Bureau of Meteorology (BoM). Daily rainfall
data used as reference data in quality control were extracted
from the Australian Water Availability Project (AWAP) gridded
dataset. Hourly gauged discharge data were obtained from the
Queensland Department of Natural Resources and Mines. The
quality of the hourly rainfall archives without quality control is
relatively low. The missing value percentage of the archives is
about 19%. In the hydrological model, the dataset was split into
three periods: the warming up period 04/01/2007–31/12/2007,
the calibration period 01/01/2008–31/12/2011 and the validation
period 01/01/2012–30/06/2014. There are fourmajor floods (high
flows) in the catchment during the study period, i.e., in 2008,
2011, 2013, and 2014, respectively. The splitting principle is that
both calibration and validation parts content two major flood
events so that the two periods can be consistent in data, and the
impact of parameter changes can be avoided.

METHODOLOGY

Quality Control
The automated method of controlling the quality of rain gauge
observations used in this study was adopted from Robertson
et al. (2015). The method compares rain gauge observations
with a reference rainfall data set. As discussed by Robertson
et al. (2015), quality-controlled daily rainfall products, such
as the AWAP gridded (5 km spatial resolution) data set, are
well established for operational use in Australia. Short-term
streamflow forecasting (e.g., flood forecasting), however, needs
sub-daily (e.g., hourly) rainfall measurements, which are typically
not well quality controlled. In this study, the AWAP daily rainfall
archives were used as a reference.

The AWAP dataset was developed by the Commonwealth
Scientific and Industrial Research Organization (CSIRO) and
distributed by the BoM National Climate Centre (NCC), and
provides interpolated datasets from 1900 till present (Jones,
2007). There are two processes in producing the AWAP dataset:
the interpolation of monthly precipitation climatology with
a thin plate smoothed spline, and the interpolation of daily
rainfall anomalies (expressed as a percentage of the climatological
rainfall with the Barnes’ successive correction method (Jones and
Weymouth, 1997; Mills et al., 1997; Zajaczkowski, 2009). There
are no reference datasets of hourly rainfall observations. Here, the
hourly gauged rainfall was firstly accumulated into daily values
to be comparable with the AWAP data, and the reference daily
rainfall extracted from the AWAP dataset is based on the rain
gauge locations referring to the closest grid cell of AWAP.

The Pearson correlation coefficient between the daily gauged
rainfall and the AWAP rainfall was used to identify gauges
with poor data quality through the whole study period. Rain
gauges with a correlation coefficient of <0.4 were abandoned,
as suggested by Robertson et al. (2015). Incorrect time stamps
can be a main reason for this problem. However, it is impossible
to check and correct the time stamp (Robertson et al., 2015).
Therefore, it is meaningless for the data in these rain gauges to
be retained and interpolated in the next steps.

The primary target of quality control is to identify and
remove spurious rain gauge observations from the entire time
series that may cause poor streamflow forecasting results.
Through preliminary research on the raw rainfall gauged
data, anomalously large and small values were identified
to have a significant impact on the hydrological modeling.
Because of the large amount of data (35 observatories with
more than 65,000 observations per gauge), an automatic
method was used to identify the data with poor quality
and implement the quality control. Specifically, through the
analysis of the relationship between raw gauged rainfall (e.g.,
upscaled daily data) and the reference daily rainfall, the
data were identified to have poor quality when the ratio
of the temporal change between reference data and raw
gauge data exceeded a predefined threshold (m) (Robertson
et al., 2015). Those dates with poor quality data were flagged
and the original hourly gauged rainfall on those dates were
set to be missing. The ratio of the temporal change was
calculated as

s =
Pt+n − Pt−n

AWAPt+n − AWAPt−n
, (1)

where the ratio s is calculated between observed and referenced
data at time t. The window used is from time t − n to t + n,
with a width of 2n + 1. Based on empirical trial-and-error, the
time window parameter n and the threshold m were set to be
2 (i.e., 5-day window) and 10, respectively (Robertson et al.,
2015). A values of s > m indicates that the change in rain
gauge observations Pt+n − Pt−n during the 5-day window were
much larger than the change in the reference AWAP rainfall data
AWAPt+n − AWAPt−n, meaning that the rainfall observation at
time t + n is regarded as an anomalously large value. A value of
s < 1

m indicates that the changes in the rain gauge observations
were much smaller than the changes in the reference rainfall data,
meaning that the rainfall observation at time t + n is regarded
as an anomalously small value. The dates with anomalous daily
rainfall values were flagged and the hourly gauged rainfall on
those dates were removed.

The double mass curve illustrates the trends and
inconsistencies of the raw and reference data, and can be
used to check whether quality control has been successful (Allen
et al., 1998). For each rain gauge, hourly data were summed to
daily data to ensure that the time steps were consistent with the
reference dataset. The AWAP rainfall data set was used as the
reference to construct the double mass curve (Jones et al., 2009).

In this paper, the double mass curve was produced by
plotting the cumulative sum of rainfall observations against
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AWAP rainfall data. The plot would be a straight diagonal line
when the data are consistent. This method was used to identify
inconsistencies in observation data when rain gauge observations
are extremely large or small relative to AWAP data, which were
reflected by vertical or horizontal segments. To construct the
double-mass plots, the reference data were removed for the
periods when rain gauge observations were missing (Robertson
et al., 2015).

Interpolation
Many different interpolation methods can be applied to
produce spatially distributed rainfall fields based on rain gauge
observations. These methods can be classified into two types;
deterministic methods and geostatistical methods (Ly et al.,
2013). Several popular deterministic interpolation methods are
used, such as IDW, nearest neighbor, and linear spline. Since
most geostatistical methods are based on Kriging, the original
Kriging can be used as a representative of the geostatistical
interpolation. Although local terrain features may affect the
performance of Kriging methods, those Kriging methods
considering topography were typically applied for annual or
monthly rainfall interpolation. The examination of the data used
in this study indicated little correlation between the topography
and the hourly rainfall records, due to large proportion of
zero rainfall values. Therefore, ordinary Kriging was adopted
in this study. In general, based on the weights contributed to
the observed rainfall data, spatial interpolation was implemented
by estimating regionalized values at the different points of a
catchment, based on the weight of the regionalized observations.
The general spatial interpolation function is written as

P =

n
∑

i=1

λi×Pi, (2)

where P is the interpolated value at the centroid of a catchment,
Pi is the observed rainfall data at point i, while λi is the weight
to the observed rainfall data. In most cases, the calculation of the
weights λi is the key problem and will be analyzed in different
interpolation methods in the following sections.

Nearest Neighbor (NN)
The NN method is a simple technique where the estimated
rainfall at each location P (x) can take on the observed data
of the nearest gauge P(xi). This is also called the Thiessen
polygon method, which requires the construction of a Thiessen
polygon network (Nalder and Wein, 1998). It is often used for
thematic and dense datasets. Mediators of segments connect the
surrounding gauge to other related gauges form these polygons.
The surface of the polygons is used to balance the rainfall amount
of the gauges at the centroids of the polygons. Therefore, once a
rain gauge is inserted or removed from this network the polygon
needs to be changed (Te Chow, 1964).

Inverse Distance Weighting (IDW)
The IDW method is based on the distance between the rain
gauge observations and the location of the interpolated point.
The weight factors are determined by the inverse of the distances.

These factors are normalized so that the sum equals one. The
weight factors decrease with the increase of distance, while the
decrease rate become lower with the increase of distance. The
power of the inverse distance function should be defined before
interpolation. The lower the power, the greater the weight toward
the grid point value of rainfall from remote rain gauges will be. As
the power tends toward zero, this method will approximate the
areal mean method (Dirks et al., 1998). As the power becomes
infinitely large, the method approximates the Nearest Neighbor
method (Dirks et al., 1998). In this study, the function can be
expressed as

P̂(x) =
n

∑

i=0

λi (x)
∑n

j=0λi (x)
×P (xi), (3)

where

λi (x) =
1

||x− xi||
p , (4)

and x is the interpolation point; P (xi) is the rainfall data at point
xi; the power parameter p is set to be 2 (Li and Heap, 2008).

Linear Spline (LN)
The LN interpolation method is based on a mathematical model
for surface estimation that fits a linear surface (flat triangle)
through the nearest three data points. It uses a “spline,” which is a
piecewise linear polynomial P(x) to calculate surfaces from data
points. The individual linear surfaces are connected together to
form a spline surface, from which areal rainfall can be estimated
(Ly et al., 2013).

Kriging
Geostatistical methods can produce smooth surfaces and evaluate
their uncertainties. Kriging is a typical geostatistical method
used for spatial interpolation. It is a generalized least-squares
regression method, which uses observation data in a neighboring
area to estimate the values at unsampled points (Hohn, 1991;
Goovaerts, 1997; Deutsch and Journel, 1998). Kriging is based on
statistical models involving autocorrelation, which refers to the
statistical relationships between observation data (Ly et al., 2013).
The value of interpolated rainfall for an unsampled location is
estimated by a weighted sum of available rainfall data points, to
achieve unbiased interpolation results with minimized variance.

Stationarity can be defined by constancy of the mean and the
covariance between two observations. The semi-variogram, as
shown in the following function, can express the “dissimilarity”
of the covariance, which should be estimated and modeled before
interpolation. The experimental semi-variogram can be defined
as half of the squared difference between paired values to the
distance that can be expressed as

γ
(

h
)

=
1

2
× (Z

(

x+ h
)

− Z(x))
2
. (5)

With increasing h, the semivariance increases. The
semivariogram can represent the change of the covariance
against distance between the observation points. The raw
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variogram can be generated by plotting semivariances of all pairs
of observations. However, the raw variogram contains noisy
scatters of semivariance. The cloud of semivariance in the raw
variogram can be averaged according to the gamma distribution
over specified bins. It can then be converted to the experimental
variogram of each bin through.

γ̂ (h) =
1

2N(h)
×

N(h)
∑

i=1

(Zsi − Z(si + h))2, (6)

Statistical distribution models can be used to fit the experimental
semi-variogram, while the Gaussian model is used for rainfall
interpolation here such that.

γ
(

h
)

= σ 2
(

1− e
− h2

L2

)

= 0.383×

(

1− e−
h2
900

)

+ 0.17, (7)

where σ is the sill (maximum semi-variance). L is a reference
distance. 7L/4 approximates to the range (correlation length),
at which the semi-variance reaches the sill. For the Gaussian
model, through manual curve fitting, the variance, L, and the
nugget effect is estimated to be 0.383 mm2, 30 km, and 0.17mm,
respectively. The coefficient in this model can be applied for the
Kriging. The Kriging function can be expressed as

Ẑ (x0) − µ =

n
∑

i=1

λi [Z (xi) − µ (x0)] , (8)

where µ (x0) represents the sample means within the range of
search window. λi is the kriging weight. n is the number of
sampled points used to make the estimation, while µ(x0) is the
mean of samples within the study range (Li and Heap, 2008).

Hydrological Model
The hydrological model used in this study is an hourly semi-
distributed hydrological model with the GR4H for runoff
generation and concentration and the linear Muskingum for
river routing (Li et al., 2015). The GR4H model was used in
this project as it is an operational model used by BoM for their
7-day streamflow forecast service (Perrin et al., 2003; Li et al.,
2014). There are two state variables, the soil water storage S (mm)
and the routing water storage R (mm), and four parameters, the
maximum capacity of S (x1), the water exchange coefficient (x2),
the “reference” capacity of R (x3), and the length parameter of
the unit hydrographs (x4). After the interception, the rainfall P
(mm) contribution Pn (mm) is composed of two processes. The
first process is the transformation of Pn into S, then reduced
by evapotranspiration E (mm) and percolation (mm). The other
process is the transformation of Pn to Ps (mm), which generates
the surface runoff. Then, the surface runoff and percolation are
added to form the total runoff Pr (mm). Finally, 90% of the
runoff is routed by R (mm) and a unit hydrograph (UH1), while
the other 10% is routed by another unit hydrograph (UH2).
The ground water exchange between the modeled catchment and
adjacent catchments is controlled by the function F (x2).

Validation Methods
The method’s accuracy should be investigated, which indicates
how close the forecasts are to the observations (Jolliffe and
Stephenson, 2012). Three statistics were used here to evaluate
the accuracy of interpolation and modeling results, being Nash-
Sutcliffe model efficiency coefficient (NSE) and the mean error
(Bias) and the refined index of agreement (dr) (Willmott et al.,
2012; Li et al., 2015). They are described as

NSE = 1−

∑T
t=1

(

Qt
m − Qt

o

)2

∑T
t=1

(

Qt
o − Qo

)2 , (9)

Bias =
1

T
×

∑T

t=1

(

Qt
m − Qt

o

)

, (10)

dr =



















1−

∑T
t=1

∣

∣Qt
m − Qt

o

∣

∣

2
∑T

t=1

∣

∣Qt
o − Qo

∣

∣

, when
T
∑

t=1

∣

∣Qt
m − Qt

o

∣

∣≤2
T
∑

t=1

∣

∣Qt
o − Qo

∣

∣

2
∑T

t=1

∣

∣Qt
o − Qo

∣

∣

∑T
t=1

∣

∣Qt
m − Qt

o

∣

∣

− 1, when
T
∑

t=1

∣

∣Qt
m − Qt

o

∣

∣>2
T
∑

t=1

∣

∣Qt
o − Qo

∣

∣

(11)

where Qt
o (m3/s) is the observed streamflow at time t (h); Qt

m

is the modeled streamflow at time t; Q0 is the temporal mean
of observed streamflow and T(h) is the total validation period
length.

The cross-validation method is a technique to assess the
accuracy of a forecast model. In this study, the cross-validation
method was used in the testing of different interpolationmethods
based on rainfall data, in which each gauge was interpolated
using the rest of the rain gauges (Noori et al., 2014). The
difference between the observed and interpolated rainfall, which
indicates the accuracy, was summarized by the NSE, Bias and
dr mentioned above. The results of cross-validation methods
were used to compare the accuracy of different interpolation
methods.

RESULTS

Evaluation Based on Rainfall
Quality Control
Before applying the quality control algorithm to the rain
gauged observations, the correlation method was used to define
gauges with poor data quality through the entire time series.
The correlation results of all the rain gauges are shown in
Table 2. Correlation coefficients of rain gauges 40876 (Peak)
and 41537 (Killarney) observations were <0.4, and therefore
these gauged observations were eliminated from the quality
control and interpolation steps. Through the comparison of
rainfall data with and without quality control, the relationship
of correlation coefficient values and the effect of quality
control can be illustrated. After applying the quality control
algorithm to the rain gauged observation, all correlation
coefficients increased to some extent. The average increasing of
correlation is 0.0567, while at rain gauges 541061 (Cherrabah)
and 541064 (Lookout), the values increase by 0.402 and
0.338, which indicates significant improvement of rainfall
data. Also, the quality control impacted more significantly
the rain gauges whose raw observations were of lower
quality.
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TABLE 2 | Correlation coefficient of rain gauge observations with AWAP.

Station Name Correlation Station Name Correlation Station Name Correlation

Before QC After QC Before QC After QC Before QC After QC

40947 Croftby 0.748 0.779 56038 Creek 0.718 0.743 41531 Creek 0.936 0.939

41175 Applethorpe 0.953 0.954 56199 Hill 0.810 0.847 41532 Dam 0.944 0.947

540456 Alford 0.799 0.946 57020 Old 0.617 0.767 41533 Vale 0.915 0.917

541079 Knob 0.912 0.920 540171 Castle 0.788 0.820 41534 Warwick 0.958 0.958

541084 Swamp 0.929 0.941 540173 Tarome 0.844 0.847 41535 Valley 0.954 0.955

541085 Dalcouth 0.919 0.932 540207 Peak 0.458 0.768 41536 Bridge 0.936 0.941

541086 Street 0.931 0.942 540474 Dam 0.865 0.867 541061 Cherrabah 0.569 0.907

541087 Stanthorpe 0.920 0.929 540475 Dam 0.806 0.812 541062 Mosely’s 0.960 0.960

541088 Creek 0.928 0.932 540549 Crossing 0.863 0.869 541063 Dalveen 0.658 0.954

40876 Peak 0.376 41503 Scots 0.696 0.767 541064 Lookout 0.555 0.957

41516 Allora 0.923 0.929 41525 Warwick 0.949 0.951 541092 Mountain 0.938 0.939

41537 Killarney 0.231 41530 Yangan 0.946 0.946

The quality control algorithm was applied to the remaining
rain gauges. The impact of the quality control algorithm was
found to be less significant when applied to gauges with higher
correlation coefficients with the reference data. This is expected
due to their consistency with the high quality AWAP data.
Therefore, results are shown for gauge 540207 (Peak), where
quality control was found to be important for the study period.

Figure 2 shows the double-mass plots of rain gauge 540207
against AWAP reference rainfall, i.e., cumulative gauged rainfall
against cumulative AWAP rainfall. Ideally, the double mass plots
should follow the 1:1 line if the gauged data have a perfect
agreement with the reference. The horizontal or vertical (or near
horizontal or vertical) segments reveal the gross inconsistencies.
The double-mass plot of the raw rain gauge data (red line)
shows that there are significant data quality issues with a
long horizontal segment and some short vertical segments. The
horizontal line segments indicate that during these periods,
the rain gauge recorded considerably larger values than the
corresponding reference data, while the vertical segments are
related to occasions where the rain gauge recorded zero values
which were recorded as non-zero values in the reference. The
black line in Figure 2 shows the rainfall data after quality control.
It is a relatively straight diagonal line without obvious horizontal
or vertical segments, indicating fewer gross errors associated with
quality-controlled data.

Interpolation
The cross-validation method was used to compare the impact
of the four interpolation methods directly. The NSE, Bias, and
dr calculated based on the observed and interpolated rainfall
are summarized in Table 3. According to the NSE, it can be
noticed that there are significant differences between the four
interpolation methods, with Kriging having the largest NSE.
Among all deterministic interpolation methods, IDW shows
the best simulation result, whose NSE is close to the one of
Kriging. Regarding the Bias, both the LN and Kriging show a
better performance than the IDW and NN. According to dr ,
the IDW tends to be the best with the highest dr value. From

FIGURE 2 | Double-mass plot of cumulative AWAP reference rainfall against

rain gauge 540207 both before and after applying quality control.

the cross-validation point of view, both Kriging and IDW are
recommended, whilst the NN gives the worst interpolation.

Impact on Hydrological Modeling
Tables 4, 5 show the NSE values and Bias of streamflow
predictions forced by rainfall estimates obtained from the
four interpolation methods and two quality control scenarios
(raw/controlled).

Impact of Quality Control
In theory, quality control of the rain gauge observations can
improve the performance of the hydrological model. In this
section, all four interpolation methods were used to interpolate
the raw rainfall data and quality-controlled data. The raw
and quality-controlled rainfall interpolations were then used
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to force the GR4H model for warming up (04/01/2007–
31/12/2007), calibration (04/01/2008–31/12/2011) and validation
(01/01/2012–30/06/2014). The NSEs shown in Table 4 indicate
that in the calibration period, the model with quality-controlled
rainfall data substantially outperformed the model forced by the
raw rainfall data, e.g., the NSE increased from values less than
zero to values close to 1. The improvements in the calibration
stage are obvious in the NSE of different interpolations, which
indicates an overall improvement after quality control. Especially
at the Elbow Valley Station, and in the calibration stage of
Brosnans Barn, all NSEs before quality control showed negative
values. Improvements in the validation period are also evident,
despite the fact that the NSE at Emu Vale with IDW and LN
declined slightly after quality control.

TABLE 3 | The statistics of cross-validation for all rain gauges with different

interpolation methods.

IDW NN LN Kriging

NSE 0.348 0.067 0.240 0.376

Bias (mm) 0.039 0.025 0.009 0.010

dr 0.527 0.467 0.492 0.489

Bold numbers indicate the best performance at each station.

Most of the absolute value of Bias shown in Table 5 decreased
after quality control, indicating that simulated streamflow
was generally more consistent with the real-time observations
than the modeling streamflow with raw data. The improved
consistency can be shown between calibration and validation
periods. Consistent rainfall data play an important role in
hydrological forecasting. However, in the validation stage at Emu
Vale and Elbow Valley, the absolute values of Bias increased by
0.189 and 0.22 after quality control. The performance of the
models calibrated using the quality-controlled rainfall data was
also much more robust than the models calibrated using the raw
rainfall observations, leading to improved consistency between
calibration and validation results.

Figure 3 primarily compares the streamflow simulations with
raw rain gauge observations and quality-controlled data at the
Warwick gauge station. In Figure 3, only the effectiveness of
quality control on streamflow simulation with IDW is presented.
Figures 3C,D show two peak flows (wet events) in January 2011
and January 2013 in detail, respectively. For both peaks, the flow
simulation with quality-controlled rainfall (blue line) matched
the observation (black line) better than the simulation with raw
rainfall (red line). Figures 3B,E illustrate two spurious peaks
predicted by the hydrological model forced by the raw rainfall
data. These significant over predictions of streamflow were

TABLE 4 | The NSE values of streamflow predictions forced by rainfall estimates obtained from the four interpolation methods and two quality control scenarios

(raw/controlled).

Interpolation Method Warwick Swanfels Emu Vale Brosnans Barn Elbow Valley

Calibration (01/01/2008–31/12/2011) IDW 0.098/0.814 0.627/0.833 −0.231/0.796 −0.314/0.898 −0.712/0.691

NN −0.317/0.790 0.623/0.818 −0.911/0.486 −0.498/0.840 −0.709/0.668

LN 0.248/0.838 0.614/0.833 −0.295/0.749 −0.457/0.857 −0.643/0.638

Kriging 0.209/0.829 0.574/0.778 −0.356/0.747 −0.378/0.887 −0.108/0.704

Validation (01/01/2012–31/06/2014) IDW 0.216/0.900 0.824/0.864 0.721/0.631 0.522/0.701 −0.612/0.528

NN 0.071/0.711 0.741/0.824 0.022/0.115 0.297/0.404 −0.773/0.478

LN 0.465/0.900 0.618/0.758 0.508/0.497 0.433/0.531 −0.820/0.435

Kriging 0.256/0.802 0.417/0.499 0.516/0.546 0.424/0.602 −0.717/0.493

The bold numbers indicate the best performance among different interpolation methods at each station. The values underlined indicate the quality control degraded the streamflow

simulation in terms of NSE.

TABLE 5 | As for Table 4 but for bias.

Interpolation Method Warwick Swanfels Emu Vale Brosnans Barn Elbow Valley

Calibration (01/01/2008–31/12/2011) IDW −0.085/−0.074 0.034/0.008 0.029/−0.045 −0.016/−0.032 0.281/−0.162

NN −0.183/−0.120 0.042/0.033 0.184/−0.032 −0.208/−0.102 0.243/−0.171

LN −0.132/−0.106 0.039/0.023 0.106/−0.087 −0.165/−0.087 0.360/−0.195

Kriging −0.089/−0.109 0.010/−0.038 0.094/−0.091 −0.196/−0.030 0.348/−0.163

Validation (01/01/2012–31/06/2014) IDW −0.444/0.203 0.312/0.198 0.350/−0.044 −0.259/0.295 −0.627/0.469

NN −0.527/0.299 0.416/0.307 0.075/−0.264 −0.307/0.405 −0.804/0.684

LN −0.436/0.179 0.275/0.176 0.269/−0.144 −0.367/0.334 −0.436/0.656

Kriging −0.394/0.248 0.029/−0.113 0.184/−0.120 −0.272/0.237 −0.641/0.504

The bold numbers indicate the best performance among different interpolation methods at each station. The values underlined indicate the quality control degraded the streamflow

simulation in terms of NSE.
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FIGURE 3 | Streamflow of observation and simulation forced by raw and quality-controlled rainfall (IDW interpolation). (A) Streamflow during the entire timeline; (B)

Streamflow peak 1 in February 2008; (C) Streamflow peak 2 in January 2011; (D) Streamflow peak 3 in January 2013; and (E) Streamflow peak 1 in March 2014.
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eliminated by the implementation of the quality control protocol
to the input rainfall. The quality control plays an important role
in amendment of this phenomenon. This is consistent with the
NSE and Bias results.

Impact of Interpolation
According to Table 4, before quality control, IDW performed
best in the calibration stage compared to other interpolation
methods. However, most of the NSEs were negative, except for
the Swanfels station with the NSE of 0.627. In the validation stage
without quality control, IDW also showed the best results. Even
at Swanfels and Emu Vale, IDW showed a NSE value which is
close to one. Moreover, it can be noticed that in the calibration
period after quality control, the streamflow prediction with IDW
interpolated rainfall led to the highest NSE values at three gauges
out of five, and in the validation period, the streamflow prediction
with IDW interpolated rainfall resulted in the highest NSE value
at all five gauges, indicating the IDW was the best interpolation
method in this case study. According to the performance at the
Emu Vale station, the Nearest Neighbor method led to the worst
streamflow prediction with a NSE value in the calibration period
of only 0.486, while other interpolation methods resulted in NSE
values of over 0.65. In the validation stage, the NSE values for NN
were the lowest at Emu Vale and Elbow Valley. Although the LN
and Krigingmethods showed relatively good performance during
the calibration, most of NSE values during the validation were
small except the one at Warwick. According to the comparison
of NSE values mentioned above, the IDW interpolation method
tended to be the best and most consistent interpolation method.

According to Table 5, in the calibration period before quality
control, IDW showed the best result as indicated by the
lowest bias at four stations out of five. In the validation
stage without quality control, all interpolation methods showed
similar performance at five stations. After quality control, the
Bias of different interpolation methods were all negative at
Warwick, Emu Vale, Brosnans Barn, and Elbow Valley. During
both the calibration stage at Warwick and Emu Vale, the
IDW showed the smallest absolute value of Bias, while the
Nearest neighbor method had the largest Bias at most of
the stations except at Emu Vale. It can be concluded that
the IDW was the best interpolation method according to the
Bias.

Figure 4 compares the streamflow calibration and validation
results with different interpolation methods at the Warwick
gauge station. Four peak flow events in February 2008,
January 2011, January 2013 and March 2014 are illustrated
in Figures 4B–E. These peak flow events had significant
impacts on NSE. In the peak event in 2008 and 2011, all
interpolation methods showed similar consistent simulation
results compared with observation streamflow. However, in
the event in 2013, the NN method resulted in the worst
streamflow prediction. In this study, only the ordinary Kriging
method was applied without consideration of local terrain
features. The IDW method consistently performed well. The
performance of the NN and LN methods varied from
event to event. The two methods tended to be relatively
accurate in the calibration events (e.g., Figures 4B,C), but

failed to capture the peak flow in the validation period (e.g.,
Figures 4D,E).

DISCUSSION

In this paper, an automated quality control algorithm for hourly
rainfall observations was described. Different interpolation
methods were used to interpolate the rainfall observations
before and after quality control. Through the assessment of the
quality control method, it can be found that abnormal values
significantly affect model performances, and that is consistent
with some previous studies (Chaubey et al., 1999; Robertson
et al., 2015). According to the cross-validation and hydrological
prediction, the IDW and kriging methods resulted in the most
accurate interpolated rainfall, while the NN was found to lead
to the worst result. Ly et al. (2013) criticized the use of NN in
mountainous regions as the orographic characteristics may have
a significant impact on the rainfall distribution, which may lead
to large forecasting errors (Goovaerts, 2000).

A large uncertainty in modeling results can be expected
due to variations in the input rainfall (Chaubey et al., 1999).
Better interpolation techniques can improve the hydrological
simulations (Haberlandt and Kite, 1998). Through the NSEs
analysis, it was found that if an interpolation method shows
a relatively good result with raw rainfall data, it also shows a
high NSEwith quality-controlled data. The relative performances
of all interpolation methods remained the same with raw
and quality-controlled data. Although the rainfall observations
before quality control were of poor quality, a relatively good
interpolationmethod (e.g., IDWor Kriging) was not affected, due
to its robustness. The less robust method (e.g., NN) was found to
be affected by the quality control more significantly, with the NSE
increasing from negative to positive after quality control. This
was also revealed by the Bias. For instance, the quality control
improved the Bias scores for NN and LN at all five gauges in the
calibration period, while degraded Bias scores by quality control
were found at some of the gauges for IDW and Kriging. This
indicate that the NN and LN rely more on (i.e., more sensitive
to) the quality control; nevertheless, the overall performances of
IDW and Kriging were better than the NN and LN in terms of
Bias.

It is also interesting to find that the differences between
different interpolation methods using raw data were much more
significant than the ones using quality-controlled data. After
quality control, with the improvement of data consistency, the
impact of interpolation methods tended to be lower than the
interpolation results with raw observations. Considering the
integrated impact of quality control and interpolation to rainfall
observations, in the Elbow Valley station for example, the NSE
increased significantly from negative to positive values after
quality control. However, different interpolation methods show
similar NSE values between −0.6 to −0.8 before quality control
and 0.4 to 0.7 after quality control. It can be inferred that for the
catchments with poor rainfall data achieves, the impact of quality
control was more significant than the impact of interpolation
methods on hydrological prediction.
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FIGURE 4 | Streamflow of observation and simulation forced by quality-controlled rainfall with different interpolation methods. (A) Streamflow during the entire timeline;

(B) Streamflow peak 1 in February 2008; (C) Streamflow peak 2 in January 2011; (D) Streamflow peak 3 in January 2013; and (E) Streamflow peak 1 in March 2014.
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CONCLUSIONS

Rainfall is the most important input for catchment hydrological
modeling and has a significant impact on the accuracy of
the streamflow prediction. The errors in the rainfall data
applied in the calibration of hydrological models may cause
poor simulations and erroneous flood forecasting results.
Consequently, this paper applied an algorithm for quality control
of hourly gauged rainfall data. Accordingly, the dataset with
anomalously high/low or missing values was shown to be
cleaned effectively, leading to an improved agreement with
the reference data. Importantly, the rainfall data with quality
control had a much better performance in the streamflow
prediction. Four interpolation methods commonly applied to
rainfall data were also reviewed and applied to the study
catchments. The cross-validation, in which each gauge was
interpolated using other rain gauge observations, revealed a
relatively better performance for IDW and Kriging in terms of
the NSE, Bias and refined index of agreements. When applied for
hydrologic modeling, the IDW method gave the most accurate
and robust streamflow predictions according to the NSE. The
Kriging method performed second best according to streamflow
predictions at the five gauges in the calibration period and four
gauges during the validation period. NN produced the worst
prediction at the outlet of the catchment in the validation period,
indicating a low robustness. However, when evaluated in Bias,
none of the interpolation methods consistently outperformed the
others.

Future research is needed on the reliability of quality control
methods combined with radar data. Future research may also
focus on the analysis of different Kriging methods to find out
whether the combination of other kriging methods and proper
semi-variogram models can give better simulation results, and

whether the modeling results can be improved by considering
topographic features.
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