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A cointegrated relationship has been identified between the January sea level pressure

anomaly at the climatological location of the North Pacific High (NPH) and seasonal

precipitation throughout California (Costa-Cabral et al., 2016). This cointegration can be

used for forecasting precipitation or snowpack indices at California locations. Here we

develop a cointegration model, termed Vector Error Correcting Model (VECM), for issuing

a forecast, in early February, for April 1 snow water content (SWC) at snow stations

in the Eastern Sierra Nevada mountain range of California. We additionally develop a

categorical model for forecasting the April 1 SWC category (dry, normal, or wet) based

on the VECM forecast. Snowmelt from this region flows into the Owens River and serves

as a major source of freshwater for the Los Angeles metropolitan area. The VECM relies

on the cointegration between three variables: the January NPH sea level pressure, the

February 1 SWC, and the April 1 SWC. Forecasts based on this VECMmodel have higher

measures of skill compared to linear correlation methods. The statistical tool presented

can be applied to other California watersheds and may provide reservoir operators the

needed insight for making storage decisions in early February.

Keywords: cointegration, forecasting, North Pacific High, Owens valley, VECM models, categorical models

INTRODUCTION

Precipitation in the Sierra Nevada mountain ranges of California occurs primarily in the winter
months, in the form of snow and rain (Pandey et al., 1999). Meltwaters from accumulated
snow, modulated by surface water reservoirs, serve as a source of water supply over the summer
months. Snow accumulation over the winter months is carefully tracked to provide an estimate of
future snowmelt volumes in the spring and summer months. Typically, reservoirs are operated to
maintain sufficient flood storage capacity for the anticipated snowmelt and rain events later in the
wet season. Excess runoff is released to maintain flood storage capacity. Advance knowledge of total
precipitation during a wet season can allow adjustments in the flood storage capacity to maximize
the water stored in the reservoirs.

Here we develop a model, to be used in early February of each year, for forecasting the snow
water content (SWC) 2 months later, on April 1, at key Eastern Sierra snow stations on Owens
Valley tributary watersheds. Freshwater from this watershed, transported more than 300 miles via
aqueducts, is one of the most important water sources for over 4 million people in the Los Angeles
metropolitan area (Costa-Cabral et al., 2012). Runoff is managed through reservoirs to support Los
Angeles’ water supply as well as in-valley uses.

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2018.00054
http://crossmark.crossref.org/dialog/?doi=10.3389/feart.2018.00054&domain=pdf&date_stamp=2018-05-15
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:mcabral@nhcweb.com
https://doi.org/10.3389/feart.2018.00054
https://www.frontiersin.org/articles/10.3389/feart.2018.00054/full
http://loop.frontiersin.org/people/531552/overview
http://loop.frontiersin.org/people/499473/overview


Rath and Costa-Cabral Snowpack Forecasting Model Using Cointegration

The impetus for this work was the finding by Costa-Cabral
et al. (2016) that seasonal precipitation totals in California and
other parts of the southwestern United States have a considerably
strong relationship with the high-pressure center off the coast of
California known as the North Pacific High (NPH). Large-scale
climatic indices have been used as predictors of precipitation
totals and extremes in many studies and are used operationally in
weather forecasts to circumvent the difficulty in obtaining robust
dynamical simulations of precipitation.

Establishing a statistical association between observed large-
scale climate patterns and precipitation to come in the months
ahead is an approach that has been used at many world locations
for forecasting precipitation and anticipating water resources
availability (for example, Fernando et al., 2015). Such statistical
associations have also been used extensively to obtain forecasts
of future precipitation based on simulated forecasts of the large-
scale climate patterns. Future projections of precipitation have
also been obtained on the basis of such statistical associations
with large-scale climate patterns (for example, Kharin et al., 2013;
Costa-Cabral et al., 2016).

The El Niño-Southern Oscillation (ENSO) phenomenon
has been identified as a major driver of climate variability
worldwide, and arises from the coupled ocean-atmosphere
system of the Pacific basin. Several studies have examined
the influence of ENSO on precipitation and temperature over
North America, and have documented associations between the
strength and phase of ENSO and precipitation frequency and
intensity over different regions—particularly the southwestern
United States—due to ENSO’s influence on the East Asian jet
stream position. Thus, California has an increased likelihood of
storms, precipitation extremes, and precipitation totals under El
Niño conditions (see for example, Chikamoto et al., 2015).

Roughly half the time, however, ENSO is in a neutral
phase. Such neutral conditions are not an indication of average
meteorology over California. The recent multi-year drought in
California provides an example of an extreme meteorological
drought occurring at a time when both ENSO and the
Pacific decadal oscillation (PDO; Mantua et al., 1997; Zhang
et al., 1997) are in near-neutral states. In part due to the
oft-neutral state of ENSO, the association of ENSO indices
(including the atmospheric-pressure-based SOI index and sea
surface temperature-based ENSO3.4 and other indices) with
precipitation totals in California is near or below statistical
significance level, as is also the case for the PDO as shown e.g.,
in Costa-Cabral et al. (2016). Rather than ENSO indices, it is the
sea level pressure anomaly at the NPH that better reflects the local
influence of ENSO, as well as additional variability specific to the
North Pacific region.

The strength and position of the NPH, expressed as sea level
pressure anomalies and geopotential height anomalies over the
northeast Pacific region, affect the position of the jet stream and
associated storm tracks. As shown in Costa-Cabral et al. (2016),
the positive mode of the NPH is associated with a strong high-
anomaly sea level pressure region over the northeastern Pacific.
Abnormal northeastern Pacific high pressure ridges that extend
from lower- to upper-atmospheric levels can prevent storm
systems from reaching California. The role of such high-pressure

ridges was discussed during the recent multiyear drought in
California, which exhibited the strongest and longer lasting
ridge ever observed (e.g., Swain et al., 2014; Wang et al., 2014,
2015; Stevenson et al., 2015). Costa-Cabral et al. (2016) showed
that these exceptional high pressure conditions associated with
the recent drought fit into a broader pattern documented in
reanalysis data.

Costa-Cabral et al. (2016) demonstrated that winter
precipitation totals over much of the Southwestern United States
hold a special relationship, known as a “cointegration,” with
the sea level pressure at the normal location of the NPH. A
cointegrated relationship between two stochastic variables
exists when, although they appear to vary independently, the
cumulative departure from the mean of the two variables tends
to remain within a limited distance (Engle and Granger, 1987).

By exploiting the cointegrated relationship between SWC
and the NPH anomaly, two models were developed to estimate
seasonal precipitation for the Owens River watershed, and
provide advance information to support reservoir operations in
the Owens Valley:

• The VECM Model Vector Error Correcting Model (VECM)
is designed to forecast, in early February, the April 1 SWC
value. The VECM model uses the observed annual time series
of three variables: (a) the observed January mean of the NPH
anomaly, (b) the observed February 1 SWC, and (c) the April
1 SWC at each location of interest. The VECMmodel exploits
the cointegrated relationship between these three variables,
and provides a forecast for April 1 SWC based on a linear
function of the values of the cumulative sum over time of
standardized anomalies of all three variables.

• The Categorical Model is designed to determine the
probability, in early February, of the April 1 SWC value
falling into the dry, normal, and wet category. The thresholds
between these categories are defined by a 20% deviation from
the average April 1 SWC value. The Categorical Model uses
the forecast value produced by the VECMmodel.

The mathematical formulation, parameter fitting, validation, and
application of the models are described in sections Methods
and Results and Model Evaluation Based on Hindcasts. The
performance of both models in hindcasts (1951–2016) is also
evaluated in sections Methods and Results and Model Evaluation
Based on Hindcasts. The VECM model hindcasts of April 1
SWC are compared against those obtained by linear regression
from observed February 1 SWC, showing significantly higher
skill.

As a test, the January mean 850 hPa geopotential height over
the NPH region was used in the VECM model instead of the
sea level pressure, achieving comparable results in the hindcasts
(Figures S-2 to S-9). For some of the stations, geopotential
height performed slightly better in hindcasts, while at other
stations (includingMammoth Pass) it performed slightly less well
compared to sea level pressure. Also, the p-value representing the
Phillips-Ouliaris cointegration test (Phillips and Ouliaris, 1990;
Hamilton, 1994) is higher when geopotential height is used (p >

0.01) compared to sea level pressure (0.01 < p < 0.05), which
may indicate that the cointegrated nature of the relationship with
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FIGURE 1 | Cumulative standardized anomaly of April 1 snow water content at Mammoth Pass (orange) and January mean sea level pressure at the North Pacific

High region [NCEP/NCAR grid cell centered at (35◦N, 232.5◦E)] (blue). The blue line refers to the vertical axis on the right, where values are in reverse order to aid

comparison between the two variables, given that they are inversely correlated.

geopotential height is less dependable. For these reasons, sea level
pressure was selected for use.

The hindcasts reveal that the VECM model has considerable
forecast skill. In the case of the Categorical Model, a much larger
sample size would be required for evaluating the probability
values that it provides, but the hindcast for the available sample
size appears consistent with the calculated probabilities.

METHODS

Figure 1 shows the cumulative standardized anomalies of
Mammoth Pass April 1 snow water content (SWC) and the
January mean sea level pressure anomaly at a location near the
NPH (1948–2016) (from the NCEP/NCAR Reanalysis). There is
an apparent tendency for the two lines to remain within a limited
distance of each other. The cumulative standardized anomalies
of the two variables show higher linear correlation (R = 0.88)
than the (non-cumulative) standardized anomalies (R = 0.54)
(Figure S-1).

The Owens Valley snow water content (SWC) on April 1
depends mainly on seasonal precipitation totals but also on
factors that influence snowmelt, including temperature, solar
radiation and wind. Elevation is sufficiently high that nearly all
winter precipitation at the sites of interest is in the form of snow.
Years in which snowmelt occurs early will have diminished SWC
on April 1. The model presented here does not account for these

factors, but relies on the cointegrated relationship between SWC
and NPH anomalies.

The cointegrated relationship between SWC and NPH
anomalies is explored in the VECM model described in section
The VECM Model, for Forecasting the April 1 SWC. The
categorical model is described in section the Categorical Model,
for Estimating Probability of Dry, Normal, or Wet Categories.

The VECM Model, for Forecasting the April
1 SWC
VECM Model Formulation
Vector Autoregression (VAR) is a type of model that represents
multivariate time series using linear relationships between each
variable and p of its own lags and the lags of the other variables.
If the k x 1 vector yt denotes the values of the k variables in the
multivariate time series at time t, then a VAR(p) model is:

yt = a + A1yt−1 + A2yt−2 + · · · + Apyt−p + εt (1)

Here the vector a (intercept term) and the k x k matrices Ai

(coefficients) are estimated model parameters and the vectors εt
are random errors.

The year-specific vector at time t is given by the difference
between the cumulative vectors at times t and t − 1:

1yt = yt − yt−1 (2)
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Combining Equation (1) and (2) and writing Bi = −(Ai+1+· · ·+

Ap) for each i = 1, · · · , p − 1 and 5 = −
(

I − A1 − · · · − Ap

)

gives:

1yt = a+ B11yt−1 + · · · + Bp−11yt−p+1 + 5yt−1 + εt (3)

Cointegration is a property that multivariate time series may
exhibit. If the individual components of yt are non-stationary
(in particular, they have a unit root) while some (non-zero)
linear combination β ′yt is stationary, then yt is said to be
cointegrated. More intuitively, although the components of yt are
non-stationary and vary randomly, the distance between them
tends to stay within a fixed distance. In fact, there may be up to
h < k linearly independent cointegrated relations among the yt .

In Equation (3), if yt is cointegrated then 5 has reduced rank
h < k and can be factored as5 = αβ ′, where α is k × h and β ′ is
h × k, such that β ′yt is a stationary h × 1 vector. Then inference
proceeds by first estimating the cointegrated relations β ′–either
by ordinary least squares (OLS) or maximum likelihood (ML)
methods—and then estimating the remaining parameters a, α

and βi by OLS. This type of VAR with reduced rank restrictions
when yt is cointegrated is known as a Vector Error Correction
Model (VECM). See Hamilton (1994) and Johansen (1995) for
further details.

Data Sets
The observed snowwater content (SWC) on February 1 andApril
1 of each year, starting 1948, at the four Owens Valley snow
stations of interest—Mammoth Pass, Rock Creek #2, Sawmill,
and Cottonwood #1—were provided by LADWP and are used
as predictor variables in the VECMmodel.

Also used as a predictor variable in the VECM model is
the January mean sea level pressure at a location near the
climatological position (i.e., the average position over time) of
the NPH. The monthly mean sea level pressure data from the
National Center for Environmental Prediction, National Center
for Atmospheric Research (NCEP-NCAR) reanalysis dataset
(originally described in Kalnay et al., 1996) were used. The data
were downloaded from the National Oceanic and Atmospheric
Administration’s web site1. This data set was selected for this
study because it goes back in time to 1948, covering the entire
period of LADWP snow records; has a resolution of 2.5◦ of
latitude and longitude, which is sufficiently fine-scale but not so
fine as to have excessive variability over time; and is updated
online by NOAA daily, with only a 2-day delay. The grid cell
centered at {35◦N, 232.5◦E} is used.

Reanalysis datasets, such as the ones used in this work, are
based on simulations by dynamic climate models combined
with observations. Such datasets represent estimates subject
to uncertainty, characterized, for example, in Bosilovich et al.
(2008), Guirguis and Avissar (2008), and Janowiak et al. (1998).

Because the VECM model uses cumulative standardized
anomalies, the raw variables are first transformed into
standardized anomalies, by subtracting the series mean
then dividing by the standard deviation. The mean and standard

1http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.derived.surface.

html (file name: slp.mon.mean.nc)

deviation values used are for the entire record period, 1948–2016.
The standardized anomalies are then added successively over
time to obtain the cumulative standardized anomalies.

Parameter Fitting
For fitting, the following steps were followed:

1) Clip the time series to the calibration period.
2) Specify number of lags. This study used p = 3, i.e., the VECM

uses two lag terms (years) and the underlying VAR model is
VAR(3).

3) Estimate β ′ by Full InformationMaximumLikelihood (FIML;
Johansen, 1995).

4) Estimate parameters a, α and βi by OLS. Calculate
parameters Ai from those.

For prediction, the following steps were followed:

5) Convert back to VAR representation ((βi, 5) 7→ Ai).
6) Use Equation (1) to calculate the forecasted cumulative value

ŷt using data from the preceding 3 time periods and with
εt = 0.

7) Use Equation (2) to obtain the desired forecasted value1ŷt =
ŷt − yt−1.

Model verification will be described in section VECMModel.

The Categorical Model, for Estimating
Probability of Dry, Normal, or Wet
Categories
Categorical Model Formulation
The Categorical Model was developed as a complement to
the VECM model. The two models are distinct in intent and
formulation. The purpose of the Categorical Model is to estimate
in early February the probability of the upcoming April 1 SWC
falling into each of the three categories, dry, normal, or wet. These
probabilities can be denoted pd, pn, and pw, respectively.

The only input to the Categorical Model is the April 1 SWC
value forecast by the VECM model. As with any forecast, there
is uncertainty in the value forecast by the VECMmodel, and this
implies that in a general sense no one of the three categories—dry,
normal, or wet—can be ruled out as a possible outcome. Instead,
each category has some non-zero probability of occurring.

Figure 2 shows the forecast for year 2010, as an example. The
forecast is indicated by the red line. The red dashed lines indicate
the 95% confidence interval, assuming the errors are normally
distributed about the forecast value. There is a 5% chance (or 1
in 20 chance) that the observed April 1 SWC will be outside the
95% confidence interval. The blue line is the Gaussian probability
density function (PDF), with mean equal to the forecast value
and standard error estimated from the 1951–2016 forecasts. The
green line is the normal value (the average for 1966–2015), and
the dashed green lines indicate a 20% deviation from the normal
value. The probability of each category is determined by the area
under the Gaussian blue line, lying within the range of values of
that category.

Once the VECM model was fit for each location, the
Categorical Model estimates the probability that the April
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FIGURE 2 | Mammoth Pass April 1 SWC forecasts for year 2010 (red line). The red dashed lines indicate the 95% confidence interval, assuming the errors are

normally distributed about the forecast value. The blue line is the Gaussian probability density function (PDF), with mean equal to the forecast value and standard error

estimated from the 1951–2016 forecasts. The green line is the normal value (the average for 1966–2015), and the dashed green lines indicate the category

boundaries defined by a 20% deviation from the normal value.

1 SWC value would fall into one of a pre-specified set of
water year classes, using the categorical distribution (see for
example Murphy, 2012). If there are K categories, the categorical
distribution is parametrized by a K-vector θ = (θ1, . . . , θK) with
entries summing to 1. θk gives the probability that an observation
y falls into category k.

The Categorical model uses the VECM-forecast April 1 SWC
value, x, as a predictor for θ via the regression

θk = ak + bk · x, for k = 1, . . . ,K (4)

The entries of θ are rescaled to sum to 1 via the softmax function:

θk =
exp θk

∑

i exp θi
(5)

Parameter Fitting
Using Bayesian inference, the model parameters

(

ak, bk
)

are fit
withMarkov ChainMonte Carlo (MCMC) to draw samples from
themodel posterior distribution. All years were used in themodel
fitting. The following prior distributions were used:

{

ak ∼ N (0, 5)
bk ∼ N (0, 1)

(6)

RESULTS AND MODEL EVALUATION
BASED ON HINDCASTS

VECM Model
Model Verification
Parameter fitting was described in methods section Parameter
fitting. For model verification, 10 years (2007–2016) were
excluded from parameter fitting, to be used for model
verification. This 10-year period includes a few wet and some
very dry years, thus offering a range of different conditions
for verification. In Figures S-10, S-12, S-14, and S-16, the
cumulative time series of predictand and predictor variables
are plotted (top panel) and the p-value on the top left corner
tests the rejection of the null hypothesis that no cointegration

is present in the vector time series via the Phillips-Ouliaris-
Hansen test (Phillips and Ouliaris, 1990; Hamilton, 1994). The
p-values are low for all the stations, indicating that the presence
of cointegration cannot be rejected. Figures S-11, S-13, S-
15, and S-17 show the observed (black) and VECM-model
predicted April 1 SWC (green for the calibration period, 1951–
2006, and blue for the verification period, 2007–2016), with the
cumulative values on the top panels, and the regular values on
the bottom panels. Examination of these figures indicates that
the forecasts of the last 10 years have similar deviations from
the observations as do those of the years used in parameter
fitting.

Final Model Parameters
For the final model parameters, we repeated the parameter fitting,
this time including all available years, 1948–2016. The results for
Mammoth Pass are displayed in Figure 3. Results for all snow
stations are shown in Figures S-18 to S-25.

VECM Model Performance Evaluation Using

Hindcasts for 1951–2016
The VECM model is evaluated in this section using hindcasts
for the period from 1951 through 2016. Because each forecast
relies on data from the preceding three years (we have p = 3
in Equation (1) and the record starts in 1948, the first possible
forecast is for 1951.

Observations are plotted against forecasts in Figure 4.
Values of the coefficient of determination, R2, are reported
on each figure panel and in Table 1. Dashed lines have
been added to each panel of Figure 4 to indicate the
95% confidence interval. Confidence intervals were calculated
based on the assumption that the forecasts’ deviations from
the observations are normally distributed, and characterized
by the standard error calculated by comparing forecasted
and observed values for all years (1951–2016) (Table S-
1).

By definition of 95% confidence interval, 5% of the points (i.e.,
1 in 20 points) are expected to fall outside the interval in a large
sample of points. Here, the sample size of 66 years (1951–2016)
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FIGURE 3 | VECM model predictions for Mammoth Pass, using the final parameters. (A) Cumulative April 1 SWC anomalies; (B) Scatter plot of the data in panel A;

(C,D) As in panels (A,B) but for the anomalies (not cumulative). Time series lines in black are observed data. Green lines and points indicate VECM model forecasts

(1951–2016).

is relatively small, so we expect the number of points outside the
95% confidence interval to be in the vicinity of 3.3. The number
of points lying outside the 95% confidence interval bounds in
Figure 4 is indeed in the vicinity of 3.3: 2 points for Mammoth
Pass, 4 points for Rock Creek #2, 3 points for Sawmill, and 6
points for Cottonwood #1.

LADWP defines the normal SWC value at each site as the
average of 50 recent years. The 50-year range is updated every 5

years. At the time of writing this manuscript, the 50-year period
used by LADWP is 1966–2015, and the normal values are the
following:

Normal values :















Mammoth Pass : 42.64 in
Rock Creek #2 : 10.19 in
Sawmill : 19.33 in
Cottonwood #1 : 12.54 in
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FIGURE 4 | Observed April 1 SWC each year in 1951–2016 plotted against the model’s forecast value, for the four Owens Valley sites. Dashed gray lines indicate the

95% confidence interval. Dashed green lines indicate a 20% deviation from the normal value, separating between the categories dry, normal, and wet.

Of special importance to LADWP is an April 1 SWC forecast in
the form of three categories:

April 1

SWC Categories:







Dry : Less than 80% of the normal value

Normal : Within 20% of the normal value

Wet : More than 120% of the normal value

The observed frequency of these categories in the 66 years of
record are: For Mammoth Pass, 24 dry, 22 normal, and 20
wet years; for Rock Creek #2, 32 dry, 13 normal, and 21 wet
years; for Sawmill, 30 dry, 17 normal, and 19 wet years; and for
Cottonwood #1, 33 dry, 13 normal, and 20 wet years.

Figure 4 and Table S-2 compares the forecast and observed
value of April 1 SWC for each year, and also allows comparison
of the forecast category and the observed category (dry, average,
or wet). The number of years, from the total of 66 years, which
were forecast in the wrong category, is given in Table 1. For

Mammoth Pass, which is the most important station for LADWP,
given its much larger snowpack, 50 of the 66 years (or 76%) had
VECM model forecasts in the same category as observed. The
remaining 16 years were misclassified in an adjacent category.
For Mammoth Pass, Sawmill, and Cottonwood #1, there were no
instances where the forecast value was in the category opposite
the observed one, i.e., no dry year was forecast to be wet, and no
wet year was forecast to be dry. For Rock Creek #2, there were
two instances of opposite-category classifications. In both cases,
the forecast was in the dry category, but the observation was in
the wet category.

There is considerable agreement between observed categories
across the four stations, and though there are several instances
where a normal year at one station was dry or wet at another
station, there are no instances where one station was dry and
another wet in the same year, i.e., opposite categories were not
observed across stations. The same is true of the VECM model
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TABLE 1 | Measures of VECM model April 1 SWC forecast performance.

Mammoth pass Rock creek #2 Sawmill Cottonwood #1

R2 in Figure 4 0.751 0.729 0.783 0.696

No. of 10 wettest years misclassified 1c 1c 0 0

No. of 10 driest years misclassified 0 0 0 0

No. of opposite-category classificationsa 0 2 0 0

No. of category misclassificationsb 16 20 18 26

No. years over-predicted / No. under-predicted 34/32 36/30 35/31 35/31

Ave. deviation for over-predictions (in) 7.40 2.64 3.68 3.43

Ave. deviation for under-predictions (in) −7.38 −2.90 −3.91 −3.77

Max. deviation for over-predictions (in) 17.06 7.64 11.09 9.51

Max. deviation for under-predictions (in) −26.95 −10.63 −12.47 −11.42

aAn “opposite-category classification” is a dry year forecast to be wet, or a wet year forecast to be dry.
bA “category misclassification” is a year whose forecast value falls in a different category than observed (including adjacent and opposite categories).
cYear 1986 was forecast to be “normal” but turned out to be one of the 10 wettest years.

predictions: in no year was one station predicted to be wet while
another station was predicted to be dry. This can be seen in
Figure S-26.

Additional measures of the VECM model performance are
listed in Table 1. There is no evidence for model bias toward
either over-predicting or under-predicting. For Mammoth Pass,
the number of over-predicted years, 34, is close to the number
of under-predicted years, 32; the average deviation of forecasts to
observations is ∼ 0 (0.24 in), showing that positive and negative
deviations approximately cancel each other out; and the slope
of the regression line is ∼1.0. For the 34 over-predicted years,
the average difference between forecast and observed values is
7.40 in, while for the 32 under-predicted years it is −7.38 in.
The largest deviation is 17.06 in for the over-predicted years, and
−26.95 in for the under-predicted years.

The year with the largest under-prediction for Mammoth Pass
was 1986, where the forecast was for 45.9 in (108% of normal)
and the observation was 72.9 in (171% of normal). The year with
the largest over-prediction was 2015, where the forecast was for
17.1 in (40% of normal) and the observation was 1.4 in (3% of
normal). This was a year when snowmelt occurred earlier than
usual, depleting the snowpack before April 1.

Comparison Against Hindcasts Based on February 1

SWC Linear Regression
This section compares the VECM model performance in
forecasting April 1 SWC against the results achieved using the
historical linear regression equation relating observed April 1
SWC to February 1 SWC based on 1948–2016 observations for
each station. The February linear regressionmethodwas available
prior to this study, and represents a baseline against which the
VECMmodel forecasting skill can be compared.

Skill forecasting the April 1 SWC value
The VECM model was more successful than the February
linear regression, when comparing between Table 2 and Table 1

(and between Figures S-29 and S-27). For Mammoth Pass, the
coefficient of determination (R2) is 0.751 for the VECM model
and 0.630 for the February linear regression. The forecast errors

of the February linear regression, i.e., the differences between
the forecast value and the observation on the same year, have
higher average values and larger maximum values (positive and
negative), compared to the VECM model. See also Figures S-28
and S-30.

Skill forecasting the April 1 SWC category (dry, normal, or

wet)
The VECM model had no instances (for any station) where
one of the 10 driest years was misclassified, while the February
linear regression had one such instance for each station except
Mammoth Pass (Table 2). The VECM model had one instance
(for Mammoth Pass and Rock Creek #2) where a top 10
wettest year was misclassified (Table 1), while the February
linear regression had one such instance for Mammoth Pass and
Sawmill, two instances for Rock Creek #2 and three instances for
Cottonwood #1 (Table 2). The VECM model had no instances
of a top 10 dry year being misclassified (Table 1), while the
February linear regression had one such instance for Rock Creek
#2, Sawmill and Cottonwood #1 (Table 2).

Evaluation of the Categorical Model
Results Using Hindcasts for 1951–2016
Given the probabilistic nature of the Categorical Model, it is
expected that the observed April 1 SWC will often fall into a
category (dry, normal, or wet) other than the one to which
the model attributed the highest probability of the three. The
observed April 1 SWC is expected to most often fall into the
category assigned the highest probability, but to also often
fall into the category assigned the second-highest probability,
and occasionally to fall into the category assigned the lowest
probability.

A rigorous evaluation of the Categorical Model’s performance
would require a much larger sample than the available 66 years
(1951–2016). The available 66 years however does allow an
approximate evaluation through the qualitative examination of
Figure 5, where the probability assigned to category “wet” (pw) is
plotted against the probability assigned to “dry” (pd). Each point

Frontiers in Earth Science | www.frontiersin.org 8 May 2018 | Volume 6 | Article 54

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Rath and Costa-Cabral Snowpack Forecasting Model Using Cointegration

TABLE 2 | Performance measures for forecasts based on the February linear regression equations.

Mammoth pass Rock creek #2 Sawmill Cottonwood #1

R2 0.631 0.589 0.675 0.559

No. of 10 wettest years misclassified 1 2 1 3

No. of 10 driest years misclassified 0 1 1 1

No. of opposite-category classificationsa 0 1 1 2

No. of category misclassificationsb 16 23 21 26

No. years over-predicted / No. under-predicted 34/32 38/28 38/28 38/28

Ave. deviation for over-predictions (in) 8.54 3.05 4.09 3.84

Ave. deviation for under-predictions (in) −8.89 −3.87 −5.51 −5.29

Max. deviation for over-predictions (in) 24.93 9.54 11.75 12.10

Max. deviation for under-predictions (in) −32.61 −14.65 −17.29 −16.23

Compare against Table 1, for the VECM model.
aAn “opposite-category classification” is a dry year forecast to be wet, or a wet year forecast to be dry.
bA “category misclassification” is a year whose forecast value falls in a different category than observed (including adjacent and opposite-category classifications).

represents a year between 1951 and 2016. Given pw + pd + pn
=1, rearranging that equation we can write pn = 1–(pw + pd),
which gives the probability assigned to category “normal” (pn)
is a function of the probabilities plotted in Figure 5. The graph
area labeled “most likely wet” corresponds to pw being larger than
either pd or pn; “most likely dry” corresponds to pd > pw, pn; and
“most likely normal” corresponds to pn > pw, pd.

In Figure 5, the actual observed category each year is indicated
by the color of the point, keyed in the figure legend. The
distribution of colors appears consistent with the probabilities,
with most wet years having been attributed a high probability
of being wet, and most dry years having been attributed a high
probability of being dry. Because themodel provides probabilities
rather than predicted values, none of the outcomes represent
model failures.

The Categorical Model is designed specifically for assigning
probabilities to each of the three categories, not to provide a
forecast. If it were used to forecast the category directly, this
model would do somewhat less well than the VECM model,
especially because of a larger number of opposite-category
forecasts (i.e., wet years forecast to be dry, and dry years forecast
to be wet) in the period 1951–2016. Therefore, the VECMmodel
forecast April 1 SWC value should be used to forecast the
category, and the Categorical Model should be used to evaluate
the uncertainty pertaining to the category.

Example: The Probabilities Calculated for 2010
As an example, Figure 6 displays the probabilities determined by
the Categorical Model for 2010. The observed SWC values on
April 1, 2010, fell into the normal category for all four stations.
Even though in the case of Rock Creek #2 and Cottonwood #1 the
normal category did not have the highest of the three probabilities
(the wet category was assigned higher probability), it nevertheless
had considerable probability values: 25.2% for Rock Creek #2,
and 9.6% for Cottonwood #1.

FORECASTS FOR 2017 AND 2018

TheVECMmodel and the Categorical model were parameterized
using observations for 1948-2016 (section Methods). The models

were completed and delivered to LADWP in January of 2017.
Since then, the model has been used to forecast April 1 snow
water content (SWC) in 2017 and 2018. These were actual
forecasts as opposed to hindcasts. The forecast April 1 SWC
is compared against the observed value in Figure 7. The red
dots represent 2017 and the orange dots represent 2018. Gray
dots are hindcasts for 1951–2016 and were previously shown in
Figure 4.

Year 2017 had among the largest snowpack of the period
plotted, especially at the most important station, Mammoth Pass.
On February 1, the observed SWC was already almost double
the normal (i.e., average) value for that date at Mammoth Pass
and Sawmill, and more than triple the normal value at Rock
Creek #2 and Cottonwood #1. By April 1, the observed SWC
was about double the normal value for that date at Mammoth
Pass and Sawmill, and about 2.5 times the normal at Rock Creek
#2 and Cottonwood #1. The VECM model provided April 1
SWC forecasts that were mildly over-estimated for Mammoth
Pass and Sawmill, and slightly under-estimated for Rock Creek
#2 and Cottonwood #1 (Figure 7). The Categorical model
correctly identified “wet” (i.e., more than 20% above the normal
value) as the most likely category for April 1 SWC at all four
stations.

Year 2018 was a more complex year, representing a good
test case. SWC was very low on February 1 but, thanks to
late-season storms in February and March, it reached near-
normal values on April 1. The VECM model correctly forecast
these near-normal values. For example, on February 1, the
SWC at Rock Creek #2 was at 10% of the normal value for
that date; but on April 1 had reached 40% of the normal
value for that date. The VECM model correctly forecast the
substantial SWC increase that occurred in February and March,
producing approximate forecasts for the four stations (Figure 7).
The Categorical model correctly identified “dry” (i.e., more than
20% below the normal value) as the most likely category for
April 1 SWC at all four stations, with “normal” also having
reasonable probability. For example, at Mammoth Pass, the
probability of “dry” was 77.9% and the probability of “normal”
was 21.9%. The observed April 1 SWC was “dry” but near
“normal.”
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FIGURE 5 | Probability assigned to categories “dry” (x axis) and “wet” (y axis) each year in 1951–2016. The actual observed category each year is indicated in color,

according to the legend. The distribution of colors appears consistent with the probabilities.

CONCLUSIONS

The VECM model developed and tested in this study has proven
to have considerable skill forecasting Owens Valley April 1 SWC
in early February. Its performance in hindcasts (1951-2016)
was shown to surpass the skill of the pre-existing alternative,
which consisted of using a linear regression to forecast April
1 SWC based on the observed February 1 SWC. The VECM
model’s performance was clearly superior to the February linear
regression on every measure, including a higher coefficient
of determination (R2), smaller average and maximum errors
(defined as the forecast value minus observed value), fewer
misclassifications of years, defined as a year when the forecast
and observed April 1 SWC are not in the same category (dry,
normal, or wet), and fewer severe misclassifications of years (i.e.,
years forecast to be in the category opposite the observed one,
especially when those were extreme years such as among the 10
wettest or 10 driest).

As a complement to the VECMmodel, the Categorical Model
was developed to express forecast uncertainty by estimating
the probability that April 1 SWC would fall into each of the
three categories—dry, normal, and wet. While the sample size
of the hindcast (66 years: 1951-2016) is too small for rigorous
testing of the Categorical Model, the probabilities it produced for
these hindcast years appear consistent with the observations. The
VECM model forecast April 1 SWC value should be used to also
forecast the category, and the Categorical Model should be used
to evaluate the uncertainty pertaining to the category.

Since the model was completed, using 1948-2016
observations, it model has been used to forecast April 1
snow water content (SWC) in 2017 and 2018. These were
actual forecasts as opposed to hindcasts. The 2017 and 2018
forecasts were compared against the observed April 1 SWC
values, showing to have been successful and having deviated no
more from observations than most years in the hindcast period.
The Categorical model also attributed the highest probability
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FIGURE 6 | Probability of April 1 SWC falling into each of the categories – dry, normal, or wet – issued by the Categorical Model for 2010.

to the category that was observed on April 1. The 2017 was
an exceptionally wet year, and 2018 was overall a dry year but
which received late-season storms in February and March. The
successful forecast in both 2017 and 2018 adds confidence in the
VECMmodel and the Categorical model.

While the VECM model was shown to provide considerable
forecast skill for April 1 SWC, there is significant uncertainty
associated with its forecast in any individual year. This is the
case with any meteorological or hydrological forecast model.
Model uncertainty was clearly characterized in this report using
hindcasts. Future forecasts may incur smaller or larger errors
than those seen in the hindcasts or the two forecast years of
2017 and 2018. Forecast uncertainty must therefore be taken into
account by LADWP in its decision making.

WIDER SIGNIFICANCE OF THIS WORK,
AND FUTURE RESEARCH

Many water supply reservoirs in California capture snowmelt in
spring for supply later in summer. Under current operations,

some reservoir storage is set aside for future floods over the
course of the wet season—the flood control volume varying by
month—and excess runoff is released downstream (e.g., Willis
et al., 2011). The statistical tool presented in this work, relating
NPH anomaly to precipitation or snowpack indices, can be
applied to other California watersheds, where it may allow
reservoir operators additional insight, on a year-to-year basis,
on whether some of the flood storage could be utilized for
water supply storage. This additional insight could be of great
value in coming decades, where operators must make the most
from a potentially more variable precipitation season, as well as
declining snowpack due to higher temperatures and a partial

shift from snowfall to rainfall, and greater peaks in runoff in

wet years (Fissekis, 2008; Brekke et al., 2009; Hanak and Lund,
2012).

The forecasting tool presented in this paper allows issuing

forecasts in early February for the remainder of the wet season,

i.e., through April 1. The tool is based on the sea-level pressure

anomaly at the climatological location of the NPH measured in
mid-January.
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FIGURE 7 | Forecast for years 2017 (red) and 2018 (orange) plotted against the respective observations, for the four Owens Valley sites. The gray points represent

1951–2016 hindcasts, previously shown in Figure 4.

The forecast lead time may potentially be increased if the
mid-January NPH sea level pressure anomaly can be accurately
forecasted, whether by statistical or dynamical models. The
NPH exhibits a closer relationship with precipitation throughout
California compared to the ENSO indices (see Costa-Cabral et al.,
2016). This may be because, in addition to tropical forcing, the
NPH also receives influence from internal midlatitude variability.
However, the question remains whether this internal midlatitude
variability may or may not be forecastable.

This work demonstrates that advancements in forecasts of

NPH are expected to have significant benefits for water resources,

agriculture, energy, insurance, drought preparedness, and flood

risk management in California. We hope that future research will

investigate the present ability of the different models in the North

American Multi-Model Ensemble (NMME; Kirtman et al., 2014)
suite [which includes NOAA’s National Weather Service Climate

Forecast System, version 2 (CFSv2; Saha et al., 2014)] to anticipate
the NPH anomaly in mid-January at different lead times.

This work may also contain important hints for future
research by climate scientists. The cointegrated relationship
identified means that the principal relationship between these
2 variables (NPH anomalies and California precipitation) is
between their integrals. This suggests that the climate processes
involved have characteristics analogous to reservoirs, which are
integrals of stochastic inputs and outputs. This line of thinking,
if further explored, might bear fruit in understanding the low-
frequency variability in climate, such as decadal variability.
Precipitation depends on ocean surface temperatures (SST)
at different locations. Temperature measures heat content, a
reservoir type variable which may be at the origin of cointegrated
relationships between climatic variables.
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