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To mitigate volcanic hazards from pyroclastic density currents, volcanologists generate

hazard maps that provide long-term forecasts of areas of potential impact. Several recent

efforts in the field develop new statistical methods for application of flow models to

generate fully probabilistic hazard maps that both account for, and quantify, uncertainty.

However, a limitation to the use of most statistical hazard models, and a key source

of uncertainty within them, is the time-averaged nature of the datasets by which the

volcanic activity is statistically characterized. Where the level, or directionality, of volcanic

activity frequently changes, e.g., during protracted eruptive episodes, or at volcanoes

that are classified as persistently active, it is not appropriate to make short term forecasts

based on longer time-averaged metrics of the activity. Thus, here we build, fit and

explore dynamic statistical models for the generation of pyroclastic density currents from

Soufrière Hills Volcano (SHV) on Montserrat including their respective collapse direction

and flow volumes based on 1996–2008 flow datasets. The development of this approach

allows for short-term behavioral changes to be taken into account in probabilistic volcanic

hazard assessments. We show that collapses from the SHV lava dome follow a clear

pattern, and that a series of smaller flows in a given direction often culminate in a

larger collapse and thereafter directionality of the flows changes. Such models enable

short term forecasting (weeks to months) that can reflect evolving conditions such as

dome and crater morphology changes and non-stationary eruptive behavior such as

extrusion rate variations. For example, the probability of inundation of the Belham Valley

in the first 180 days of a forecast period is about twice as high for lava domes facing

Northwest toward that valley as it is for domes pointing East toward the Tar River Valley.

As rich multi-parametric volcano monitoring datasets become increasingly available,

eruption forecasting is becoming an increasingly viable and important research field. We

demonstrate an approach to utilize such data in order to appropriately tune probabilistic

hazard assessments for pyroclastic flows. Our broader objective with development of this

method is to help advance time-dependent volcanic hazard assessment, by bridging the

gap between eruption forecasting based onmonitoring time series data and development

of cutting edge probabilistic volcanic hazard maps.
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1. INTRODUCTION

The Soufrière Hills Volcano (SHV), Montserrat, has been
extensively studied since it erupted on 18 July, 1995 for the first
time in centuries.

The multi-parametric datasets coupled with detailed
observations of the surface activity for the main eruptive period
facilitates exploration of forecasting models. Thus, SHV provides
an ideal setting to build and explore next-generation models
for short-term (weeks to months) pyroclastic density current
forecasting where eruptive precursors and current conditions
such as dome growth and orientation may be brought to bear
(see Section 3.1). Here we propose models for the frequency,
volume, and initial directions of pyroclastic density currents
(PDCs) at SHV, with the end goal of improving forecasts for
these sometimes devastating events. Most efforts at modeling
for PDC forecasts either focus on retrospective forecasting
(e.g., Sulpizio et al., 2010; Charbonnier and Gertisser, 2012) or
long-term forecasting (e.g., Bayarri et al., 2009, 2015; Connor
et al., 2012; Sandri et al., 2014; Neri et al., 2015), based on the
stationary assumption that behavior remains constant over
time. Recently, non-stationary models have been developed
for long-term PDC forecasting (Bevilacqua et al., 2017) and
for very long-term hazard evolution modeling (Jaquet et al.,
2017). Non-stationary models have also been developed for, and
applied to, modeling the state of volcanic systems (onset, active,
repose, etc.) (e.g., Carta et al., 1981; Bebbington, 2007, 2010,
2012) and for forecasting volcanic events ≥VE1 (Bebbington,
2012). Here we present the first approach to short-term
probability-based PDC forecasting based on dynamic statistical
models.

Earlier, Bayarri et al. (2009) modeled the times of PDC
events as a stationary stochastic process, with distributions for
their volumes and initial directions that did not change over
time. While our results suggest that this is adequate for long-
term forecasts and hazard assessment (but see Bebbington, 2010;
Bevilacqua et al., 2017; Jaquet et al., 2017 for a contrasting
view), we show that the frequency and directional distribution
vary markedly over shorter time intervals. Both Aspinall et al.
(2003) and Woo (2018) have also highlighted the need for
short-term, dynamic forecasting that can take into account
monitoring and precursor information. Although much work
toward this end focuses on combining probabilities of individual
processes using Bayesian Belief Networks or Bayesian Event
Trees (e.g., Marzocchi et al., 2008; Sandri et al., 2009; Hinks
et al., 2014; Woo and Aspinall, 2014), this work does not focus
on probabilistically modeling the individual components. Here
we build dynamic statistical models in which PDC frequency
alternates between high-activity and low-activity states, and in
which the directional distribution can change following dome-
collapse events.

The dates, valleys affected, and estimated volumes of 845
PDCs of volume ≥ 0.15 · 106m3 (i.e., 0.15 million cubic
meters) recorded at theMontserrat Volcano Observatory (MVO)
through July 2008 are reported in Ogburn et al. (2012), one of the
most complete PDC dataset ever assembled. PDCs and rockfalls
with volumes < 0.15 · 106m3 are not recorded here. All of the
modeling and data analysis in this work is based on that dataset,

and by “PDC event” we will mean a PDC at SHV of volume at
least 0.15 · 106m3.

Figures 1A,B show the drainage and valley structure
surrounding SHV. Figure 1C shows the volumes (on log scale,
as radius, with a small amount of jitter to reveal multiplicity)
and initial angles (as azimuth counter-clockwise from due
East) of all recorded PDCs. Only PDCs’ valleys are known, so
interval-censored PDC angles {φj} are represented as arcs 8j.

While there is some suggestion of heavier flow activity to
the east, the evidence against independent uniform distributions
is not strong. Further, the evidence against independence
between uniformly distributed initiation angles {φj} and Pareto-
distributed volumes {Vj} for significant flows is not strong (for
flows exceeding 106m3, a chi-squared test of independence for
categorized data with three levels of volume and five groups of
valleys gave a value of χ2 = 13.3 on 8 degrees of freedom, for a
p-value of 0.10 showing little evidence against independence).

While this stationary model may be reasonable for long-term
forecasts (several years or more), there is evidence that it is not
appropriate for short-term forecasts. The PDC frequency appears
to vary over time, with alternating high-frequency and low-
frequency periods; the angular distribution of initial flow angles
appears non-uniform over short periods; and its distribution too
may change over time.

Figure 2 shows directional tendencies for the periods between
major PDCs (those whose volumes exceed 6 · 106m3), along with
a red arc representing the valley inundated by the last major PDC
of that period or epoch. Note the strong directional concentration
within most of these periods, and the abrupt changes that often
occur at the times of major PDCs at the end of each epoch.
A Generalized Likelihood Ratio Test confirms that the angular
distributions differ across epochs; see section (2.2.3) for details.

Figure 3 presents the cumulative number of PDCs for the
study period, just over 12 years following 1st January 1996. The
slope of the line in this figure, measured in PDC events per year, is
one measure of volcanic activity level. Evidently it is not constant
over the decade shown and it is recognized that these changes
relate, to first order, to the actual growth and pause periods of
volcanic activity (Wadge et al., 2010).

Here we propose and support a new model for PDC
generation whose frequency and whose initiation angle
distributions are random stochastic processes. The PDC
frequency jumps on occasion back and forth between two levels,
one low and one high. The angular distribution is weighted
toward some central direction toward which the lava dome
grows; this direction will change to some randomly-chosen new
direction following the generation of a major PDC and dome
collapse event.

We employ the Objective Bayesian inferential paradigm
(Berger et al., 2009) in order to reflect in our volcanic forecasts,
both uncertainty about estimates of model parameters, as well
as that arising from the natural uncertainty and variability of
volcanic systems. In that paradigm, uncertainty about the model
parameters of interest (e.g., slopes of cumulative PDC counts),
here represented by a vector θ , is represented in the form of a
posterior probability density function π(θ | data), proportional
(by “Bayes’ Rule”) to the product of the likelihood function,
f (data | θ), and a prior density function π(θ) chosen to
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D Volume Range (×106 m
3)

Valley [0.15, 1) [1, 6) ≥ 6

Tar River 524 71 6

Tuitt’s Ghaut 209 23 2

Belham 124 17 1

Gages 71 18 1

White River 74 7 1

FIGURE 1 | (A) Topographic map of southern Montserrat, showing SHV and valley contours. (B) Cartoon drawing illustrating major drainages (valley groups). (C)

Empirical plot of PDC volumes Vj (as radius, on log scale) and initial directions φj (as angles counter-clockwise from due East, in degrees). (D) Tabulated counts of

PDCs inundating the five major drainages, for each of three PDC volume ranges.

represent initial ignorance. We present and justify our choices of
probabilitymodels (and hence the likelihood functions) and prior
distributions, and then use Markov chain Monte Carlo (MCMC)
numerical methods to generate both parameter estimates (with
attendant measures of uncertainty) and model forecasts (also

with uncertainty quantified), from their posterior distributions
(Rosenthal, 2011).

With this model the conditional distribution of the time to the
next PDC, and its magnitude and initial direction, may depend
on known features of the data set, such as the directions and
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FIGURE 2 | Volumes {Vj} and directions of flows {φj} during epochs (Te,Te+1] between major PDCs (those with volume V > 6 · 106 m3). Thin black arcs indicate

angular extent of direction of collapse of PDCs in this epoch; radii indicate volumes on logarithmic scale; thick red arcs show valley(s) of major flows at times {Te+1}
(labeled above each subplot) ending each epoch.
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FIGURE 3 | Cumulative count of PDC events, illustrating that PDC frequency varies over time. Note slope of curve is sometimes steep (in high-activity periods) and

sometimes shallow (in low-activity periods or dome growth pauses).

times of recent PDCs. In section (3.1) we illustrate how this can
be used to improve short-term forecasts. It is worth noting that
we do not model the (difficult to observe) magma ascent directly.
That said, the timing of events (which we do model) and magma
ascent share similar non-stationary patterns (Wadge et al., 2010),
but only the event timing is readily observable here.

We present the model in two parts: first in section (2.1)
we describe the model for the frequency of pyroclastic density
currents, then in section (2.2) we describe the model for the
volume and initial directions of those flows. In section (3.1)
we illustrate and validate how this model can support short-
term forecasting, by making model forecasts for a 3-year
period following a specified date (we chose 1st January 2006),

based only on data prior to that date, and comparing model
forecasts to actual observations. Finally, in section (4) we present
our conclusions and some directions for future development.
Computational details and lists of hyperparameter values,
probability distributions, mathematical notation, likelihood and
posterior distributions are collected in an Appendix.

2. METHODS

2.1. A Dynamic Model for Eruptive Activity
In this section we construct a model for the times of PDC events
sufficiently large to be recorded at SHV, i.e., of volume 0.15 ·
106m3 or more.
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2.1.1. Modeling Variable PDC Frequency
Figure 3 illustrated that the volcanic frequency at Soufrière Hills
does not appear to be uniform over time on a decade-long scale.
To accommodate this we model the times {τj} of PDC events
as an inhomogeneous Poisson point process with rate λ(t) that
may vary with time. Thus, the numbers of events in disjoint time
intervals (ai, bi] will have independent Poisson distributions with
means given by

E
[

# of PDCs at times τj with ai < τj ≤ bi
]

=
∫ bi

ai

λ(t) dt (1)

for an uncertain time-varying PDC frequency λ(t), measured in
events/ yr. The simplest choice for a function λ(t) that appears
consistent with the data would be a two-state model in which λ(t)
takes only two possible values 0 < λlo < λhi < ∞, switching
from the low rate to the high rate and back at transition times
{sm, tm} respectively, or

λ(t) =
{

λlo tm−1 < t ≤ sm

λhi sm < t ≤ tm

for 0 < s1 < t1 < s2 < ..., beginning in the “low” state. Also
introduce t0 : = 0 to simplify formulas below (here the notation
“a : = b” means that a is defined to be b). A simulation of such a
function appears in Figure 4, with an observation period of [0,T]
and a subsequent forecast period of (T,T′] with T = 10 year and
T′ = 15 year. Note that the values of the rates λlo and λhi in the
upper panel correspond to values of the slopes of the cumulative
event counts in the lower panel.

The likelihood function for the parameters Eλ = (λlo, λhi)
and transition time vectors Est = {s1, t2, · · · } from such a
realization will depend on the data vector Eτ = {τj} of observed
PDC event times in a specified observation period [0,T]
only through two features of the data: the counts Nhi and
Nlo of events that occur in periods of high and low activity,
respectively, and the total amounts of time Thi and Tlo spent
in those periods. These can be evaluated from the observed
event times {τj} and modeled transition times {sm, tm} as follows:

Nhi : =
∑

j,m

1(sm ,tm](τj) Nlo : = [N − Nhi] =
∑

j,m

1(tm−1 ,sm](τj) (2)

Thi : =
∑

m

[

(tm ∧ T)− (sm ∧ T)
]

Tlo : = [T − Thi] =
∑

m

[

(sm ∧ T)− (tm−1 ∧ T)
]

. (3)

Here the notation “(s, t]” denotes the interval of all those times τ

for which s < τ ≤ t, with the inclusion of the right end-point
indicated by a square bracket and the exclusion of the left end-
point indicated by a round one. Such an interval is said to be “half
open on the left”. The notation “s ∧ t” denotes the smaller of two
real numbers s and t, while 1A(τ ) for a set A and a real number
τ is the “indicator function,” equal to one if τ ∈ A and otherwise
zero. Thus, (2) gives a quick way of evaluating the numbers Nhi

and Nlo of PDCs that occur during the unions ∪m(sm, tm] of
all the intervals in which λ(t) = λhi takes its “high” values,
and ∪m(tm−1, sm] in which λ(t) = λlo takes its “low” values,

Time τ (yr)

R
a

te
 λ

(τ
) 

 (
y
r−

1
)

0 5 10 15 20

0
λ

lo
λ

h
i

T T’

s1t0 s2t1 s3t2 tM

Data Forecast

Time τ (yr)

E
x
p

e
c
te

d
 C

u
m

u
la

ti
ve

 E
ve

n
t 

C
o
u

n
t

0 5 10 15 20

A

B

FIGURE 4 | Simulated rate function λ(τ ) of PDCs in top panel (A) and, in

bottom panel (B), expected cumulative event count

E[ # of PDCs at times 0 ≤ τj ≤ τ ] =
∫ τ
0 λ(t)dt, plotted against time τ since

eruption onset. Observation period [0,T ] and forecast period (T,T ′] are
indicated, with T = 10 year and T ′ = 15 year. Compare to observed

cumulative event counts in Figure 3.

respectively. Similarly (3) gives a simple way of evaluating the
total lengths of time within the study period [0,T] (see Figure 4)
that the PDC frequency is at its high and low levels, respectively.

Under the model described in (1), for fixed event rates Eλ =
(λlo, λhi) and transition times Est = {s1, t1, s2, · · · }, the number
Nhi of events in the high periods will have a Poisson probability
distribution Nhi ∼ Po(Thiλhi) with mean E[Nhi] = Thiλhi,
the product of the total high-frequency duration Thi and the
high event rate λhi (the symbol “∼” means “is distributed as”).
Similarly the number Nlo of events in the low periods will have
the Poisson Nlo ∼ Po(Tloλlo) distribution, with Nhi and Nlo

independent. This leads to the Poisson likelihood function:

f (Nlo,Nhi | Eλ, Est) ∝
[

(Tloλlo)
Nlo e−Tloλlo/Nlo!

]

[

(Thiλhi)
Nhi e−Thiλhi/Nhi!

]

(4)

(the notation “f (·) ∝ g(·)” means that the function f is
proportional to g, i.e., that f (x) = c · g(x) for some unspecified
constant c > 0. Note that, unlike probability density functions,
likelihood functions are only defined up to an arbitrary positive
multiplicative factor). Note that all the {τj} lie in the interval
[0,T], so only transition times {sm, tm} in that interval contribute
to the sums in either Equations (2, 3), and hence only those
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appear in the likelihood function of Equation (4). We still model
transition times subsequent to [0,T], though, for the purpose of
making forecasts.

2.1.2. Prior Distributions for Eruptive Activity
Our initial efforts to model λ(t) with a two-state Markov chain
(i.e., a renewal process with exponentially-distributed waiting
times between transitions—see Chaps. 4, 5 of Karlin and Taylor,
1975) failed: under such a model, some high- and low-activity
periods would last just days while others would last years. The
observed durations of high-activity and low-activity periods are
more regular than independent exponential distributions would
allow. This led us to the following approach.

2.1.3. Prior Distribution for Transition Times
To reflect this regularity we introduce a renewal process with
independent gamma distributions for the durations

{(sm − tm−1)} iid∼ Ga(αlo,β) {(tm − sm)} iid∼ Ga(αhi,β)

of low-activity and high-activity intervals, respectively (here “iid”
means the random variables are independent and identically
distributed, and “Ga(α,β)” denotes the Gamma distribution—
see Appendix). We take distinct unitless shape parameters
αlo,αhi > 0 and a common rate parameter β > 0 (in yr−1).
For shape parameters αlo,αhi exceeding one, these intervals will
be more regular than exponentially-distributed ones would be
(the unitless “coefficient of variation”, the standard deviation as a
fraction of the mean, is unity for the exponential distribution and
σ/µ = 1/

√
α for the Ga(α,β) distribution, so for α > 1 these

distributions are less variable than exponential distributions).
We model the transition times {sm, tm} explicitly for a fixed

number M of intervals, chosen large enough to ensure that
the range [0, tM] will include the entire study period [0,T′]
(of observations and forecasts) with very high probability (this
can be ensured by taking M ≫ T′β/(αlo + αhi), since tM ∼
Ga(M(αlo + αhi),β)). This leads to a prior probability density
function (pdf) of the form

π(Est) ∝
M
∏

m=1

{

flo(sm − tm−1)fhi(tm − sm)
}

where flo(t) and fhi(t) are the pdfs for the low-activity and high-
activity period lengths, respectively. For the Gamma distributions
we employ, this prior pdf is

π(Est) ∝
M
∏

m=1

{

βαlo (sm − tm−1)αlo−1

Ŵ(αlo)
e−β(sm−tm−1)

βαhi (tm − sm)αhi−1

Ŵ(αhi)
e−β(tm−sm)

}

or log prior pdf (often easier to work with) given by

logπ(Est) = const+ (αlo − 1)
M

∑

m=1

log(sm − tm−1)+ (αhi − 1)

M
∑

m=1

log(tm − sm)+M(αlo + αhi) logβ

−M[logŴ(αlo)+ logŴ(αhi)]− βtM , (5)

where Ŵ(z) denotes Euler’s gamma function (Abramowitz and
Stegun, 1964, section 6.1).

Values for the prior hyper-parameters (i.e., quantities
governing the probability distributions of the parameters, like
{sm} and {tm}, that in turn govern the probability distributions
of observable quantities like the times and volumes of eruptions)
αlo,αhi,β governing interval lengths are based on their elicited
means αlo/β ≈ 3 year and αhi/β ≈ 1 year and coefficient of
variation σ/µ ≈ 0.5 for full cycles (sm+1 − sm). Results were
insensitive to these choices.

2.1.4. Prior Distribution for Levels of Activity
We model the rates 0 < λlo < λhi < ∞ of PDCs with volume
V > ǫ with a joint prior distribution with density

π(λlo, λhi) ∝ λ
alo−1
lo

λ
ahi−1
hi

(λhi − λlo)
re−bλlo−bλhi1{0<λlo<λhi}

(6)

for unitless shape parameters alo, ahi > 0 and repulsion
parameter r > −1, with rate parameter b > 0 (in yr). Here the
notation 1E for an event E denotes the indicator function taking
the value one if the event E occurs and otherwise zero. For r = 0
this gives independent Gamma random variables conditioned
to satisfy the order relation λlo < λhi, but taking r > 0 will
encourage larger separation |λhi − λlo| between the high and low
rates.

Values for the hyper-parameters alo, ahi, b, r governing high
and low event rates are based on their elicited typical values
alo/b ≈ 0.10 d−1 for λlo and ahi/b ≈ 0.50 d−1 for λhi, and
their coefficients of variation and correlation (note valuesmust be
converted from d to yr). This prior distribution is “conjugate” in
the sense that the posterior distribution is of the same form, with
new values for the hyper-parameters alo, ahi, b that will depend
on the data.

2.1.5. Posterior Distribution for λ(τ )
Figure 5 illustrates posterior samples from the function λ(τ ),
showing moderate variability in the levels λlo, λhi (MLEs λ̂lo =
30.9 events/yr, 95% CI [27.4, 34.5]; λ̂hi = 261.3 events/yr, 95% CI
[240.1, 283.9]) but little variability in the transition times {sm, tm}
[standard deviations of durations (tm − sm) of high-level periods
average 7.28 d, those of durations (sm − tm−1) average 2.58 d].

Figure 6 shows posterior modeled periods of high PDC
frequency shaded slate blue, with transition times {sm, tm} shown
as dark blue lines whose width indicates their uncertainty. Actual
observed cumulative PDC event counts are shown as red curve.
Interestingly, transition times {sm} from high to low activity
appear more precisely determined by the data than those {tm}
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FIGURE 5 | Posterior distribution samples of function λ(τ ).

FIGURE 6 | Cumulative event counts as red curve, with posterior high-activity periods indicated by slate blue shading and transition times between activity levels

indicated by dark blue lines. Width of dark blue segments indicates posterior uncertainty about transition times. Line slopes correspond to heights in Figure 5.

from low to high. This may, for example, impact decisions on the
timing of enlarging no-entry zones when faced with indications
of newly heightened activity levels.

2.2. A Dynamic model for PDC Volume and
Direction
Here we model the volumes V and initial directions φ of PDCs at
SHV.

2.2.1. A Dynamic Model for PDC Volumes
Large flow volumes {vj} at Soufrière Hills Volcano are well fit by
a power law or Pareto probability model in which the conditional
probability that a PDC volume exceeds any value v, given that it
exceeds a lower threshold v0, is approximately proportional to a

negative power of v:

P[V > v | V > v0] ≈ (v/v0)
−α v > v0. (7)

The near-linearity on the log-log scale plot of frequency-vs.-
volume presented in Figure 7 suggests that this holds for α ≈
1.10 and any v0 ≥ 6 · 106m3 (note that α is commonly
referred to as the “shape parameter” of the Pareto distribution).
Artifacts in the dataset (such as the clumping of reported
values at round numbers of 5 · 106m3 and below) affect
reported volumes for smaller flows, making it difficult to confirm
or refute relation (7) for lower values of v0. We make the
modeling assumption that Equation (7) continues to hold for
values of v0 as small as the lower limit of flows reported in
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Ogburn et al. (2012), 0.15 · 106m3. We denote this lower limit
by ǫ : = 0.15 · 106m3, and limit our modeling efforts to
flows of volume V ≥ ǫ. This assumption makes very little
difference in forecasts of flows large enough to be hazardous,
e.g., those exceeding 106m3 (which we term “significant”). A
generalized likelihood-ratio test gave a GLR of 3 = 3.6 ·
10−30 for Log-Normal distributions compared to Pareto for all
145 recorded PDCs of volume exceeding ǫ and 3 = 4.3 ×
10−7 for the 45 significant PDCs of volume exceeding 1 ·
106m3, overwhelming evidence in favor of the Pareto. Note
this contrasts with the results of Neri et al. (2015), who found
the evidence about log-normal vs. Pareto inconclusive for a
smaller data set and who expressed their own preference for the
log-normal.

The Pareto distribution has much heavier tails than do more
commonly encountered distributions like the exponential, log-
normal, or gamma, i.e., the probability of exceeding high
thresholds for Paretos does not decrease as fast as it does for
these other distributions. As a consequence, under this Pareto
model one is much more likely to observe future volumes that

far exceed those in the recent history. For example, if {Vi} iid∼
Ex(λ) are independent with identical exponential distributions,
the probability that a new observation V11 would be ten time
higher than the largest max(V1, . . . ,V10) of ten recent ones is
about 5·10−6; for Pareto random variables (like ours) with α ≈ 1,
it’s about 10−2. The probability that V101 is ten times higher than
the most recent 100 values max(V1, . . . ,V100) for exponential
random variables is about 2 · 10−14; it’s far larger for Pareto
random variables, about 10−3.

The evidence against stationarity of PDC volumes, like that
against independence of initiation angles and PDC volumes
described in section (1), is very weak. Thus, we model PDC
volumes {Vj} exceeding threshold ǫ : = 0.15 · 106m3 as

independent and identically-distributed Pa(α, ǫ) random
variables, independent of the times {τj} and initiation
angles {φj}. Note, this modeling choice is the only one
shared between this work and our earlier modeling efforts
(Bayarri et al., 2009), presenting a simpler stationary
model.

2.2.2. Interval Censoring
Some PDC volumes vj are specified precisely in our data
set; for others (typically smaller ones), we learn only that vj
lies in a reported interval [vmin

j , vmax
j ]. Such data are said to

be “interval censored”. Let J0 be the set of indices for the
uncensored observations, let J1 be the index set for censored
observations, and let J : = J0 ∪ J1 denote their union, the
set indexing all observations. From (7), the likelihood and log

von Mises pdf

φ
−180 −90 0 90 µ 180

FIGURE 8 | Periodic probability density functions for von Mises distributions

centered at µ = 135◦ (due NW, toward the Belham Valley) with six possible

concentration parameters κ ∈ {0, 0.5, 1, 5, 10, 20}. Distribution is more

concentrated (with higher peaks at φ = µ) for larger κ. Thick line is κ = 1,

dotted line is κ = 0 (uniform pdf on S1) for contrast.
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likelihood for the Pareto shape parameter α, based on observed
values {vj : j ∈ J0} of independent Pareto-distributed random

variables {Vj : j ∈ J0} iid∼ Pa(α, ǫ) representing the volumes
of PDCs exceeding ǫ = 0.15 · 106m3, would be anything
proportional to L0 and any constant plus ℓ0, respectively, for:

L0(α) = (α/ǫ)|J0|
{

∏

j∈J0
(vj/ǫ)

}−α

ℓ0(α) = |J0| log(α/ǫ)− α
∑

j∈J0
log(vj/ǫ). (8a)

The precise volumes vj of some (particularly smaller)
PDCs in our data, however, are not reported— instead, an
interval [vmin

j , vmax
j ] is reported with the understanding

that vmin
j ≤ vj ≤ vmax

j . Some of these are shown in

Figure 7 as horizontal line segments indicating the range
of possible values of vj. The likelihood and log likelihood

for interval-censored data {(vmin
j , vmax

j ) : j ∈ J1} of this kind
are

L1(α) =
∏

j∈J1

[

(vmin
j /ǫ)−α − (vmax

j /ǫ)−α
]

ℓ1(α) =
∑

j∈J1
log

[

(vmin
j /ǫ)−α − (vmax

j /ǫ)−α
]

=
∑

j∈J1
log

[

1− (vmin
j /vmax

j )α
]

− α
∑

j∈J1
log(vmin

j /ǫ). (8b)

Combining (8a) (and setting vmin
j : = vj) for the uncensored

volume observations {vj : j ∈ J0}, and (8b) for the censored ones

{(vmin
j , vmax

j ) : j ∈ J1}, gives overall log likelihood

ℓ(α) = |J0| log(α/ǫ)+
∑

j∈J1
log

[

1− (vmin
j /vmax

j )α
]

−α
∑

J0∪J1
log(vmin

j /ǫ) (9)

reflecting the evidence about α from both censored and
uncensored observations. This reflects fully the uncertainty
arising from imprecisely reported (i.e., interval censored)
volumes.

2.2.3. A Dynamic Model for PDC Angles
Figure 2 suggests that, in the periods between major dome-
collapse PDC events, initiation angles {φj} are not uniformly
distributed on the circle— rather, within those epochs they
appear to be concentrated in the vicinity of some central
direction, which may change following PDC events large enough
to change the dome morphology (often by dome collapse). We
take flows exceeding a threshold volume of � : = 6 · 106m3

as surrogates for “dome collapse events”, and model initial flow
angles in the epoch (Te,Te+1] between successive major flows of
volume V > � with von Mises distributions:

{φj} ind∼ vM(µe, κφ), Te < τj ≤ Te+1 (10a)

(where “
ind∼” indicates that the {φj} are independent with

the specified distributions, here the indicated von Mises)

FIGURE 9 | Ninety-five percent credible intervals for centrality parameter µe at each time τ during epoch (Te,Te+1], based only on data in interval (Te, τ ]. Predictive

distributions for flow directions {φj} (not shown) are much wider, reflecting additional uncertainty about how φj varies from the center µe of its distribution. Thick black

lines indicate 95% intervals for µe at time Te+1 ending this epoch (and beginning the next), while thick red segments indicate valleys inundated by major flow at time

Te+1 ending the epoch.
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for a common concentration parameter κφ and epoch-
specific centrality parameters {µe}. Note that we model
the precise direction φj of initial dome collapse, but we
observe only the valley(s) inundated by the resulting PDC.
A Generalized Likelihood Ratio Test comparing the fit to
data of a single von Mises distribution for all PDCs,
compared to fitting separate von Mises distributions within
epochs, generated a χ2 statistic of 214.5 on 20 degrees
of freedom, for a p-value of 1.5 · 10−34, overwhelming
evidence against uniformity of the angular distribution across
epochs.

The von Mises distribution (von Mises, 1918; Mardia and
Jupp, 1999, section 3.5.4) on the circle S1 of possible initiation
angles φ is governed by two parameters: the central direction
µ ∈ S1 and the concentration κ ≥ 0. A concentration of κ = 0
gives the uniform distribution on S1 with no concentration at all,
while larger values of κ are more and more concentrated in a
small range symmetrically distributed around µ. The probability
density function for the vM(µ, κ) distribution (in degrees) with
centrality parameter µ ∈ S1 and concentration parameter κ ≥ 0
is given in Equation (10b) (in which I0 denotes the modified
Bessel function of order zero; see Abramowitz and Stegun, 1964,
section 9.6.16) , and is plotted for a few representative values of κ

(all centered at µ = 135◦) in Figure 8.

fvM(φ | µ, κ) = 1

360 I0(κ)
exp

(

κ cos(φ − µ)
)

(10b)

Figure 2 suggests that the initial angles of PDC events seem to
be centered within particular valleys between successive major
events of volume V > � = 6 · 106m3. To explore this
phenomenon, we fit a sequence of von Mises vM

(

µe(τ ), κµ

)

distributions whose centrality parameter µe is a function of time
τ .

In an attempt to guide our modeling efforts, we explore
von Mises fits to data in intervals between major events.
Figure 9, with time on the horizontal axis, shows red vertical
bars representing the valleys inundated by major flows, the
same valleys shown as red arcs in Figure 2. Angles in the
range (−180◦,+180◦] counter-clockwise from due East (0◦) are
plotted on the vertical axis. The blue-gray vertical bars represent
95% credible intervals for the von Mises centrality parameters
{µe}, fit using Maximum Likelihood estimates based only on
the valley data in the time interval (Te, τ ] from the previous
major event Te up to the current time τ . This estimate is re-fit
every time an additional PDC valley record is included as time
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evolves. Generally, as time progresses the fit to the centrality
parameter gets tighter and often happens to coincide with the
valley inundated by the next major flow. This agreement is
highlighted by the black vertical bars, the 95% credible interval of
the centrality parameter at the time Te+1 of the next major event
(using all valley data between major PDCs, Te < τ ≤ Te+1),
plotted along with (and often on top of) the red bars. The success
of the vonMises fits within each epoch bracketed by major events
motivates the following modeling choices.

To reflect this phenomenon, we update the centrality
parameter µe following the major PDC of volume Vj > � at
time τj = Te+1 that ends the epoch (Te,Te+1], with a new one:

µe+1 ∼ vM(µe, κµ) (10c)

drawn from another von Mises distribution centered at the old
direction µe with its own fixed concentration parameter κµ. The
resulting posterior conditional density is:

π( Eµ,α, κφ , κµ | EV , Eφ, Eτ ) ∝
N

∏

j=1

[

fPa(Vj | α, ǫ)× fvM(φj | µej , κφ)
]

×
∏

e≥1

fvM(µe+1 | µe, κµ) (10d)

where N is the number of PDC events {(Vj,φj, τj)} and where
fPa(v | α, ǫ) and fvM(φ | µ, κ) denote the pdfs of the Pa(α, ǫ)

and vM(µ, κ) distributions, respectively, evaluated at volume v
and direction φ.

Here “ej” denotes the epoch e of the jth PDC, which occurs at
a time τj satisfying Te < τj ≤ Te+1. The epoch boundaries {Te}
and event epochs ej can be calculated from the data {(Vj,φj, τj)}
by setting T0 : = 0 and, for e ∈ N : = {1, 2, 3, . . . } and j ∈
{1, 2, . . . ,N},

Te : = min{τj > Te−1 : Vj > �}
ej : = max{e : Te < τj}

In practice the times τj for all PDC events are observed with
adequate precision, but some PDC volumes Vj and initial angles

φj are not— for some we learn only a range [vmin
j , vmax

j ] for the

volume, and for allwe learn onlywhich valley(s) a flow inundated,
and not the specific initial angle φj, so the data are interval-
censored. We accommodate the interval-censored volumes using
the approach of section (2.2.2), and the interval-censored angles
by integrating each term fvM(φj | µej , κφ) in (10d) with respect to
φj over the appropriate intervals 8j representing river valley(s)
for that flow. Note this approach fully reflects in model forecasts
all uncertainty about the precise (but unreported) volumes and
angles of flows. Our model for the times and angles of PDCs
may be viewed as a self-exciting point process model (i.e., one
in which uncertain point intensities are positively correlated at
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FIGURE 11 | Epoch-specific posterior predictive density functions for PDC initial directions {φj}. Area of solid colored band represents the probability (also indicated in

the top left of each subplot) for the azimuth range of the valley actually inundated by the next major (Vj > �) PDC at epoch-ending time Te+1. Each periodic plot is

displayed centered at 0◦, due East.
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nearby times). Other authors (e.g., Bebbington andCronin, 2011;
Bevilacqua et al., 2016) have used self-exciting point processes to
model event locations and times on geological time scales.

Figure 10 shows posterior histograms of PDC central
directions {µe} for ten epochs (Te,Te+1]; compare with Figure 2,
presenting raw data for the same ten epochs. Figure 11 shows
the posterior predictive density function for angles {φj} within
each epoch (Te,Te+1], as light blue curves, along with the
valleys filled by the major PDCs ending those epochs, as shaded
intervals.

3. RESULTS

3.1. Retrospective Short Term Forecasts
To illustrate how our methods may be used to make short-term
forecasts, and to validate those forecasts, we select a specific time
in our data set (1st January 2006, a decade into the eruption) and
compare model forecasts for the next few years based only on
data prior to that date with actual observations from those same
years.

Figure 12 shows 100 forecasts of cumulative PDC volume
from 1st January 2006 to 1st August 2008 (just over 2.5 years),
all based on eruption data prior to 2006. Solid black symbols
show the actual cumulative PDC volume then observed in
that forecast interval, exhibiting eruption rates and jump sizes
similar to those in model forecasts. This may be viewed as
a validation of our forecast approach: forecasts of “future”
collapse frequencies within the existing data set, based on

prior data, are broadly consistent with observations of what
actually occurred. For example, the central 90% predictive
forecast interval for cumulative volumes after 180 days is 4–
250 · 106m3, and the actual cumulative volume at that date
was 120 · 106m3; the central 90% predictive interval for the
highest-volume PDC (and so the biggest jump) in the first year
is 2.2–350 · 106m3, while the largest observed PDC volume is
200 · 106m3.

Figure 13 shows the forecast activity levels λ(t), cumulative
event counts, central directions {µe} (counter-clockwise
from due East), and cumulative volumes in Figures 13A–D,
respectively, from a single draw from the posterior predictive
distribution of activity from 1st January 2006 through 1st August
2008. Note that during time intervals of high frequency λ(t) (as
indicated in Figure 13A), PDC event frequencies in Figure 13B

are higher (i.e., cumulative event count slope is steeper), and
density of points is higher in Figures 13C,D. Also note that
change times for centrality parametersµe in Figure 13C coincide
with major jumps in cumulative volume Figure 13D), i.e., with
large-volume PDCs.

Figure 14 offers another way of visualizing the same posterior
predictive simulation presented in Figure 13. Time (in days) is
represented radially on a linear scale. Central angles {µe} are
represented as radial line segments that may change at the times
(indicated by concentric circles) of dome-collapse PDCs, whose
angles are indicated by filled colored circles. This draw featured
two such major PDCs, and so two full epochs and part of a third,
in that first approximately 2.5 years.
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FIGURE 12 | Forecast activity, with data overlaid. Shows 100 forecasts of cumulative PDC volume in the period from 1st January 2006 to 1st August 2008, forecast

using prior data. Asterisk symbols “∗” show realized cumulative volume. Thick blue lines show pointwise 90% prediction intervals.
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FIGURE 13 | One posterior draw of simulated forecast PDC activity for the period from 1st January 2006 to 1st August 2008 (943 days), forecast using prior data.

Top panel (A) shows expected frequency λ(t) of PDC events. Second panel (B) shows cumulative event counts. Third panel (C) shows forecast central directions {µe}
as solid blue curve and individual PDC events as red dots. Bottom panel (D) shows cumulative volume.

Probability forecasts based on Monte Carlo simulations of
PDCs (i.e., repeatedly sampling volumes Vj, times τj, and
initiation angles φj as illustrated in Figures 12, 13), based on
the posterior distributions described in this work, quantify both
epistemic and aleatoric uncertainty—let us explain further. Note
that in Figures 5, 10 that there is not one single “right” value
of λlo, λhi, or {µe}, but for each of these parameters there is
a distribution of possible values, some more likely than others.
This is also true for the Pareto shape parameter α (the negative
slope of the log-log volume distribution intended to model the
data in Figure 1). In the Bayesian paradigm, such distributions
of parameters reflect the epistemic uncertainty resulting from
the fact that these models (and parameters) are fit using a
limited quanity of imperfect data. Each thin colored curve in
Figure 12 has its own sample values of λlo, λhi, and α, that
specify the Poisson and Pareto distributions used to sample
PDC event times and volumes. Each thin colored curve in the
cumulative volume forecast is then calculated by summing up
(sampled) PDC volumes at the (sampled) times they occur.
This idea is perhaps easier to see in Figure 13. The solid blue
lines in the panels represent samples from parameter probability
distributions (frequencies in the top panel, central angles in the
third panel). The orange dots are various PDC samples over time.
Together the panels in Figure 13 represent one realization of a

PDC forecast. A different realization would have both different
parameter samples (blue curves) and PDC samples (orange dots).

Aleatoric uncertainty describes the natural randomness of a
system, so modeling the system probabilistically is the first step
to quantifying aleatoric uncertainty. Our modeling approach lets
us take this one step further to incorporate information about
the current state of the system. That is, we can begin a probability
forecast in either a state of high or low PDC frequency, chosen to
match the current (at the beginning of the forecast period) level
of activity available frommonitoring data. Likewise, we can begin
a forecast where the central angle µ0 is set to reflect the current
dome alignment. The later case leads to dramatic differences in
short-term forecasts, as illustrated in Figure 15. In either case
if we were to forecast over longer time horizons, say years, the
effects of non-stationary modeling would wash out. That is, the
system would naturally evolve away from its initial state (high or
low frequency, initial dome alignment, etc.) making probability
forecasts much less sensitive to assumptions about the initial
state of the system. This illustrates the importance of both non-
stationary probabilistic modeling and potential incorporation of
monitoring data into short term forecasts.

Figure 15A shows the forecast probability of large flows (V >

Vthresh forVthresh = 2, 5, or 10·106m3) down the azimuth sector
covered by the Belham valley in the first t days following 1st
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FIGURE 14 | Same posterior draw of forecast PDC activity as in Figure 13,

for the period of 1st January 2006 through 1st August 2008. Time in days

since 1st January 2006 is shown radially on linear scale. Colored radial

segments indicate central directions {µe}, which change at epoch-ending

times τj = Te of events Vj > � = 6 · 106 m3 (indicated by concentric circles,

with direction of major flows shown as filled circles). Individual PDC events are

shown as colored dots.

January 2006, based on data prior to 2006, for two possible dome
orientations suggested by monitoring information: one facing
due East toward the Tar valley, µ0 = 0◦, typical for SHV in 2000
(the lower dashed curves); and one facing Northwest toward the
Belham valley, µ0 = 135◦, typical for SHV in 2018 (the upper
solid curves). This illustrates how easily changing conditions can
be reflected in model forecasts in this modeling approach, and
how they affect forecasts.

Figure 15B shows daily hazard, the probability of Belham
Valley inundation on the tth day after 1st January 2006
conditionally on no prior inundation. For Vthresh = 5 · 106m3,
at t = 180 d the probability is about 1.5 · 10−3/ d if the initial
dome faces the Belham valley (µ0 = 135◦), notably higher than
the value 1.0 ·10−3/ d if the initial dome faces the Tar River valley
(µ0 = 0◦). By t = 600 d there is no difference in hazard— it
is approximately 1.1 · 10−3/ d for both µ0 = 135◦ and µ0 =
0◦. This illustrates how the present methodology is capable of
supporting short-term forecasts that reflect current conditions,
unlike models embodying stationary assumptions.

Although Figures 12, 15 both present forecasts, they are
different in nature and it is worth contrasting them. The
information presented in Figure 12 about cumulative volumes
(model samples, confidence intervals, and data) provides a
validation of sorts—the data (black asterisks) look much like
a sample from our model (colored curves). In Figure 15 we
present probability forecasts and instantaneous hazard curves

conditioned on a current state of the volcano (dome growth
direction) that could be informed by monitoring data. This kind
of short-term forecasting, that can be readily updated as new data
become available or as the system evolves, is howwe imagine such
modeling efforts will be utilized by volcanologists, observatories,
and civil protection authorities.

4. DISCUSSION AND CONCLUSIONS

Statistical modeling assumptions based on stationarity are
reasonable for long-time pyroclastic density current forecasting
(5–10 years), but they are neither reasonable nor consistent with
data over short time scales (days–months). In this work, we
introduce models for frequency, volume, and initial direction
of pyroclastic density currents that can capture non-stationary
and heavy-tailed behavior consistent with the data at SHV. The
data clearly contain periods of high and low frequency of flows
associated with phases of dome growth and extrusion pauses.
This is consistent with geological observations that as a given
lava lobe extrudes, PDCs are generated around that locus of
activity but after a significant dome collapse, subsequent new
growth may occur on a different part of the dome (Calder et al.,
2002).

Furthermore, the directional data show that sequential small
flows tend to inundate the same or adjacent valleys and that they
tend to precede a moderately large to large flow with a similar
orientation, after which the dominant direction may change.

Our statistical modeling assumptions are simple and,
importantly, are not tied to geological observations or
explanations, yet are consistent with the behavior of the
data. Our model allows the system to change from a high-to-
low or low-to-high frequency at random times. It allows the
directions (or valleys) of successive flows to vary randomly yet
have a shared preference. It also allows this shared preference to
be re-set after each major pyroclastic density current. In addition,
our volume model indicates that we are in a heavy-tailed regime
where larger-than-recorded events must be accounted for in
forecasting. This is a key outcome, which is critically important
for volcanic hazard assessment. We employ the Bayesian
paradigm for inference and forecasting, which provides a
coherent mechanism to account for uncertainty about both
model fit (epistemic uncertainty, arising from our imprecise
knowledge of model parameters and the imperfect fit of the
model to nature) and forecasts (which must also reflect aleatoric
uncertainty, or the natural variability of geophysical systems).
Data constrain this model well, and retrospective forecasts are
consistent with the data.

We believe that the power of this modeling framework lies
in its ability to support updating short-term forecasts during
periods of rapidly changing activity. (Note that this or a similar
framework could be applied to other active volcanic systems,
other volcanic hazard types, or to other natural hazards.) That
is, we can condition forecasts on the knowledge that we are
currently in a period of high-activity (or low-activity), but
still account for the fact that there is a significant chance of
transition between those levels during the forecast interval.
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FIGURE 15 | (A) forecast probability of a PDC inundating the Belham Valley with a volume exceeding threshold Vthresh in first t days following 1st January 2006, vs. t,

for a dome facing the Tar valley (due East, µ0 = 0◦, typical for SHV dome in 2000), as dashed curves; and for a dome facing the Belham Valley (Northwest,

µ0 = 135◦, typical for 2018), as solid curves. Threshold volume Vthresh is 2 · 106 m3 for cyan curves, 5 · 106 m3 for blue curves, and 10 · 106 m3 for black curves.

Forecasts are based only on data prior to 1st January 2006. (B) forecast daily hazard of Belham inundation by a flow exceeding 5 · 106 m3 for a longer period, for a

dome facing the Belham (µ0 = 135◦), as upper blue curve, and for a dome facing due East (µ0 = 0◦), as lower red curve. Note hazards differ strikingly for first 200

days but are indistinguishable after 600 days. Daily (or instantaneous) hazard is the probability of inundation on day t, conditional on having no earlier inundation.

Likewise, we can make short-term forecasts based on other
readily observable traits of the system (e.g., dome growing
toward east vs. dome growing toward northwest). The fact that
our model also accounts for epistemic uncertainty is critical for
hazard assessment as quantitative analysis of data is necessary
for fully defensible decision making (Bretton and Aspinall,
2017).

Probabilistic volcanic hazard maps such as those developed
in Connor et al. (2012); Volentik and Houghton (2015); Biass
et al. (2016); Mead and Magill (2017) represent the state of
the art in volcanic hazard assessment. Each of these works
combines probabilistic scenario models and physical simulations
of potentially hazardous volcanic processes (lava flows, lahars,
and tephra fallouts, respectively). However, the computational
expense of exercising a physical model at a large number of
samples from a scenario model is often a limiting factor in
constructing a probabilistic assessment. This typically has the
result that a probabilistic hazard map needs to “settle” for a single
scenario distribution.

Looking forward, modeling efforts like those presented
here provide additional flexibility. In particular, they may
be even more powerful when used in conjunction with
complex geophysical models, and in simulations of pyroclastic
density currents to make short-term probabilistic hazard maps.
Probabilistic hazard maps for pyroclastic density currents display
probabilities of inundation spatially in potentially vulnerable
areas surrounding a volcano (Bayarri et al., 2009, 2015; Spiller
et al., 2014). These works introduce an efficient approach
to combine scenario and physical models that results in the

rapid construction of probabilistic hazard maps that enable
the exploration of various aleatoric scenarios. Short-term
probabilistic hazard maps, constructed this way, would allow one
to visualize the change in hazard threat as scenario models are
updated.
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