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Stochastic Modeling of Past Volcanic
Crises

Gordon Woo*

RMS, London, United Kingdom

The statistical foundation of disaster risk analysis is past experience. From a scientific

perspective, history is just one realization of what might have happened, given the

randomness and chaotic dynamics of nature. Stochastic analysis of the past is an

exploratory exercise in counterfactual history, considering alternative possible scenarios.

In particular, the dynamic perturbations that might have transitioned a volcano from an

unrest to an eruptive state need to be considered. The stochastic modeling of past

volcanic crises leads to estimates of eruption probability that can illuminate historical

volcanic crisis decisions. It can also inform future economic risk management decisions

in regions where there has been some volcanic unrest, but no actual eruption for at least

hundreds of years. Furthermore, the availability of a library of past eruption probabilities

would provide benchmark support for estimates of eruption probability in future volcanic

crises.
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INTRODUCTION

Probabilistic methods are increasingly appreciated as valuable tools in applied volcanology,
especially in interfacing between the geohazards posed by volcanoes, and the georisks to which
society is exposed. One of the most important decisions to be made in respect of a volcanic region
involves the timing of the evacuation of people at risk, and also the timing of their return home.
Where the size of the population at risk and the local transport infrastructure allow for their
movement away from danger in a matter of hours, civil authorities can leave a crucial decision
until volcanologists are quite sure that a dangerous eruption will actually occur. However, one or
both of these criteria may fail for a given volcano, and crucial public safety decisions may have to
be made under considerable uncertainty. In such challenging circumstances, the expected safety
benefits of any early evacuation or any delay in return home should be assessed as outweighing the
expected displacement and disruption costs (Marzocchi and Woo, 2007; Woo, 2011).

In order to weigh as rationally as possible the expected safety benefits and disruption costs, the
probability of an imminent dangerous eruption, within a relevant practical time period such as the
next 3months, needs to be estimated, along with the proportion of the population at risk whowould
owe their lives to a timely evacuation or delay in return home. The former needs to synthesize all
the monitoring data that are available. The latter involves identifying the alternative geographical
footprints of pyroclastic currents and lahars, and assessing how likely each of these possibilities are.
This requires state-of-the-art stochastic volcanic flow modeling.

Volcanology is an observational science, and the maximum knowledge and information needs
to be extracted from the record of the past. Even for volcanologists who specialize in studying the
volcanoes of one country, the past is not as familiar as might be supposed. A principal objective of
this paper is to motivate more intensive research into individual past volcanic crises, to understand
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not just what happened, but what else could or might have
happened. Stochastic modeling is traditionally considered as an
exercise for the future, but there is merit also in stochastic
modeling for the past. Although the focus is on past volcanic
crises, this paper is not a review of past crises, but rather presents
a new perspective on the treatment of past crises, advocating a
stochastic analytical approach. A number of examples illustrate
this approach which can be extended to other volcanoes.

For her PhD dissertation, Hincks (2007) developed a
quantitative framework for probabilistic volcano hazard analysis,
and instigated a retrospective hazard analysis of the volcanic
crisis at La Soufrière, Guadeloupe in 1976, one of the most
controversial because of the mass evacuation called. Bayesian
techniques are well-suited to stochastic modeling of an uncertain
past (Balke and Pearl, 1994), where there is sufficient public
risk mitigation interest to justify the effort to gain this extra
knowledge. A Bayesian Belief Network methodology was used
to quantify the eruption probability over the duration of
the Guadeloupe crisis, taking evidential account of all the
monitoring data (Hincks et al., 2014). The network methodology
is particularly flexible for multivariate data synthesis.

Alternatively, there are event tree methods for estimating
the likelihood of an eruption. The event tree typically includes
branches for the origin of the eruption, the style of eruption,
location, magma composition, and eruption size. The Bayesian
Event Tree method developed by Marzocchi et al. (2010) is
implemented in readily available and usable software BET_EF.
The USGS Volcano Disaster Assistance Program (Newhall
and Pallister, 2015) makes use of event trees, which were
first introduced by USGS staff volcanologists Newhall and
Hoblitt (2002). Another approach, which has been applied to
Colima, Piton de la Fournaise and Merapi, is to embed the
classic deterministic failure forecast method within a Bayesian
Framework (Boué et al., 2016). A limitation of this method,
acknowledged by the authors, is the condition for an effective
forecast that the pre-eruptive sequence is long enough for civil
protection to organize and manage an evacuation.

The search for the underlying causes of a disaster is an exercise
in stochastic forensics. The aim is to explore and discover how
likely the alternatives are. Outside volcanology, an important
international application was to the probabilistic assessment of
the final resting place of theMalaysian AirlinesMH370 passenger
jet that went missing in March 2014. An entire book (Davey
et al., 2016), summarizing a major costly research effort, has
charted the elaborate use of sophisticated Bayesian methods for
weaving together in a coherent manner the multiple thin strands
of evidence from satellite, avionic and oceanographic sources.
It is well-known that evidence can be used to update the prior
probability that a future event has a particular characteristic.
Less apparent is that evidence can be used to update the prior
probability that a past event had a particular characteristic.

An analysis of the issuance of volcanic alert levels during
volcanic crises (Winson et al., 2014) shows that almost 80% of
eruptions can be broadly characterized as not being anticipated
by a change of alert levels. Inadequate monitoring is often a
factor, and alert levels may not be intended for use in forecasting,
but clearly much remains to be learned about estimating the

likelihood of an imminent eruption from such monitoring data
as exist. For most past volcanic crises, little is actually known
about these likelihoods. In the minds of decision-makers, these
are typically vague implicit figures or their verbal equivalents:
minimal, tiny, very small, small, moderate etc.

From a volcano hazard perspective, stochastic modeling
of past episodes of volcanic unrest would provide valuable
additional insight, especially for volcanoes having a sparse
eruption history. Moran et al. (2011) have observed that episodes
not leading to eruption may be under-reported, or not reported
at all, by local observatories. They have further noted that such a
bias can result in incorrect estimation of probabilities that a given
episode of unrest will lead to an eruption. Effort taken to assess
eruption probabilities for the historical past results in valuable
benchmarks being available for future volcanic unrest.

There is an inherent human outcome bias in reviewing past
experience. As Kahneman (2011) has pointed out, decisions tend
to be judged according to the outcome. If the losses are minimal,
such as for an unrest period that did not result in an eruption,
or for an eruption that caused few if any casualties, the file on
an event may be closed without the perceived need nor even
any justification for a risk management review. Yet there are
many lessons to be learned in risk awareness and catastrophe
risk management from asking searching counterfactual questions
about historical events - not just extreme events, but also
those that might be classified as near misses. From a scientist’s
perspective, history was not inevitable, but is just one possible
realization of what might have happened. Indeed, in his
discussion of the logic of counterfactuals in causal inference,
Pearl (2009) has emphasized that counterfactuals carry as clear
an empirical message as any scientific laws, and indeed are
fundamental to them.

COUNTERFACTUAL ANALYSIS OF

VOLCANIC UNREST

In his explanatory review of Bayesian network analysis, Pearl
(2000) has conceived the following basic illustrative example of a
two-state system, which is a paradigm for the analysis of volcanic
unrest and the predictive role of precursory activity.

In this example, the output system response Y (e.g., eruption)
is a binary function of another binary precursory event indicator
X (e.g., presence of volcanic tremor), and a set of other variables
U that may influence Y :Y = f (X,U). U include the forcing
factors, such as internal pressure, that could cause a dynamic
perturbation to a volcanic system, and thence a state transition
to eruptive activity.

Since X and Y are either 0 or 1, for any given U, the
relationship between X and Y [which might be denoted as Y =

Y(X)] must be one of only four binary functions:

f0 : {Y(0) = 0 & Y(1) = 0}; f2 : {Y(0) = 1 & Y(1) = 0}

f1 : {Y(0) = 0 & Y(1) = 1}; f3 : {Y(0) = 1 & Y(1) = 1};

As U varies, the only effect is to switch the (X,Y) relationship
among these four functions. The probability P(U) thus induces a
probability function over the possible response pairs {Y(0),Y(1)}.
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Volcanologists are interested in the particular subset UE of U
values for which {Y(0) = 0 & Y(1) = 1}, i.e., where
the observation of X happens to be a true accurate and reliable
predictor of Y.

In order to make better decisions on the interpretation of
precursory observations, it is desirable to make progress in
identifying which combinations of variables U comprise UE, and
in estimating P(UE), the probability of being in UE. The eruption
probability is thus associated in a tangible way with the measure
of a physical parameter set. These parameters are not directly
observable, but may be modeled. UE can be expressed in terms
of ranges of dynamic model variables.

Pearl (2009) has credited the development of Bayesian
networks as a stepping stone toward a more profound transition,
from reasoning about beliefs to reasoning about causal and
counterfactual relationships. The probability that volcanic unrest
might lead to an eruption is more than just a degree of belief,
it reflects a deep counterfactual logic. Consistent with scientific
knowledge of the state of the volcano during the unrest, key
dynamic forcing variables could have been in the range leading
to an eruption. The likelihood that they are in this range provides
a physical measure of the counterfactual eruption probability.

Case Study: Unrest at Soufrière Hills,

Montserrat
As a practical case study, consider the Soufrière Hills volcano
in Montserrat. Christopher et al. (2015) have interpreted the
observations since 1995 as being consistent with a vertically
extensive crustal magmatic mush beneath the volcano. They
have categorized an unrest period as being one where layers
of melt and magmatic fluids connect and move upward,
while the igneous mush collapses downward. The melts layers
amalgamate to form magma chambers. Decompression of melts
and magmatic fluids results in crystallization, and increases in
magma and fluid pressure. These increases during periods of
unrest may not be sufficient to cause an eruption. But once
an eruption is instigated, instability increases due to a positive
dynamical feedback effect.

With this geophysical and geochemical understanding, U can
be defined in a simplified manner as the magma and fluid
pressures inside the volcano. Correspondingly, UE would be a
sub-domain of the space of these pressure variables which is
sufficiently jointly extreme as to be associated with an eruptive
state. During a period of unrest, the probability of an eruption
then can be estimated from the probability that the magma
and fluid pressures exceed the critical threshold. This regime is
associated with major destabilization of the trans-crustal layered
igneous system.

In volcano catalog of eruptions, it has not been routine to
include periods of unrest. These are times when human or
scientific observations have been made of some external signs of
activity, other than eruptive activity itself. Observations of unrest
might include volcanic tremor, gas emissions, and inflation of the
flanks of the volcano. This incompleteness of information reflects
the traditional perception that such data are of scientific interest,
but rather inessential for hazard estimation, which is primarily

dependent on the geological and historical time series of the
actual eruption events themselves. However, for volcanoes with
a low frequency of eruption, occasional periods of unrest may be
important indicators of failed eruptions which should be taken
into account in volcano hazard assessment.

Soufrière Hills in Montserrat is a prime example of a volcano
which, until 1995, had not erupted since around 1630, yet
had given rise to three periods of significant unrest over the
previous century. These might be interpreted as failed attempts at
eruption. In the authoritative Smithsonian Institution catalog of
volcanoes of the world, the second edition of which was published
shortly before the eruption in 1995 (Simkin and Siebert, 1994),
the 1630 eruption is included as the sole entry for Montserrat—
but none of the unrest history is listed. The first recorded
European landings on Montserrat occurred in 1628 and 1631
with no reports of settlers, so it is not possible to undertake a
retrospective study of the 1630 eruption akin to that by Sandri
et al. (2009) for the 1631 eruption of Vesuvius.

However there were three distinct episodes of unrest in the
1890s, 1930s and 1960s. Counterfactually, each of these unrest
periods might have led to an eruption. The 1930s unrest was
marked by sporadic bursts of seismic activity, which led up to
a M6.2 earthquake on 10 November 1935 (Powell, 1938). As it
turned out, seismicity levels and gas emission rates decayed quite
rapidly afterwards, suggesting that thismajor offshore earthquake
had relieved some dangerous crustal stresses. But this sizeable
earthquake might potentially have triggered an eruption through
opening rock fractures (Kennedy, 2017). Remarkably, the spatial
pattern of earthquake epicenters has some striking similarities
with that at the start of the 1995 eruption. For the third of
the unrest periods prior to 1995, Shepherd et al. (1971) noted
that sharp increases in seismic and solfataric activity occurred in
1966, and these events indicated the abnormally high risk of an
eruption in the near future. Magma had intruded into the upper
crust beneath the volcano, and migrated upwards.

Probabilistic volcano hazard assessment should not be based
solely on actual past eruptions, which may be a very sparse
dataset, but should take proper counterfactual account of the
periods of unrest, which constitute a vital element of the
knowledge of the activity status of a volcano. For each of the
three periods of unrest, the eruption probability P(UE) may be
interpreted intuitively as the probability that themagma and fluid
pressures exceeded a critical threshold.

Scenarios may be regarded as counterfactual histories
of the future (Weber, 1996). Accordingly, counterfactual
thought experiments are insightful for risk assessment. As a
counterfactual thought experiment in volcanology, suppose that
there was an ensemble of dynamical computational models of
the Soufrière Hills volcano, each with its own alternative possible
parameterization for a given period of unrest. Such an ensemble
might be constructed using simple internal representations of
the volcano dynamics and geometry. Approximate Bayesian
computation methods, that do not require knowledge of an
explicit likelihood function, could then be applied to estimate
volcano risk. The concept of an ensemble of computational
models is already realized in practice in another major branch of
natural hazards, namely meteorology, where ensembles are used
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to inform probabilistic weather forecasts, such as for hurricane
risk.

Within the context of this counterfactual thought experiment,
the following question can be posed for each of the three periods
of unrest: what proportion of the dynamical volcano models
would show that the magma and fluid pressures exceeded the
critical threshold for an eruption? Even if this proportion were
as low as one-fifth for each unrest, there would have been an
even chance of some eruption in the century from 1890 to
1990. This last risk statement is quite robust against varying
these proportions, and representing them as plausibility ranges
of experts (e.g., [0.1, 0.3]) rather than specific point figures.
Indeed, the 1930s unrest period on its own had a good chance
of generating an eruption when the M6.2 earthquake occurred
on 10 November 1935.

Part of the purpose of stochastic modeling of the past is to
redress the common human behavioral trait of outcome bias.
To ponder what would have happened if things had turned for
the worse is called a downward counterfactual. By contrast, an
upward counterfactual considers what would have happened if
things had been better. Psychologists of counterfactual thinking
(Roese, 1997) observe that upward counterfactual thoughts are
much more common than downward ones. The fact that no
eruption resulted from any of the 1890s, 1930s, and 1960s
volcanic crises on Montserrat affected the perception of volcanic
hazard on the island. Indeed, the elapse time since the last
previous eruption in 1630 was sufficiently long for the volcano
to be presumed by the public to be dormant. And any
downward counterfactual thought about volcano hazard would
have been blown away by Hurricane Hugo, which struck the
island on 17 September 1989, rendering 90% of the population
homeless.

But there are important practical differences in risk
implication between the following two hazard statements:
one factual, the other counterfactual. Both might have been
made in 1990, several years before seismic activity on Montserrat
started.

[A] There has been no eruption for more than 350 years.
[B] There is an even chance of an eruption having occurred in

the past 100 years.

Statement [A] might be invoked to satisfy a simple historical
exclusionary criterion, whereas statement [B] is worded for
application to a medium-term quantitative risk assessment for
a dormant volcano. Among the stakeholders who would find
practical value in the latter statement are insurers, and thereby
residential, commercial and industrial property owners as well
as builders. Losses from the 1995 eruption took insurers by
surprise. A typical return period for portfolio insurance risk
management is 250 years, which is shorter than the 350+ year
time interval back to the last eruption. However, statement
[B] indicates that the Soufrière Hills volcano presented a risk
at a return period of about 200 years. As such it would
have been used for accumulation insurance risk management
to protect against extreme portfolio losses. Beyond volcano
risk, counterfactual disaster risk analysis has been shown to be
useful to insurers for all kinds of perils (Woo, 2016). Increasingly,

as the underlying scientific and engineering basis for property
catastrophe insurance has expanded, geoscientists have become
more motivated to understand and address geohazard and
georisk issues useful to insurers.

COUNTERFACTUAL CASUALTY FIGURES

The protection of people from being killed or injured in
a volcanic eruption is a cornerstone of public policy in
every volcanic region. Insights into societal vulnerability and
protection over time are found in an analysis of the global
historical fatalities record, which has been undertaken by Auker
et al. (2013). Further investigation of this record might extend to
accounting explicitly for the uncertainty in the underlying data,
and to carrying out a stochastic simulation of the past human
losses from volcanic eruptions.

Official statistics on deaths from natural disasters are prone
to human errors of mis-reporting and mis-recording, some of
which may be intentional rather than accidental. Statistics may
be underestimated for fear of public revolt, or overestimated to
encourage donations. The uncertainty in keeping track of deaths
from a volcanic eruption is compounded by the obliterating
impact of volcanic flows on the integrity and identity of human
bodies. Secondary indirect impacts, such as famine, may be
extensive and global for a great eruption like Tambora in 1815.
Less well-known, even in Indonesia, than its devastating impact
in Europe is the starvation in China, which exacted a very high
death toll (D’Arcy Wood, 2014).

Quite apart from the numerical vagueness of the volcanic
fatalities record, the number of deaths from a volcanic eruption
is subject to a substantial degree of dynamic volatility, which
should be recognized in volcano risk management. A correlation
is already known to exist (Ambraseys and Bilham, 2011) between
earthquake fatalities in a country, and the level of corruption,
as gauged by the Transparency International index. Inevitably,
given the common elements of geohazards and georisks, it should
be expected that politics exert an influence on the death toll from
volcanic activity.

Consider the issuance of an effective public hazard warning.
Commensurate with scientific progress in understanding
volcanoes, the lives saved through volcano warnings and
evacuations around the world should increase progressively.
A counterfactual statistical analysis of the lives-saved metric
would be an interesting complement to the statistical analysis
of casualties. Such analysis would make use of state-of-the-art
methods in the modeling of volcanic flows (e.g., Bayarri et al.,
2015). The human behavioral dimension to the volcano casualty
toll is not recognized by analyzing the raw death tolls. Clearly,
there are numerous socio-economic factors that affect the
death toll from volcanic eruptions. In particular, there is an
extraneous political dimension to hazard warnings which needs
to be appreciated. This applies to hurricanes as well as volcanic
eruptions. Indeed, Dyson (2007) likened the death toll in New
Orleans from Hurricane Katrina in 2005 to that in Pompeii from
Vesuvius in the year 79, with the underprivileged being least
likely to evacuate.
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For the greatest volcanic eruptions like Tambora 1815 and
Krakatau 1883, a very high death toll can only be averted through
maximally effective enforced evacuation procedures. The third
highest volcanic death toll since 1600, that from the eruption
of Mt. Pelée, Martinique, on 8 May 1902, might have been
averted if the safety of citizens in St. Pierre had taken precedence
over an imminent election on 11 May. The coincidence of the
eruption with the week of the election was clearly bad luck.
Counterfactually, there was a high chance that this would not
have happened. In October of the same year, the Santa Maria
volcano in Guatemala erupted, killing more than 8,000 people—
the seventh highest death toll since 1600. At the time, the
government had been preoccupied with a festival generating
propaganda for the president.

Just as with the spread of pandemic disease, ongoing military
conflict erodes the capability of a national government to take
effective safety decisions in controlling a crisis. At the time of
the catastrophic eruption and lahar at Nevado del Ruiz on 13
November 1985, the Colombian government and army were
preoccupied by the guerrilla war from giving due attention
to the mudflow that ultimately killed almost 25,000 of its
citizens. Counterfactually, had the government been able to focus
attention on the natural hazard adversary, rather than fighting on
two fronts, many lives could have been saved.

Counterfactual thinking works both ways; more lives might
have been lost or saved in an eruption than actually were
registered. Human populations are in constant flux. The death
toll will depend crucially on the endangered population at the
time of eruption. Sometimes this will be lower than on average.
The eruption of Mt. St. Helens on 18 May 1980 occurred at 8.32
am on a Sunday morning. At that time, there were few employees
of the Weyerhauser timber company working. With millions of
dollars in timber revenue at stake, local government had been
pressurized by loggers to make the restricted areas smaller than
recommended by the USGS. Counterfactually, the death toll
could have been more than an order of magnitude larger than 57
if the eruption had occurred the following day, when thousands
of Weyerhauser employees would have been at work on Monday
morning. The chance of the triggering earthquake occurring early
on a Sunday morning was only a few percent.

INTERNATIONAL LIBRARY OF ERUPTION

PROBABILITIES

Quantitative disaster risk analysis is founded on scenarios
for the future. The more uncertain the future is, the greater
the number and broader diversity of disaster scenarios that
need to be developed. But even with highly elaborate scenario
analyses, events may yet occur that come as a partial or even
complete surprise. This reflects a cognitive bias limiting human
imagination beyond what has already been experienced. Steps
to correcting this bias can be made by considering not just
what has happened, but also what almost happened, or what
might have happened before. This requires a research agenda in
counterfactual historical disaster analysis, especially periods of
unrest of apparently dormant volcanoes.

As a cause for human surprise at events, Weber (1996)
cites the failure of divergent thinking: due weight needs to
be given to the variety of pasts that might have occurred. He
believes that counterfactual reasoning in the past and in the
future have to be treated as essentially identical operations in
logical terms. Just as there is stochastic modeling of the future,
there should be stochastic modeling of the past. Yet there is
a longstanding anthropocentric tendency to treat the historical
past as fixed and determined. From an objective scientific
perspective what happened is just one of numerous realizations of
a complex stochastic process. The study of natural disasters is an
observational rather than experimental discipline. To fill gaps in
knowledge of rare extreme events, historical disasters can be used
muchmore extensively as an available test laboratory for scenario
discovery (Woo et al., 2017). Whilst seismological progress is
being made in the development of earthquake likelihood models
(e.g., Zechar et al., 2013), volcanic eruption likelihood models
need an expanded database.

Past episodes of volcanic unrest constitute a valuable but
under-investigated and under-utilized database for improving
the reliability of estimates of eruption probability. Caldera
eruptions are notoriously difficult to forecast reliably. The
Santorini unrest of 2011–2012 gave rise to major concerns over
public safety as well as Greek economic loss of tourism. A
Bayesian Belief Network analysis, combining multiple strands of
scientific and observational evidence, was developed (Aspinall
and Woo, 2014) to support UK government response planning.
One of the practical conclusions was that, ideally, such hazard
and risk assessments should be elaborated in detail and
critiqued well before crisis-level unrest develops—not initiated
and implemented within a few hours just when a situation
looks ominous. In particular, careful analysis of all information
is required to determine and represent parameter uncertainties
comprehensively and dependably.

Risk communication is especially challenging for caldera
regions where a significant proportion of the local population
may be unaware of the volcanic risk. Following four strong
magnitude 6 shocks in May 1980, USGS detected dome-like
swelling in the middle of Long Valley Caldera, California.
In response to these signs of renewed volcanic unrest,
USGS intensified their monitoring of the Long Valley area.
Measurements showed that the center of the caldera had risen
almost a foot since the summer of 1979, after decades of stability.
Modeling of the process of new magma rising beneath the
caldera could inform real-time approximate estimates of eruption
probability during the period of active deformation. USGS has
pointed out that unrest can temporarily increase the odds of an
eruption, depending on the nature, intensity, and location of
the unrest. Tracking the hazard variation over time would be
particularly useful for consistent and informed decision-making
on public warnings.

This would apply as well to another caldera, Campi Flegrei,
Italy. Hazard mapping there is actively being researched
(Bevilacqua et al., 2017). A retrospective study of the 1538 Monte
Nuovo eruption (Di Vito et al., 1987) provides historical insight
into the sequence of events leading up to this notable previous
eruption. Twenty shocks were felt at Pozzuoli and Naples on
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the day and in the night before the eruption. Frequent local
earthquakes had in fact been felt in the preceding 2 years. As
with the 1631 eruption of Vesuvius referenced below, it would be
insightful if some approximate estimate of eruption probability
were assigned to this historical eruption in the Naples region.
Specifically, such an exercise would provide a useful quantitative
hazard benchmark for current and future unrest at Campi
Flegrei.

Dealing with unrest at any volcano situated in a densely
populated region is of course much more than a scientific issue, it
is a complex risk management challenge. In this georisk context,
volcanologists should heed the wisdom of the inventor and
philosopher of modern business management, Peter Drucker
(Lavinsky, 2017): “If you can’t measure it, you can’t improve it.”
To make improvements in volcano safety, additional monitoring
is undertaken, and the data should be converted to risk measures.
To measure volcanic risk, a library of probability estimates for
notable past episodes of volcanic unrest needs to be developed to
help calibrate and validate the quantitative procedures for hazard
estimation which may be adopted in future volcanic crises. Many
public and private stakeholders would benefit from a research
program in stochastic modeling of past volcanic crises. Such
stakeholders include civil authorities, infrastructure planners,
and insurers.

Implementation within WOVOdat
The World Organization of Volcano Observatories (WOVO)
oversees a comprehensive global database on volcanic unrest,
WOVOdat, aimed at understanding pre-eruptive processes and
improving eruption forecasts. WOVOdat is presently hosted at
the Earth Observatory of Singapore (www.wovodat.org). A lack
of standardization in data formats and database architectures has
frustrated comparative studies of volcanic unrest, and searches
for analog to any current unrest. WOVOdat translates and
compiles this data into common formats with the goal of
making them freely web-accessible, for reference during volcanic
crises, comparative studies, and basic research on pre-eruptive
processes. WOVOdat is intended for reference during volcanic
crises, comparative studies, basic research on pre-eruption
processes, teaching, and outreach (Newhall et al., 2017).

Another novel application of WOVOdat is to provide data for
a numerical eruption simulator. Airline pilots train and prepare
for dangerous situations by spending time on a numerical
flight simulator. Observatory volcanologists could also train
and prepare for dangerous situations by spending time on a
numerical eruption simulator. The International Air Transport
Association (IATA), which is a major stakeholder in volcano
risk mitigation, would appreciate the purpose and value of such
training. The stochastic modeling of past volcanic crises would
provide much needed input for such a simulator.

The eruption of Eyjafjallajökull, Iceland, in April 2010, caused
massive aviation disruption in northern Europe. Analysis of the
seismic energy released around its big neighbor Katla provided
evidence of a rising intrusive magma body at Godabunga on
the western flank of the volcano, which had erupted in October
1918. Some preliminary analysis of the likelihood of a triggered
eruption of Katla was undertaken at the time to advise the UK

government, but a more elaborate and extensive retrospective
study would be very useful as a comparative benchmark for future
hazard levels.

As observed in the WOVOdat Developer Team (2014),
WOVOdat is to volcanology as epidemiological databases are
to medicine, providing valuable tools for research and crisis
response. Scientists needing to forecast the outcome of a fresh
volcanic crisis will be able to search for analog, find the past
outcomes, and estimate probabilities of how the fresh unrest will
evolve. In order to benchmark these probabilities for current
periods of unrest, it will be instructive to estimate eruption
probabilities for the more significant periods of unrest in the
past. Estimating the likelihood of eruption for past periods
of significant unrest is a preparedness exercise for testing
probabilistic volcano hazard analysis:

• It can help to validate and check hazard analysis procedures.
The methodology for hazard analysis can be tested by
benchmarking against past experience.

• It can improve the analytical tools needed and streamline
the computational procedures to be followed in the future.
Approximate Bayesian computation is one of these other
procedures.

• It can illuminate past volcanic crisis evacuation decisions. The
skill level may be judged using an expected loss consequence
metric, as in meteorology. This involves assigning losses to
the four outcomes: [evacuation, no eruption]; [evacuation,
eruption]; [no evacuation, no eruption] and [no evacuation,
eruption]. The biggest loss occurs when an eruption occurs
but there is no evacuation, and a proportion of the prevailing
population at risk become casualties. Accordingly, a low
eruption probability in this eventuality would incur a high loss
penalty. By contrast, zero loss occurs when no eruption occurs,
and there is no evacuation.

• It can inform future probabilistic volcanic hazard assessments.
The more that can be learned about past probability estimates,
the more confidence can be placed in future probability
estimates.

Comparing Current and Past Eruption

Probabilities
In respect of the last point, suppose that in some future unrest
at a specific volcano, the eruption probability is estimated to be
P. Within the context of population safety, the threshold size
of an eruption is one that would threaten the local population,
and the time window would typically be a few months. A
useful benchmark and sense check of this estimate would be a
quantitative comparison with other previous periods of unrest.
If eruption probabilities have been calculated for past unrests,
this comparison can made more easily and transparently, and
with greater confidence. In the absence of such probabilities, a
comparison with the past would have to be made on a rather
ambiguous, ill-defined, and weakly constrained multi-variate
ranking basis; e.g., the tremor now is stronger than in previous
unrest X, but the CO2 flux is weaker and the tilt is smaller etc..
Such is the indeterminate ambiguity in multi-variate ranking,
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that some plausible ranking process could then be found to
support any eventual decision.

To date, some retrospective studies have been undertaken on
estimating eruption probabilities for actual volcanic disasters.
Sandri et al. (2009) researched the primary literature sources,
including Latin documents, to perform a Bayesian event tree
analysis for the 1631 eruption of Vesuvius, which killed between
3,000 and 6,000 inhabitants. The original historical documents
(Guidoboni, 2008) were especially needed for the reconstruction
of the chronology of events leading up to the eruption. Sandri
et al. (2009) point out that the historical information collected
likely represents a subset of all the phenomena that occurred in
the 1631 pre-eruptive phase. Hence, their results are a lower limit
on the eruption forecasting ability of the software of BET_EF.

The 1631 pre-eruptive phase showed a diverse range of signals
including seismic activity, smoke emissions and ground uplift.
These precursors were able to increase the absolute probability
of eruption up to 10% about a month before the beginning of
the eruption; this probability increased to more than 30%, 7–10
days before the onset of the event, when a distinct unrest phase
was established. This is an important finding, since the latter
probability level counterfactually should have been sufficient
to justify efforts at evacuation, thus mitigating the loss of life.
The fact that these probabilities have already been estimated for
the 1631 eruption will provide a useful benchmark supporting
decision-making during a future volcanic crisis at Vesuvius. In
particular, recognizing the hundreds of thousands who may not
be officially listed as living on the slopes of Vesuvius, protracted
population evacuation times may require that the evacuation
process is instigated well before the eruption probability attains
a high value, as in 1631.

Case Study: Mt. Ontake, Japan
To appreciate how the estimation of comparative eruption
probabilities can assist in operational volcano hazard forecasting,
consider Mt. Ontake in Japan. There was an eruption in late
March 2007, which was preceded by a substantial amount of
precursory activity. In December 2006, there was inflation of
the volcanic edifice, and an increase in shallow seismicity below
the summit. During January 2007, numerous earthquakes were
detected, and low-frequency tremor was observed. It is clear
that, in early 2007, there was a substantial chance of an eruption
occurring, although this was not quantified. An aspiration for
WOVOdat is that estimates of eruption probability such as
this would be assigned, perhaps facilitated by the elicitation of
structured expert judgement (Aspinall and Cooke, 1998).

Fortunately, there were no casualties in the eruption of March
2007. By contrast, at least 58 hikers were killed when Ontake
erupted again at 11.52 a.m. on Saturday 27 September 2014. This
eruption was preceded by little precursory activity. There was
some unusual seismic activity detected on 10-11 September 2014,
but no volcanic tremor or crustal deformation was detected. The
main reason the JMA chose not to raise the volcano warning
level at Ontake in September 2014 was that the number of
low-frequency earthquakes was much fewer than observed with
the March 2007 eruption (Yamaoka et al., 2016). At the time,
the base warning level 1 corresponded to “Normal.” This is

now clarified as “Potential for Increased Activity.” In January
2017, legal proceedings against the JMA were instigated by some
bereaved families arguing that the JMA should have raised the
alert level (Bretton and Aspinall, 2017).

An interesting question that arises in the aftermath of this
worst Japanese volcanic disaster since 1926 is what eruption
probability level might have warranted a more assertive JMA
response than issuing volcano observation information to nearby
local governments. According to the Japan Times (2014),
the problem was that nobody was very interested in such
information. A translation is needed from volcanic unrest
information to individual risk mitigation action. This translation
is provided by economic cost-benefit analysis (Woo, 2014).
Implicit in the mind of any decision-maker is the trade-off
between the cost to the public of volcano access restriction, and
the safety benefit of avoiding fatalities. Access is important: the
need to listen to public access demands was articulated by the
head of research at Japan’s National Research Institute for Earth
Science and Disaster Prevention (Cyranoski, 2014).

Suppose access to the crater on Saturday, 27 September 2014,
had been denied through raising the volcano warning level from
the level of 1 (Normal) to 2 (do not Approach the Crater). This
was the best time of the year to see the autumnal colors on the
sacred mountain. The loss of enjoyment to hikers would have
had a significant economic cost that might have been found by
allowing access only on payment of a substantial entry fee to
cover the expense of emergency rescue services. The previous
several weekends had been rainy, so to deter entry this fee would
have had to be of the order of 100 US dollars, which is the
approximate cost of a day trip at a substitute resort location.
According to Holtz (2013), the Japanese value of a statistical
life for cost-benefit analysis is as high as $10 million. This is
consistent with the equivalent figure in USA (Butry et al., 2007).
The ratio of these amounts is then100/10, 000, 000 = 1/100, 000.

Writing the daily chance of an eruption as PD, and the
likelihood that a hiker on the mountain would be killed by
such an eruption as H, then a change in alert level might have
been warranted if PD > 1/(100, 000 ∗ H). Given the spatial
footprint of the eruption, about one-fifth of the 300 mountain
hikers were killed. Furthermore, the afternoon time window of
hiker exposure to an eruption on 27 September is about one-fifth
of a 24 h day. Accordingly, H ≈ 1/25, so the criterion becomes
PD > 1/4000. Expressed in terms of a reference benchmark time
window of 3 months, this is equivalent to a threshold eruption
probability of about 2.3%. In qualitative language, this threshold
corresponds to the hazard being low.

This shows that the decision to consider changing the volcano
warning level in September 2014 was quite finely balanced. Given
that at least 58 died, the decision had to have been close. If the
actual hazard level were perceived to be well below the threshold,
the criterion for changing the warning level would have been
inadequate. Comparison with the large number of low-frequency
earthquakes preceding the March 2007 eruption was a key factor
in the decision not to raise the warning level. Clearly, additional
decision support would have been valuable.

Had the 3-month eruption probability in lateMarch 2007 been
previously estimated, this would have provided an additional
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informative quantitative benchmark to inform the judgement of
decision-makers in September 2014, when the level of seismic
activity was much lower. A sense of relative risk is helpful as
a guide. A 3-month eruption probability in late March 2007
below 10%would have given authorities greater confidence in not
raising the warning level in September 2014.

A higher figure might still have been compatible with not
raising the warning level, according to the following reasoning.
Maintaining the warning level at “Normal” would correspond
implicitly to assuming that hikers were prepared to pay a higher
personal cost to access the crater on 27 September 2014 to
enjoy the Autumnal foliage. This socio-economic dimension
of volcano risk merits investigation prior to any developing
crisis. Sociological surveys could be undertaken to elicit public
preferences relating to volcano access.

This suggestion applies to all active volcanoes, in USA, New
Zealand etc., popular with hikers, tourists and other visitors.
In situations, such as Ontake on 27 September 2014, where
the hazard level is low, but not negligible, an access fee could
be charged commensurate with the elicited public preferences.
The access fee acts as a “nudge” (Thaler and Sunstein, 2008),

discouraging those who would be quite happy to spend their
time in ways other than mountaineering. The access fee explicitly
captures the value to the individual of spending time on the
volcano. In a cost-benefit analysis, this value to the individual
is weighed against the small chance of becoming a casualty in a
sudden eruption.
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