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Quantitative reconstructions of past vegetation cover commonly require pollen

productivity estimates (PPEs). PPEs are calibrated in extensive and rather cumbersome

surface-sample studies, and are so far only available for selected regions. Moreover,

it may be questioned whether present-day pollen-landcover relationships are valid for

palaeo-situations. We here introduce the ROPES approach that simultaneously derives

PPEs and mean plant abundances from single pollen records. ROPES requires pollen

counts and pollen accumulation rates (PARs, grains cm−2 year−1). Pollen counts are

used to reconstruct plant abundances following the REVEALS approach. The principle

of ROPES is that changes in plant abundance are linearly represented in observed PAR

values. For example, if the PAR of pine doubles, so should the REVEALS reconstructed

abundance of pine. Consequently, if a REVEALS reconstruction is “correct” (i.e., “correct”

PPEs are used) the ratio “PAR over REVEALS” is constant for each taxon along all

samples of a record. With incorrect PPEs, the ratio will instead vary. ROPES starts from

random (likely incorrect) PPEs, but then adjusts them using an optimization algorithm

with the aim to minimize variation in the “PAR over REVEALS” ratio across the record.

ROPES thus simultaneously calculates mean plant abundances and PPEs. We illustrate

the approach with test applications on nine synthetic pollen records. The results show

that good performance of ROPES requires data sets with high underlying variation,

many samples and low noise in the PAR data. ROPES can deliver first landcover

reconstructions in regions for which PPEs are not yet available. The PPEs provided by

ROPES may then allow for further REVEALS-based reconstructions. Similarly, ROPES

can provide insight in pollen productivity during distinct periods of the past such as

the Lateglacial. We see a potential to study spatial and temporal variation in pollen

productivity for example in relation to site parameters, climate and land use. It may

even be possible to detect expansion of non-pollen producing areas in a landscape.

Overall, ROPES will help produce more accurate landcover reconstructions and expand

reconstructions into new study regions and non-analog situations of the past. ROPES is

available within the R package DISQOVER.

Keywords: DISQOVER, landcover reconstruction, palynology, pollen accumulation rates, pollen productivity

estimates, vegetation history
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OBJECTIVES

The field of pollen analysis was established 100 years ago,
following the presentation of first pollen diagrams by Swedish
geologist Lennart von Post (von Post, 1918). Initially used
for stratigraphic purposes, the power of pollen analysis to
reconstruct past landcover was soon recognized—and it has
remained the most powerful tool in that field until today.
Reconstructing past landcover from the pollen record is far from
simple, however. The most obvious limitations arise from the
production bias and the dispersal bias: pollen productivity as
well as pollen dispersal differ among plant taxa. Moreover, pollen
deposition at each site is composed of pollen arriving from the
vicinity of the sample site as well as of pollen arriving from farther
away. Because nearby pollen sources contribute more pollen
than distant ones, the pollen record represents the surrounding
vegetation in a distance weighted manner.

Despite the long history of the field, quantitative methods
to correct for these biases only came into regular use over the
past decade. The most widespread approach is the REVEALS
model (Regional Estimates of VEgetation Abundance from Large
Sites, Sugita, 2007), which aims to translate pollen deposition
from large lakes into regional vegetation composition. REVEALS
is a correction factor approach; it employs pollen productivity
estimates (PPEs) to correct for the production bias and models
of pollen dispersal to correct for the dispersal bias in pollen
data. PPEs so far derive from calibration studies that relate
present day vegetation to modern pollen deposition across a
series of sites. Calibration of such surface sample PPEs is
cumbersome: it requires pollen data from multiple sites, plant
abundances in the pollen source area of each site and a profound
understanding of pollen dispersal and deposition. The surface
sample PPEs are then applied in palaeo-reconstructions under
the assumption that pollen productivity of plant taxa in the
past equals present day productivity. This assumption may often
be violated, however, because pollen productivity is influenced
by climate (Hicks, 1999), stand structure (Matthias et al., 2012;
Feeser and Dörfler, 2014) or land management (Theuerkauf
et al., 2015). Furthermore, for pollen morphotypes that include
numerous taxa, natural or human induced changes in actual
species composition may alter overall pollen productivity. This
effect is most obvious for grasses, because pollen productivity
differs significantly between the various species (Prieto-Baena
et al., 2003). The use of PPEs based on (modern) surface
sample studies therefore introduces a yet unknown error in
REVEALS applications. In addition, because REVEALS produces
proportional abundances, error in the PPE of just one taxon
will introduce error in the reconstructed cover of all taxa in the
record.

Already von Post (1918) recognized that absolute pollen
data, i.e. pollen accumulation rates (PAR), potentially provide
an independent record for each taxon, devoid of such mutual
disturbances. Yet, calculating PARs requires exact chronologies
and so only became feasible with radiocarbon dating in the
1960s. Early applications showed that PAR values can be very
noisy, however; even across a single lake they may differ by
orders of magnitude due to sediment redeposition and focusing

(Davis, 1967). These results raised much skepticism against the
usability of PARs to quantify past abundances so that the field
was largely abandoned, with the exception of treeline studies.
Across treelines, changes in PAR values are large compared to
the noise so that they have been proven a useful tool (Hicks,
2001; Seppä and Hicks, 2006; Theuerkauf and Joosten, 2012).
Giesecke and Fontana (2008) have demonstrated that the noise in
PAR data can be reduced with careful site selection. The question
arises whether and how PAR values can be used in a sensible
and robust way in quantitative vegetation reconstruction. We
here suggest the ROPES approach (REVEALS withOut PpES),
which combines PAR values with the REVEALS model in an
optimization algorithm. The main underlying idea is that not the
PAR values as such, but changes in the PAR values are meaningful
and robust.

VALIDATION

The Principle of ROPES
ROPES derives from two main assumptions: (i) the REVEALS
model allows to translate pollen counts from large lakes into
past regional plant abundances and (ii) for each taxon, absolute
pollen deposition at a site is a linear representation of its distance
weighted abundance (Prentice and Webb, 1986). Hence, changes
in abundance result in similar changes in pollen deposition. For
example, if the abundance of pine around a site has doubled at
some time in the past, then also deposition of pine pollen at
that site has doubled. Because of the production and dispersal
bias in pollen data, such a linear relationship does not exist for
proportional (percentage) pollen data. If the abundance of pine
doubles, the change in percentage values can be very different,
depending on overall vegetation composition. Correction with
REVEALS would reconstruct a doubling in pine abundance
in accordance with a doubling in pollen deposition. However,
correction will only be accurate with appropriate parameters,
including PPEs. We suggest that this relationship can be used to
test the performance of REVEALS applications with PAR data:
each change in abundances reconstructed with REVEALS should
correspond to similar changes in PAR values. Moreover, we can
use this relationship to apply REVEALSwithout predefined PPEs.
To that end we suggest the ROPES approach.

We illustrate the approach using just two samples and two
taxa, A and B (Table S1). For both samples, PAR and percentage
values are known: the PAR value of A increases from 1,000 to
2,000 grains cm−2 year−1 from sample 2 to sample 1, the PAR
value of B decreases from 800 to 600 grains cm−2 year−1. The
pollen percentages of A increase from 55.8 to 76.9% while those
of B decrease from 44.4 to 23.1%.

We do not know pollen productivity (or PPEs) of A and
B—so we apparently cannot apply REVEALS to reconstruct the
actual abundances. Still, from the PAR values we can infer that
the abundance of A has doubled from sample 2 to sample 1,
while the abundance of B declined by 25%. We now argue that
a REVEALS reconstruction should show the same trends in both
taxa: a doubling in A and a 25% decline in B. With that premise,
we can try and find PPEs that produce this pattern. Let us use
B as the reference taxon, i.e., the PPE of B = 1. For taxon A we
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apply REVEALS with different PPEs: 1, 2, 3,. . . , 10. Only with
a PPE of A = 5, REVEALS produces the expected changes: a
doubling in A and a 25% decline in B. Correspondingly, the ratio
of PAR values to reconstructed abundance (PAR over REVEALS,
or PoR ratio) is constant for both taxa, 50 for A and 10 for B,
because reconstructed abundance is linearly represented in the
PAR values. We now know that the PPE of A is 5 (with that of B
set to 1), and that the abundance of taxon A increased from 20%
to 40% while that of B declined from 80 to 60%.

To summarize, ROPES assumes that a REVEALS
reconstruction is correct only if changes in the reconstructed
abundance of each taxon are proportional to changes in the
respective PAR values. To find PPEs that produce such a
reconstruction, ROPES applies an optimization algorithm
that minimizes variation in the PoR ratio between samples
by adjusting initially random PPEs. After optimization, the
PoR ratio will (in absence of noise) be constant along the
record. In the end, ROPES simultaneously calculates mean plant
abundances and PPEs.

Assumptions of ROPES
As the REVEALS model is an integral part of the ROPES
approach, ROPES inherently assumes that the assumptions
underlying the REVEALS model (Sugita, 2007) are valid. ROPES
finds suitable PPEs and plant abundances by minimizing
variation in the PoR ratio. However, this ratio is expected to be
constant only under certain conditions, as we outline below. For
each taxon i, the PoR ratio along a pollen record is calculated
as the PAR value divided by the cover reconstructed with the
REVEALS model:

PoRi =
PARi

Reconstructed abundance of i
(1)

It is a general assumption in palynology that in a basin pollen
deposition of taxon i, here expressed as PAR values, is a function
of absolute pollen productivity of i [Pi], the abundance of i as
a function of distance z [Xi(z)] and the pollen dispersal and
deposition function [gi(z)] integrated over distance Z max starting
from the edge of the basin with radius R (cf. Sugita, 2007):

PARi = Pi ·

Zmax∫

R

Xi (z) · gi (z) · dz (2)

Sugita (2007) argues that for large lakes in a homogeneous
landscape, Xi(z) equals mean regional abundance X of taxon i:

PARi = Pi ·

Zmax∫

R

Xi · gi (z) · dz (3)

In the REVEALS model (Sugita, 2007) the integral over the
dispersal and deposition function gi(z) is expressed as the K
factor:

PARi = Pi · Xi · Ki (4)

REVEALS produces the reconstructed abundances as proportion
of total regional abundances, or the total area A represented in
the pollen record (i.e. the sum of all Xi):

Reconstructed abundance of i =
Xi

A
(5)

In result, the PoR ratio of taxon i is the absolute pollen
productivity of taxon imultiplied with dispersal factor Ki and the
total area A represented in the pollen record:

PoRi = Pi · Ki · A (6)

The final equation shows that the PoR ratio is constant along a
record if three conditions are fulfilled: (i) pollen productivity is
constant over time, (ii) pollen dispersal and deposition processes
remained unchanged, and (iii) the area represented in the pollen
record is stable. We illustrate and discuss how changes in pollen
productivity and in the total area affect the PoR ratio using a
simple model (Figure 1). The model is based on a vegetation
scenario with 3 taxa and 20 time steps. Taxon A is dominant
in the younger, taxon C in the middle and taxon B in the older
section. To create a pollen record, taxon abundances in each time
step are translated into pollen deposition (=PAR) by multiplying
with pollen productivity, by default 5 for A, 1 for B and 0.2 for
C. Then pollen proportions are calculated and translated into
reconstructed plant abundances using the REVEALS model. For
REVEALS modeling we use PPEs that equal the default pollen
productivities (A = 5, B = 1, C = 0.2), except for example 1.
Dispersal factor K is assumed to be 1 for all taxa. Finally, PoR
ratios are calculated by dividing PAR values of A, B, and C by the
reconstructed abundances.

A spreadsheet file containing raw data and calculations of all
following examples is available as Supplementary Data.

The PoR Ratio With a Wrong PPE
The first experiment shows an error in one of the PPEs used in
the reconstruction; this is the type of error ROPES is designed to
remove. In the example, abundances are reconstructed with an
incorrect PPE of 0.5 instead of the correct PPE of 0.2 for taxon
C. With this one PPE set too high, REVEALS produces a too
low cover for taxon C and consequently a too high cover for A
and B. Because the PAR values remain unchanged, all PoR ratios
are affected. For C, the ratio is higher than it should be because
the REVEALS reconstructed cover is too low in all samples. The
effect is high in the top and bottom sections—where C is rare—
and lower in the middle section—where C is abundant. If C is
rare, the wrong PPE introduces a small absolute but high relative
error in the reconstruction: in the top and bottom section the true
cover is 5%, whereas the REVEALS reconstructed cover is only
2%, i.e., 60% lower. If C is abundant, the wrong PPE introduces a
large absolute but a smaller relative error: in the middle section,
the true cover is 75% while the REVEALS reconstructed cover
is 50%, i.e., only 33% lower. For A and B, the PoR ratios are
too low because total REVEALS reconstructed abundance is
100% and if the reconstructed abundance of C is too low, that
of the two other taxa is necessarily too high. The aberration
in the PoR ratios of A and B is highest where C is abundant
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FIGURE 1 | Behavior of the PAR over REVEALS (PoR) ratio when one PPE is wrong (example 1), under changing pollen productivity (example 2 and 3) and under

changing total regional plant abundances (example 4). The model includes three taxa A, B, and C over 20 time steps (y-axis): Taxon A (green) is dominant in the top

part, B (orange) in the lower part and C (blue) in the middle part of the record. Default pollen productivity is 5 for A, 1 for B and 0.2 for C. Line graphs to the left depict

(Continued)
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FIGURE 1 | actual pollen productivity in each example. Graphs in the middle depict true abundances (shading) and abundances reconstructed with REVEALS (lines).

Graphs to the right depict the PoR ratio. In example 1, the PPE of C used in the REVEALS reconstruction is set at 0.5 instead of 0.2. As a result, the cover of C is

underestimated and consequently that of A and B overestimated. The PoR ratio is lower for all taxa where C is abundant. In example 2, pollen productivity of A is

reduced from 5 to 2 in the upper 7 samples. REVEALS is still applied with a PPE of 5. Hence, the cover of A is underestimated and consequently that of B and C

overestimated. The PoR ratio is reduced for all three taxa. In example 3, the pollen productivity of C is increased from 0.2 to 0.5 in the 7 lower samples, with opposite

effects to example 2. In example 4, the sum of all abundances is reduced from 100 to 70% in samples 10-12. REVEALS does not reflect this change in total

abundances. Hence the reconstructed cover of all three taxa is too high in the central part and PoR values are reduced correspondingly. Note that if the correct PPEs

and total abundances are used, reconstructions fit true abundances and PoR ratios are always the same (samples 20-8 in example 2, 13-1 in example 3, and 20-15

plus 7-1 in example 3). As the K-factor is equal for all taxa the ratio between the PoR values equals the ratio between the PPEs.

because the absolute error in reconstructed cover is highest here.
So, the use of wrong PPEs introduces variations in the PoR
ratios of all taxa and these variations always run parallel for all
taxa.

Variations in Pollen Productivity P
In example 2 (Figure 1), pollen productivity of taxonA is lowered
from 5 to 2 in the upper 7 samples, so that its PAR values are 2.5
times lower than before. REVEALS is still applied with a PPE of 5.
Hence, in the upper 7 samples the actual pollen productivity of A
is lower than the applied PPE, so that the reconstructed cover of
A is too low and consequently that of B and C too high. Now we
observe that the PoR ratio of all three taxa is lower in the upper 7
samples. For B and C the explanation is simple; the reconstructed
abundance is higher while PARs remain unchanged. For A the
explanation is less obvious as both PAR values and reconstructed
abundances are lower. However, the strong decline in PAR values
is much suppressed in pollen proportions, which always add up to
100%, so that the decline is underestimated in the reconstructed
abundances.

In example 3, pollen productivity of taxon C is elevated from
0.2 to 0.5 in the lower 7 samples (13–20); REVEALS is still
applied with the default PPE of 0.2. Hence, in sample 13–20 actual
pollen productivity is higher than the applied PPE, so that the
reconstructed abundance of C is too high and consequently that
of A and B too low. We observe that the PoR ratio of all three
taxa is higher in sample 13–20. Again, for A and B the ratio is
elevated simply because their reconstructed abundance is lower
while PARs remain unchanged. For C, the strong increase in
PARs is suppressed in the pollen proportions, so that the increase
is also underestimated in the reconstructed abundances. So, a
temporarily lower pollen productivity of one taxon causes lower
PoR ratios for all taxa and vice versa. These variations always run
parallel for all taxa.

Variations in the Total Area A
The PoR ratio is expected to be constant only if the sum of all
mean regional abundances (A in Equation 6) is constant. This
sum may change for example when sea level rise reduces the
area of pollen producing land or when humans create bareland.
Furthermore, the sum of regional abundances only reflects taxa
that are represented in the pollen record, i.e., it may change
when plants that are not or poorly represented in the pollen
record expand or decline, e.g. immature trees or potato. In our
example 4, the total cover of the three taxa is 100% in the top
and bottom section but only 70% in sample 10-12. The REVEALS
reconstructed abundance necessarily sums up to 100% in all

samples and does not reflect changes in total plant abundance
in the middle section. PAR values do reflect the change and are
lower, so that the PoR ratio of all taxa is lower as well. So, if the
sum of regional abundances declines, the PoR ratio of all taxawill
decline as well, and vice versa.

Variations in the Dispersal and Deposition Factor K
The PoR ratio will also be influenced by the processes of pollen
dispersal and finally deposition in a lake as expressed by the K
factor (cf. Equation 6).Whether and how atmospheric circulation
has changed in the past, and how such changes may have
altered pollen dispersal, is poorly understood. Pollen deposition
in a large lake may change when lake size and morphometry
change. ROPES is limitedly suited for records affected by such
changes.

In addition to the above three modes of variation (in P, A, and
K), error in the PAR values will introduce short-lived fluctuations
in the PoR ratio around a mean value. Error in the PAR values is
mainly related to dating uncertainties and error in exotic marker
counts. In the following tests we will explore how error in the
PAR values affects ROPES by adding noise to the PAR data in our
tests.

EXAMPLE APPLICATIONS

Methods
Implementation of ROPES
We have implemented ROPES in the R environment for
statistical computing (R Core Team, 2016). The core of ROPES
is to minimize variation in the PoR ratio by adjusting initially
random PPEs for each taxon. For optimization we use the
“DEoptim” function (Ardia et al., 2011a,b, 2015; Mullen et al.,
2011), an algorithm suited to find global optima. Before
optimization, first the dispersal- and deposition factor K is
calculated for each taxon. K is a distance-weighted representation
of the amount of pollen arriving from beyond the basin radius.
Mathematically, K is expressed as the pollen deposition of a taxon
in a lake or peatland with a given diameter divided by deposition
in a basin with zero diameter. K depends on the fall speed of a
pollen taxon and on the dispersal model used for simulations.
In ROPES, K is calculated with the “DispersalFaktorK” function
from the DISQOVER package, which by default uses the state-of-
the-art Lagrangian stochastic dispersal model (Theuerkauf et al.,
2016).

Optimization starts with assigning a random PPE between
0.01 and 20 to each taxon. DEoptim then calls a target function,
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which in three steps calculates the single target value that is
to be optimized. It first calculates vegetation composition for
each pollen sample using the “REVEALSinR” function from
the DISQOVER package, with the respective K factors and the
initially random PPEs. It then calculates the PoR ratio for each
taxon and sample by dividing PAR values by the reconstructed
abundances. For each taxon, the PoR ratio is normalized through
division by the average PoR ratio over all samples. Finally, the
target function calculates and returns overall variance in the
PoR ratios. Overall variance is expressed as the sum of variance
over all taxa, calculated as standard deviation of the PoR ratio
divided by the mean PoR ratio over all samples. The optimization
algorithm iteratively optimizes PPEs to arrive at the lowest
possible overall variance.

Synthetic Data
To test and illustrate the potentials of ROPES, we use synthetic
datasets based on virtual landcover and associated pollen. For
these synthetic datasets the true relationship between pollen and
vegetation is known so that the performance of the ROPES
reconstruction tool can be evaluated. We wanted to create
realistic datasets that show similar pollen composition and
changes as real pollen records. For that reason, time series of
virtual landcover were not created randomly but constructed
on the basis of real pollen datasets from three lakes in NE-
Germany (Gadowsee GAD, Stinthorst STI and Tiefer See TSK).
To that end, we translated these empiric pollen data into
vegetation composition using the REVEALSinR function from
the R package DISQOVER with standard settings for pollen
dispersal and PPEs from the PPE.MV 2015 data set (PPEs
derived from sites in NE Germany, Theuerkauf et al., 2016).
For REVEALS modeling, only the 19 most common taxa were
selected (Table 1). We adopted these reconstructions as the time
series of virtual landcover.

In step two, these time series were used to derive synthetic
pollen records. Pollen accumulation rates (PAR) were calculated
by multiplying virtual abundance of each taxon by its respective
(synthetic) PPE (Table 1), K factor and an arbitrary scaling factor
of 100 so that the resulting values are of similar magnitude as
empiric PARs. Based on these synthetic PAR data, pollen counts
were calculated assuming a pollen sum of 1,000. These synthetic
pollen counts deviate from the empiric counts they are based on,
but do show similar trends and complexity. Both synthetic PARs
and pollen counts were then used in the ROPES tests.

We created 3 synthetic data sets: GAD, STI, and TSK
(Tables 1, 2). Experiments with these data sets focus on data
complexity and error in pollen data. To explore the influence of
sample size on ROPES, we use three versions of each data set
with 60, 130, and 250 pollen samples, respectively. The original
number of samples for the GAD record was 60, for STI 130
and for TSK 250. Additional versions of the three records were
created by either deleting or adding samples in the original data
sets. PAR values for new samples were calculated as the mean of
the two adjoining samples. ROPES was thus tested on a total of
9 data sets (Table 2). To underline the hypothetical nature of our
reconstructions, pollen and plant taxa are written in normal font
throughout the manuscript.

TABLE 1 | PPEs and fall speed of pollen used to prepare synthetic pollen data

sets.

Taxon Fallspeed m s−1 PPE

Alnus 0.021 15

Betula 0.024 10

Carpinus 0.042 4

Corylus 0.025 2

Fagus 0.057 3

Fraxinus 0.022 1.5

Picea 0.056 1

Pinus 0.031 6

Quercus 0.035 11

Tilia 0.032 3

Ulmus 0.032 3

Artemisia 0.025 4

Calluna 0.038 0.8

Cerealia excl. Secale 0.060 0.2

Cyperaceae 0.035 0.9

Gramineae 0.035 1

Plantago lanceolata 0.029 1.5

Rumex acetosella 0.018 3

Secale 0.060 1

TABLE 2 | Main parameters of the pollen data sets.

Data set GAD STI TSK

Samples in original version 60 130 250

Samples in additional versions 130, 250 60, 250 60, 130

Error in Pollen Data
To mimic uncertainty in pollen data, noise was added in pollen
counts and PARs. Noise in the counts is calculated by randomly
drawing pollen samples with 1,000 pollen grains based on the
composition of the synthetic pollen deposition. Samples were
drawn with the R-function “rmultinom,” where probabilities
“prob” equal pollen proportions in the synthetic data and sample
“size” represents the pollen sum (=1000). Noise in PARs is in
addition related to uncertainty in the exotic marker counts and
error in sample accumulation rates—both affect all taxa in a
sample in a similar way. We thus added a random component
to the PAR value of all taxa in a sample. This component is
calculated as the actual PAR value times a random value drawn
from a normal distribution, centered around 0, and divided by
a fixed factor. For each data set we tested two variants, one
with division factor 10 to mimic intermediate error and one
with division factor 5 to mimic large error in PAR data. In
this way, the noise is similar to noise observed in real pollen
data sets, as illustrated by a comparison with data from the
partly laminated Lake Tiefer See (Dräger et al., 2017, Figure 2).
For this quick comparison, we calculated sample to sample
variation in the pollen data sets as the absolute difference in
PAR between two consecutive samples divided by the PAR of the
first of those samples. It should be noted that this calculation
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FIGURE 2 | Comparison of sample-to-sample variation (as an indicator of

noise) in empiric and synthetic PAR records. Sample-to-sample variation is

calculated as the relative difference between two consecutive PAR values,

here for Alnus. The values, plotted as probability density, show that noise in the

empiric PAR record from Lake Tiefer See is somewhat larger than in the

derived synthetic PAR record with intermediate error added (TSK with

rnom/10) and somewhat smaller than in the derived PAR record with large

error added (TSK with rnom/5).

actually conflates signal and noise and thus overestimates true
noise.

Model Runs and Evaluation
We applied ROPES on the 9 synthetic data sets with 4 types
of error in the pollen data, making a total of 36 experiments
(Figure 3). For each experiment, 100 model runs were conducted
with newly drawn random error added in each run. To
guarantee that global optima are found, convergence parameters
of DEoptim are set to high sensitivity: reltol to 0.00001 and steptol
to 500 (see Ardia et al., 2015). To evaluate model performance
we assess accuracy of the reconstructed plant cover as well as of
the ROPES-based PPEs. To asses accuracy of reconstructed plant
cover, first the absolute difference is calculated for each pair of
the original (synthetic) and the reconstructed plant cover (i.e., 3
records times 19 taxa times 60, 130, and 250 pairs). To represent
the proportion of the landscape for which the reconstruction is
wrong for a given pollen sample, the difference is summed up
over all taxa and divided by two. Division by 2 corrects for the
fact that values are expressed as percentages and any error in the
cover of one taxon is mirrored by an equally large opposite error
in other taxa, resulting in a maximum possible absolute error of
200% (cf. Theuerkauf and Couwenberg, 2017). Finally, the mean

error over all samples in a record is calculated to represent the
inaccuracy of a givenmodel run. To asses accuracy of the ROPES-
based PPEs we compare the median PPE of the 100 model runs
with the original PPEs of Table 1.

Real World Example
As a first real world example, we apply ROPES with original
pollen data from Lake Tiefer See (cf. Dräger et al., 2017). Also
here analysis is restricted to the 19 most common taxa. The range
of potential PPEs is again set to 0.01–20. ROPES is applied with
the same settings as before, no additional error was added to the
pollen data.

Results and Interpretation
Reconstructed Landcover
With no error added in pollen data, ROPES produces near-
perfect results in all 9 synthetic data sets. Error in the
reconstructed landcover amounts to around 1%, i.e., the
reconstruction is correct for 99% of the synthetic study area.
With ideal data ROPES is evidently well able to reconstruct past
landcover with short as well as long pollen records. With noise
added to the pollen counts, error in the reconstructed landcover
amounts to ∼5% in the TSK data sets and to ∼10% in the GAD
and STI data sets. ROPES performs somewhat better with the
longer records, but overall the number of samples has limited
effect on the results if noise is added to the counts only.

Adding noise also in the PAR data further increases the error
in the reconstruction. With intermediate noise, error in the
reconstructed landcover increases to 9–19%. The error is smallest
in the long STI and TSK records (STI130, STI250, TSK130,
and TSK250), intermediate in STI60 and TSK60, and highest in
GAD130 and GAD60. With large noise in the PAR data, error
ranges from 12 to 29%. Again, performance is best with the long
STI and TSK records whereas the largest error occurs with the
short records GAD60 and GAD130. Still, also with large noise
added, ROPES in most cases correctly reconstructs landcover for
more than 75% of the landscape.

Pollen Productivities
Besides landcover, ROPES also reconstructs PPEs for the taxa
involved. With no noise in the pollen data, the median PPE over
100 model runs is mostly close to the true PPE in the experiments
with GAD and TSK records. Experiments with the STI record
for some taxa produce too low (Plantago lanceolata, Secale) or
too high PPEs (Artemisia, Cerealia, Figure 4). With noise in the
pollen data, the median PPEs deviate more from true pollen
productivity. The error remains lowest with the TSK records,
where—with full noise added to the data—for most taxa (e.g.,
Carpinus, Fagus, Calluna, and Secale) the reconstructed PPEs
deviate little (<20%) from true pollen productivity. The largest
mismatch with TSK is for Fraxinus, for which PPEs with full
noise are ∼30% too low. Error tends to be higher with the GAD
records, where with GAD60 and full noise the overall highest
mismatch occurs for the PPE of Tilia (20 instead of 3). For
Artemisia, Rumex and Ulmus, PPEs derived from noisy or short
GAD records are less than half the original pollen productivity.
In all other cases, PPEs are within 50–200% of the original
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FIGURE 3 | Inaccuracy of ROPES reconstructed landcover expressed as mean proportion of the landscape for which the reconstruction is wrong. Accuracy is

assessed for 9 synthetic data sets representing 3 sites (GAD, STI, and TSK) each with 3 sizes (60, 130, and 250 samples). Four different types of error are applied (no

error, error in pollen counts, error in counts plus intermediate noise in PAR values, and error in counts plus large noise in PAR values).

value. With noise added to the data, STI produces PPEs that are
outside this error range for Carpinus, Fagus Artemisia, Plantago
lanceolata, Rumex, and Secale.

With full noise in the data, a number of single ROPES
runs for some taxa approximate PPEs at the pre-defined upper
margin of 20 (see Supplementary Data). This mainly applies to
Alnus, Betula and Quercus, i.e., the taxa with highest pollen
productivity, and only rarely for other taxa.

We have outlined before that ROPES requires sufficient
variation and number of samples in the pollen record. This raises
the question whether taxa with little variation (including rare
taxa) hamper the reconstruction of taxa with sufficient variation.
To answer this question we explore how error in the PPE of a
taxon relates to its range in pollen percentage values and number
of samples (Figure 5). With no noise in the pollen data, error
in the PPEs is mostly small (<10%), except for some taxa from
the STI record which show very little variation along the record.
With noise in pollen counts error in the PPEs is clearly higher,
increasing slightly with intermediate and large noise added in the
PAR data. As before, high errors (>40%) are restricted to taxa
with little variation through the pollen record, i.e. taxa that are
either always rare or occur with very stable values. Errors >40%
rarely occur when total range in pollen values times number of
samples in a record is larger than 2,000. We conclude that short,
noisy data sets are still suited to produce suitable PPEs for taxa
that cover a large range in pollen percentage data. As a tentative
rule of thumb, PPEs tend to be reliable when the range in pollen
values multiplied by the number of samples is larger than 2,000.

Application of ROPES with pollen data from Lake Tiefer
See produced a set of palaeo-PPEs, i.e., PPEs based on a long
Holocene pollen record, which we compare with PPEs based

on surface studies (Figure 6). Both data sets show high PPEs
for most tree taxa, in particular Alnus, Betula, Corylus, and
Quercus, and low PPEs for most herb taxa. Despite the overall
similarities, we also observe some differences. For Alnus, Betula,
Corylus, Artemisia and Rumex acetosella, PPEs produced with
ROPES are clearly lower than those from the surface sample
record, for Cerealia excl. Secale and Gramineae, PPEs produced
with ROPES are clearly higher.

ADVANTAGES AND LIMITATIONS

Our tests have shown that ROPES is indeed able to reconstruct
landcover and PPEs. The performance differs among the 36
experiments, mainly in response to sample size, variance along
the record and noise in the pollen data. ROPES performs near
perfect in the experiments with no noise in the pollen data, which
demonstrates the validity of the approach. Particularly noise in
the PAR data introduces error in the reconstructions of landcover
and PPEs. Error is larger the shorter and less diverse the record.
Increasing sample size in almost all cases reduces error in the
reconstruction both in terms of landcover and PPEs. It is likely
that performance will further improve with records longer than
those tested here. Still, also short records are suited to estimate
the pollen productivity at least for taxa with a wide range of
percentage values along the record.

Variation along the pollen record is essential for the
functioning of ROPES: with no variation in the pollen record
there is no variation in the PoR ratio with any set of PPEs so that
ROPES cannot approach an optimal solution. In turn, the larger
the variation in the pollen record, the better ROPES performs.
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FIGURE 4 | Median of PPEs produced in each of the 36 experiments. The colors represent the sample size, shades represent the noise added in the pollen data.

Dotted lines show original pollen productivity of each taxon. Note the scaling of the y-axes. For full results see Supplementary Material.
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FIGURE 5 | Relative PPE error (y-axis) plotted over the range of values of the respective taxon multiplied by the number of samples (x-axis). PPE error is calculated as

the absolute difference between the median from 100 model runs and true pollen productivity divided by true pollen productivity (×100%). The colors denote the

pollen record, shade its size.

We find that this relationship applies to each separate taxon in a
record, i.e., ROPES performs better for the more variable taxa.
The STI record is dominated by Pinus in all samples, leaving
low proportional abundance and little variation for the other
taxa. Correspondingly, ROPES performs well in reconstructing
cover and pollen productivity of Pinus but not of the rare taxa.
The TSK record is more diverse; most taxa are abundant at least
in some sections of the record. ROPES therefore performs well
in reconstructing PPEs and cover of most taxa. Still, the overall
landcover reconstruction for STI is as good as or even better than
that for TSK because of the good result for Pinus as the dominant
taxon. So, if the aim is to produce pollen productivity of as many
taxa as possible, diverse data sets with large variations in all
taxa are needed. If the focus is on the landcover reconstructions
itself, less diverse data sets dominated by one or few taxa are still
suitable.

As a tentative rule of thumb we suggest that PPEs can be
reconstructed for taxa for which the amplitude in the pollen
percentage data multiplied by the number of samples is larger

than 2,000. For an in depth evaluation of a data set we suggest
to apply sensitivity tests similar to those presented here. Such an
evaluation, in which synthetic data are tested that are based on an
actual pollen record, can show the specific capabilities and limits
of a particular data set.

Future Applications-Potentials and Limits
ROPES does not depend on pre-defined PPEs—it thus has the
potential to expand quantitative landcover reconstruction into
areas for which such calibration is not yet available or not feasible.
For these areas, ROPES would then not only provide initial
landcover reconstructions but also PPEs. Each successful ROPES
application may thus trigger follow-up reconstructions with
existing approaches, such as REVEALS, that employ percentage
pollen data and PPEs.

Although often disregarded, application of quantitative
reconstructions is so far limited to areas and periods for
which the available correction factors are suited. PPEs for
example are derived and only applicable in a specific space-time.
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FIGURE 6 | PPEs produced with ROPES from the Lake Tiefer See record (TSK, 250 samples) compared with the PPE.MV 2015 set of PPEs from Theuerkauf et al.

(2016).

Consequently, the common use of mean PPEs amalgamated
across large areas that show considerable differences in land use,
soil types, slope and climate (Broström et al., 2008; Mazier et al.,
2012) implies additional error in the reconstruction. Moreover,
PPEs derived from modern pollen-landcover relationships are
applied to ancient situations, although pollen productivity has
changed in the past (Waller et al., 2012; Feeser and Dörfler,
2014; Theuerkauf et al., 2015). ROPES may help reduce these
limitations and provide targeted reconstructions for non-analog
situations, e.g., of Lateglacial vegetation of Europe. In this way,
ROPES may contribute to a better understanding of vegetation
dynamics in times of climate change. It probably can help
explore whether and how pollen productivity of plant taxa
responds to changes in climate, species composition or land
management. In ROPES, periods of changing pollen productivity
are expressed as changes in the PoR ratio. To fully explore
the actual changes in pollen productivity, ROPES has to be
applied separately on those sections of the record that were
identified as distinct in the first round. The limitation to this
approach is that each section is required to retain sufficient
variation, i.e., it has to have a minimum length. Approaches to
optimize between section length and accuracy of the resulting
PPEs still need to be developed. Changes in pollen productivity
will likely be observable over millennial, rather than centennial
time scales.

A problem so far neglected in quantitative vegetation
reconstruction is the presence of non-pollen producing areas.
Quantitative approaches such as REVEALS assume that the
taxa involved cover a fixed proportion of the surrounding area
(commonly assumed to be 100%). In reality, some proportion
of this area may be barren, open water, or covered by taxa that
are virtually not represented in the pollen record, e.g., crops
such as potato or trees such as Acer. ROPES has the potential to

detect such effects and actually reconstruct non-pollen producing
areas. The tests presented in this paper do not address the effect,
but first attempts at reconstructing non-pollen producing areas
have shown promising results. Approaches to proper weighing
between correcting for errors in pollen productivity and total
land cover are currently under development.

Our tests show that ROPES requires pollen records with
limited noise in the PAR data. We already identified a number of
suitable records, and are optimistic that many more exist. With
the option to use PAR data in ROPES, we encourage analysts
to estimate PARs as precisely as possible. To arrive at accurate
pollen concentrations, sample volumes should be well defined
and a sufficient number of exotic marker grains should be added
to each sample. As the exotic marker grains serve as the basis for
all further calculations, counts should amount to at least several
hundred exotic grains to reduce statistical noise in PAR values.
To guarantee that such an amount of exotic markers is counted it
may be necessary to add multiple marker tablets to each sample.
Care should be taken to still count at least as many “pollensum”-
pollen, so as not to burden the REVEALS reconstructions with
too much noise.

The next step, from pollen concentrations to PARs, requires
sediment accumulation rates. Annually laminated sediments
allow for exact dating and therefore such records appear most
suited for ROPES. In non-laminated records accumulation rates
can only be approximated from age-depth models. Giesecke
and Fontana (2008) have shown that PARs with little noise
can indeed be estimated in non-laminated lakes. We assume
that also large peatlands may be suited to produce robust
PAR values. In any case, the pollen dispersal model underlying
ROPES assumes atmospheric pollen deposition exclusively. As
implemented, ROPES is therefore thus far only applicable to
closed lake basins and peat deposits.
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The first application of ROPES on the empiric pollen record
from Lake Tiefer See shows an overall good match between
surface sample PPEs and PPEs produced with ROPES, which
supports the general validity of the ROPES approach. There
may be various reasons for the observed differences in the
PPEs.

For example, the ROPES PPE of Corylus is lower than its
surface sample PPE. The surface sample PPE is likely too high
because Corylus is underrepresented in the forest inventories
underlying surface sample PPEs (Theuerkauf et al., 2013).
Similarly, the cover of herbs such as Artemisia and Rumex
has likely been underestimated in surface sample studies, again
resulting in too high PPEs. A higher palaeo-PPE for Cerealia
excl. Secale could be explained by a focus on different species or
cultivars within this group in the past, which were better reflected
in the pollen record. The surface sample PPE of grasses is
likely too low because pollen production in grasses is suppressed
under present-day land management (Theuerkauf et al., 2015).
A comprehensive discussion on PPEs produced with ROPES
requires a more in depth analysis of further data sets.

CONCLUDING REMARKS

Existing methods of quantitative vegetation reconstruction
correct for the productivity bias in pollen data with correction
factors such as PPEs that are calibrated in the present day cultural
landscape. This approach is not only laborious and far from
simple, it also introduces unknown error in the reconstruction of
past vegetation because PPEs calibrated in the modern cultural
landscape may not be representative for the past. ROPES corrects
for the productivity bias using pollen data only and without
calibration. We see three major benefits for future landcover
reconstructions.

First, ROPES may provide a shortcut to landcover
reconstructions in new study regions if at least one site
with suitable PAR and percentage pollen data is available. ROPES
can deliver a landcover reconstruction for that site, and the
PPEs needed to produce landcover reconstructions from further
records in the region that are not suited for ROPES using other
quantitative methods.

Secondly, ROPES can help improve and sharpen landcover
reconstructions. The ability to estimate PPEs from single sites
may allow exploring spatial patterns in pollen productivity within
and between regions, e.g., in relation to variations in climate,
soils and species composition. A better understanding of these
interactions will enable more detailed reconstructions.

Thirdly, ROPES allows for landcover reconstructions for
periods with non-analog climate and landcover, like the
Lateglacial. Landcover reconstructions have been problematic for
such periods because PPEs calibrated in the modern world are
obviously unsuited.

Overall, our first tests suggest that ROPES will help shift
away from PPEs as static parameters toward PPEs that are
reconstructed from the (palaeo-)pollen record. ROPES thus adds
past pollen productivity as an observable variable to palaeo-
ecology. The approach has the potential to significantly improve

landcover reconstructions and broaden their application, while
adding additional insights.
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Table S1 | Principle of the ROPES approach illustrated using a record with just

two samples and two taxa A and B. For both samples, PAR values and pollen

counts (shown as percentage values) are known (left part of the table). REVEALS

is applied on the pollen counts with the PPE of taxon A set to 1,2,3, …,10. B is

the reference taxon with a PPE of 1. The right part of the table shows relative

abundance reconstructed in each of these 10 REVEALS applications and the PoR

ratio, i.e., the ratio of PAR value over REVEALS reconstructed cover. Only if the

PPE of A = 5, the change in the reconstructed abundance of A and B (expressed

as the value of sample 1 divided by sample 2 × 100%) is the same as the change

in PAR values. As a result the PoR ratio is the same for both samples.

The synthetic and empiric pollen data used in the ROPES
example applications are available for download from https://doi.
pangaea.de/10.1594/PANGAEA.886900.

The R-code for ROPES is available from https://github.com/
MartinTheuerkauf/ROPES.
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