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A layer of debris cover often accumulates across the surface of glaciers in active

mountain ranges with exceptionally steep terrain, such as the Andes, Himalaya, and

New Zealand Alps. Such a supraglacial debris layer has a major influence on a glacier’s

surface energy budget, enhancing radiation absorption, and melt when the layer is thin,

but insulating the ice when thicker than a few cm. Information on spatially distributed

debris surface temperature has the potential to provide insight into the properties of

the debris, its effects on the ice below and its influence on the near-surface boundary

layer. Here, we deploy an unmanned aerial vehicle (UAV) equipped with a thermal

infrared sensor on three separate missions over one day to map changing surface

temperatures across the debris-covered Lirung Glacier in the Central Himalaya. We

present a methodology to georeference and process the acquired thermal imagery,

and correct for emissivity and sensor bias. Derived UAV surface temperatures are

compared with distributed simultaneous in situ temperature measurements as well as

with Landsat 8 thermal satellite imagery. Results show that the UAV-derived surface

temperatures vary greatly both spatially and temporally, with −1.4 ± 1.8, 11.0 ± 5.2,

and 15.3 ± 4.7◦C for the three flights (mean ± sd), respectively. The range in surface

temperatures over the glacier during the morning is very large with almost 50 ◦
C.

Ground-based measurements are generally in agreement with the UAV imagery, but

considerable deviations are present that are likely due to differences in measurement

technique and approach, and validation is difficult as a result. The difference in spatial

and temporal variability captured by the UAV as compared with much coarser satellite

imagery is striking and it shows that satellite derived temperature maps should be

interpreted with care. We conclude that UAVs provide a suitable means to acquire

surface temperature maps of debris-covered glacier surfaces at high spatial and

temporal resolution, but that there are caveats with regard to absolute temperature

measurement.
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1. INTRODUCTION

Around 10% of the total glacierized area in High Mountain Asia
(Scherler et al., 2011; Gardelle et al., 2013) is covered by a debris
layer, but in terms of mass, a substantially larger amount of ice is
affected by debris. Especially in regions with many large debris-
covered glacier tongues, such as the Karakoram and Himalaya,
the proportion of glacier ice mass that is covered by debris in
the ablation zone reaches ∼40%. Consequently, future changes in
water resources for heavily glacierized catchments in the region
partly depend on the long-term melt rates of debris-covered
glaciers (Kraaijenbrink et al., 2017).

Ice melt rate beneath a layer of supraglacial debris is a function
of debris thickness (Østrem, 1959;Mattson et al., 1993; Nicholson
and Benn, 2006), with melt enhancement under thin (.5 cm)
debris layers, and melt reduction under thicker layers (&5 cm).
Debris is generally thin at higher elevations and thickens down-
glacier due to various processes, e.g., rockfall, (re)surfacing of
englacial debris and erosion of lateral moraine material (Evatt
et al., 2015). In practice, however, debris thickness and ice
melt rates can be quite variable on small scales (Rounce and
McKinney, 2014), resulting in heterogeneous thinning and the
hummocky surface that is often observed on debris-covered
glaciers. Supraglacial ponds and ice cliffs, which are typical
surface features for this type of glacier, as well as supra- and
englacial drainage also contribute to (spatially variable) surface
lowering (Sakai et al., 2000; Immerzeel W. et al., 2014; Buri et al.,
2016b; Miles et al., 2016).

Surface temperatures derived from satellite-based thermal
infrared (TIR) measurements have been previously used to infer
debris thickness by temperature inversion methods (Mihalcea
et al., 2008b; Foster et al., 2012; Rounce and McKinney, 2014;
Schauwecker et al., 2015; Kraaijenbrink et al., 2017). Higher
surface temperatures are assumed to correspond to thicker debris
layers, as the insulating effect of the debris shields the debris
surface from the cold ice. However, the accuracy of satellite-based
surface temperature measurements has not been examined in
detail for high-altitude glacierized regions. Furthermore, the use
of a single thermal image to constrain debris thicknesses may
result in significant errors as surface temperatures can evolve
rapidly under changing solar radiation, solar azimuth angle, and
weather conditions.

Unmanned aerial vehicles (UAVs) offer the opportunity to
measure surfaces of debris-covered glaciers in high spatial
and temporal resolution and this has been explored in recent
years (e.g., Westoby et al., 2012; Immerzeel W. et al., 2014;
Kraaijenbrink P. et al., 2016; Kraaijenbrink P.D.A. et al., 2016).
Ground-based thermal infrared mapping of debris-covered
glaciers has already been demonstrated (Aubry-Wake et al., 2015,
2017), but the recent advances in UAV-mounted thermal cameras
have not yet been explored for this type of glacier.

The primary objectives of this research are to demonstrate
UAV thermal mapping techniques on a debris-covered glacier,
and to pave the way for applied studies on the surface
properties and processes of debris-covered glaciers. We outline a
methodology to generate surface temperature maps using optical
and thermal imagery, compare UAV measured temperatures

against bias-corrected in situ surface temperature measurements,
and quantify spatial and temporal variability in observed
surface temperatures from both UAV and satellite-based thermal
imagery.

2. STUDY AREA

Lirung Glacier (28◦14′2′′N, 85◦33′43′′E) is an approximately
500m wide glacier with a debris-covered tongue of 3.000m in
length (Figure 1). The glacier lies in the Langtang Valley, which
is part of a glacierized catchment in the Central Himalaya, Nepal.
Most of the annual precipitation in the catchment falls during
the monsoon from June to September (Immerzeel W.W. et al.,
2014; Collier and Immerzeel, 2015). The debris-covered tongue,
which ranges in elevation from 4,050 to 4,350 m.a.s.l (meters
above sea level), is fully detached from the steep accumulation
zone that reaches up to the Langtang Lirung Peak (7,235
m.a.s.l.). The tongue is consequently only fed by avalanching

FIGURE 1 | Study area at the debris-covered tongue of Lirung Glacier,

Langtang Valley, Nepal. The map shows the locations of all ground control

points (GCPs), tie points, Tidbit temperature loggers, the automatic weather

station (AWS), and the FLIR C2 survey. The coverage of both the optical (RGB)

and thermal infrared (TIR) surveys are also indicated on the map. The inset

shows the location of Langtang Valley in Nepal.
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and erratic snowfall. Over the monsoon season of 2013, the
tongue experienced an average thinning of about 1.1m. However,
the thinning of the glacier is highly heterogeneous and rates of
surface lowering near supraglacial ponds and ice cliffs are up to
10 times higher than the average (Immerzeel W. et al., 2014).

3. DATA AND METHODS

3.1. Temperature Measurements
Two main definitions of the temperature of a body can be
distinguished (Becker and Li, 1995), which are both measured
differently. First, there is the thermodynamic temperature of
a body in thermal equilibrium, which can be measured by a
thermometer for a given position in space. Second, there is
radiometric temperature, which corresponds to the radiance
emitted by a surface and is also referred to as skin temperature.
It can be measured by a radiometer from a distance given that
the emissivity of the body is known. In the case of homogeneous,
isothermal bodies, the two temperatures agree. However, the
situation is more complex for land surfaces with small-scale
roughness and a composition of various materials, such as moist
gravel, or sparse grass cover with exposed soil (Minnis and
Khaiyer, 2000). This is particularly true under incoming solar
radiation during daytime, which heats up the surface (skin) of
a body and creates temperature gradients both within the body
and at the body-air interface.

A temperature sensor placed on a surface will measure the
micro climate surrounding the sensor, whereas a radiometer will
measure the temperature emitted by the skin of the body (radiant
temperature). Consequently, the two temperature measurements
correspond best for shaded surfaces or liquids with a submersed
thermometer. Measurements may differ for thermometers placed
on sunlit surfaces or within a body with inhomogeneous
temperatures (e.g., sand during day time), and for radiometric
temperatures if the atmosphere between the radiometer and the
radiance-emitting surface has a different temperature than the
surface.

3.2. Outline of Methodology
To produce and evaluate the UAV-derived surface temperature
maps of the debris-covered Lirung Glacier five main steps were
performed:

1. On 30 April 2016, a UAV survey of the glacier was performed
in which we collected optical imagery. On 1May 2016, thermal
data was collected on three separate UAV surveys over the
course of the morning. The acquired imagery of both sensors
were processed into orthomosaics.

2. A correction for emissivity was applied to orthomosaics of
radiant temperature to obtain actual skin temperatures of the
debris. For this, a spatially distributed emissivity map was
produced using object-based image classification of the optical
data.

3. UAV-measured skin temperatures were evaluated against (1)
in situ temperature measurements taken at the time of
the survey using a set of distributed temperature sensors
(Tidbit T-loggers), and (2) skin temperatures obtained with a

hand-held thermal camera for a single location on the glacier.
Biases in the Tidbit T-logger measurements caused by the
micro climate from direct shortwave radiation on the sensors
were determined in an experimental setup and corrected.

4. The UAV temperature product and emissivity-corrected
Landsat 8 data from comparable conditions were compared to
determine differences between UAV and satellite approaches
for obtaining surface temperature.

5. A statistical analysis was performed to assess the influence of
solar insolation and local topography on the warming of the
glacier surface, and to determine which part of the variability
in the surface warming rate can be explained by other debris
properties and surface processes.

In the following sections the details of each step are given. A
flowchart that outlines our methodology is provided in Figure 2.

3.3. Meteorology
Meteorological data from the nearby Kyangjin automatic weather
station (AWS) located at 3,862 m.a.s.l (Figure 1) shows typical
conditions for the time of the year for each of the surveys
(Figure 3). Air temperature ranges from close to freezing at night
to about 10◦C in the afternoon. After sunrise, temperatures rise
very quickly because of the high incoming solar radiation found
at this high elevation and sub-tropical latitude. The radiation data
shows there were no clouds in themorning and that winds picked
up around noon (Figure 3), which are both characteristic for
the site. For the entire survey period there was no precipitation
observed.

3.4. UAV Surface Temperature
3.4.1. Optical Survey
On 30 April 2016 an approximately 2 km2 portion of the
tongue of Lirung Glacier (Figure 1) was surveyed using a fixed-
wing eBee from UAV manufacturer SenseFly. The UAV was
launched from a point along the eastern moraine and was set
to land in a meadow below. The eBee was equipped with a
Sony WX RGB (i.e., red-green-blue) compact camera with an
18.2 megapixel sensor. The camera’s shutter was electronically
triggered by the UAV autopilot along a predefined flightpath.
Zoom, exposure and other camera settings were all controlled
by the flight management software provided with the eBee, i.e.,
eMotion2 (SenseFly, 2017a). Two separate flights during clear
skies and light winds were required to cover the entire survey
area (Table 1). The UAV was set to adapt its flight altitude to
the (general) topography and capture 6 cm resolution imagery,
which roughly equates to a flight altitude of 210 m above
the surface. Image overlap was set to 60% laterally and 70%
longitudinally with respect to the flight direction. A total of
237 RGB images were captured by the camera. Flight paths and
image locations of the two flights are provided as Supplementary
Data.

3.4.2. Thermal Infrared Survey
A ∼0.4 km2 portion of the debris-covered tongue of Lirung
Glacier (Figure 1) was monitored using the eBee mounted
with a thermoMAP thermal infrared camera (SenseFly, 2017b).
The uncooled microbolometer sensor of the thermoMAP
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FIGURE 2 | Flowchart that shows the steps used to process the spaceborne, airborne, and ground-based data into corrected output products.

has a relatively high resolution of 640 × 512 pixels and
can measure surface temperatures between −40 and 160◦C.
Temperature resolution of the sensor is 0.1◦C and it performs
automatic temperature calibration in flight based on the sensor’s
internal temperature. The thermoMAP assumes an emissivity
of the surveyed surface of 1, and thus captures images of
radiant temperatures only. The peak spectral response of
the sensor lies at 10 µm, with a full width half maximum
of approximately 5 µm (8.5–13.5 µm) (SenseFly, 2017b).
The camera stores its imagery in uncompressed TIFF. We
surveyed a considerably smaller area than for the optical
flights because the higher energy consumption of the sensor.
Moreover, on the contrary to optical UAV surveys, multi-flight
surveys of the glacier are infeasible with a thermal camera due
to rapidly changing surface temperature conditions between
flights. Off- and on-glacier terrain could not be surveyed
synchronously because of the low flight altitude that is required
for proper functioning of the thermoMAP (<120m from the
surface) and the high lateral moraines of the glacier (up to
100m).

The UAV was deployed over the survey area four times
over the course of the morning on 1 May 2016 (Table 1) to
acquire a spatio-temporal signature of the surface temperature.
A first flight was performed early morning before sunrise at
6:15, but the UAV lost radio contact and returned without
usable imagery. Subsequent successful flights of approximately
15 min each were performed at 6:45, 9:20, and 10:35, which
together collected 6,176 highly-overlapping thermal images.
These flights will be referred to as Flight 1–3 hereafter.
During Flight 1 there was little to no incoming shortwave
radiation (Figure 3), and most of the surveyed surface was
still in the shade, except for the western moraine. Flight 2
was performed during fully sunlit conditions and an incoming

shortwave radiation of approximately 600Wm−2. By Flight
3, air temperatures and incoming shortwave radiation had
increased to 8◦C and 900Wm−2, respectively (Figure 3).
However, during the third flight there was intermittent
blockage of the sun by thin, local clouds. Flight paths and
image locations of Flight 1–3 are provided as Supplementary
Data.

3.4.3. Ground Control Survey and Processing
The eBee records coordinates for every image it takes using
its GPS module with an accuracy of about 5m. However,
to georeference and co-register the high-resolution surveys
performed with the UAV, ground control surveys are required.
Accurate measurement of the coordinates of markers that will
be visible on the captured imagery (e.g., Westoby et al., 2012;
Lucieer et al., 2013) yields ground control points (GCPs) that can
be utilized in the image processing.

In this study we have deployed two different types of markers
near or on Lirung Glacier. Prior to the optical survey on 30 April
a total of 20 rectangular pieces red fabric of approximately 1.0
× 1.2 m were distributed over the lateral moraines of Lirung
Glacier (Figure 1). The planned ground control survey on the
eastern moraine of the glacier was not fully completed due to
time constraints imposed by changing weather conditions. For
the parts of the moraine where the survey could not be completed
six virtual ground control points, or tie points (Figure 1), were
determined using georeferenced UAV imagery that was acquired
in October 2015, using techniques similar to those described in
Immerzeel W. et al. (2014).

For the survey with the thermal camera markers of different
material were required, since the striking contrast in visible
light between the red fabric and the surrounding terrain is not
captured in the thermal infrared part of the spectrum. Markers
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are required with sufficient contrast in the radiant temperature
that is captured by the thermoMAP sensor. The relation between
radiant temperature and surface temperature is controlled by

FIGURE 3 | Meteorological data from the Kyangjin automatic weather station

(Figure 1) for 30 April–2 May 2016. Panels (A–E) show the air temperature,

relative humidity, wind speed, shortwave radiation, and longwave radiation,

respectively. The vertical lines indicate the times of the RGB and TIR surveys

performed with the UAV, and the time of the Landsat 8 overpass (Table 1).

emissivity and incoming longwave radiation (Li et al., 2013;
Lillesand et al., 2015), and is given by Stefan-Boltzmann’s law :

Ts =
4

√

σT4
rad − (1− ε)LW↓

εσ
(1)

where Ts is surface temperature (K), Trad the radiant temperature
(K), ε the emissivity, σ the Stefan-Boltzmann constant
(5.67× 10−8), and LW↓ the incoming longwave radiation
(Wm−2). To obtain clear contrast on thermal imagery, it is
therefore possible to use markers with considerably different
emissivity than the surrounding natural surfaces on the glacier
(∼0.87–0.98). This was achieved by using 1.0× 1.0m corrugated
plastic squares wrapped in aluminium foil. Aluminium has an
emissivity of 0.03–0.07 (Lillesand et al., 2015) and will exhibit a
low radiant temperature relative to surrounding natural surfaces.

The center position of each marker (latitude, longitude, and
elevation) was measured with a Global Navigation Satellite
System (GNSS); a base station and a rover that both consist
of a Topcon GB1000 antenna with a PG-A1 receiver. The base
station was set up at a fixed position near the outlet of the
glacier (Figure 1) and was in operation during the entire ground
control survey, which was performed on 29 and 30 April 2016.
We used the system in post-processed kinematic mode and
measured each marker for about 30 s. This particular system
has a reported geodetic accuracy of about ∼0.2m in x, y, and z
(Wagnon et al., 2013). The measured points were post-processed
in Topcon Tools (Topcon Positioning Systems, 2009) and placed
accurately in a real-world coordinate system through a precise
point positioning procedure (Zumberge et al., 1997) to acquire
the final GCP positions.

3.4.4. Optical Imagery Processing
Imagery acquired in the optical UAV survey was processed into
image mosaics using the Structure from Motion with Multi-view
Stereo (SfM-MVS) algorithm (Triggs et al., 2007; Snavely et al.,
2008; Szeliski, 2011; Lucieer et al., 2013; Immerzeel W. et al.,
2014; Carrivick et al., 2016) implemented in Agisoft Photoscan
Professional 1.2.6 (Agisoft LLC, 2016). In this procedure, feature
recognition and matching algorithms (Szeliski, 2011) are applied
to the overlapping imagery to generate high-resolution 3D
point clouds of the glacier, which are accurately georeferenced
using the GCP coordinate information. The 3D-information
from the point clouds was used to stitch the imagery and
apply orthorectification, i.e., correction of image distortion

TABLE 1 | Details of the optical and thermal UAV surveys, as well as the Landsat 8 thermal scene.

Date and time Weather Sensor Flight time Altitude (m) Images Resolution

30-04-2016 10:10 Clear, light winds Sony WX RGB 00:18 210 134 0.06 m

30-04-2016 11:00 Clear, light winds Sony WX RGB 00:17 210 103 0.06 m

01-05-2016 06:15 Slight haze, calm winds thermoMAP 00:08 95 Failed flight –

01-05-2016 06:45 Slight haze, calm winds thermoMAP 00:23 95 2,127 0.18 m

01-05-2016 09:20 Slight haze, light winds thermoMAP 00:15 95 2,009 0.18 m

01-05-2016 10:35 Shade, slight haze, medium winds thermoMAP 00:15 95 2,040 0.18 m

02-05-2016 10:32 Moderate haze, calm winds Landsat 8 TIRS – – – 100 m
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and parallax caused by topographical variations and varying
viewing angles of the UAV, and create an orthomosaic. The
SfM-MVS procedure followed here is similar to as described in
Kraaijenbrink P.D.A. et al. (2016). The optical orthomosaic was
exported at 0.1m resolution and the point cloud was gridded into
a 0.2m resolution DEM.

The aluminum thermal markers were clearly identifiable both
in the thermal imagery (squares consistently below −10 ◦C) and
optical imagery (distinctly bright squares). To improve spatial
co-registration of the optical image products with the thermal
data, the GCPs designed for the thermal surveys were also used
to process the optical imagery. The use of thermal GCPs, which
are focused in the thermal survey area, ensures a high horizontal
accuracy in the area where it is required.

3.4.5. Thermal Imagery Processing
To process each of the three successful thermal surveys we
used Postflight Terra 3D (version 4.0.104), which is SfM-
MVS processing software provided by senseFly with the eBee
(SenseFly, 2017a). It is a licensed derivative of the commercial
SfM-MVS software suite Pix4D Mapper Pro (Pix4D SA, 2017).
Although Photoscan is the most commonly used SfM-MVS
software in geoscience applications (e.g., Lucieer et al., 2013;
Immerzeel W. et al., 2014; Turner et al., 2014; Ryan et al., 2015;
Kraaijenbrink P. et al., 2016; Kraaijenbrink P.D.A. et al., 2016;
Mallalieu et al., 2017; Ryan et al., 2017; Watson et al., 2017),
and it has also been proven to work with thermal imagery
(Turner et al., 2014), we chose to use Postflight because of its
seamless integration with the thermoMAP camera (SenseFly,
2017a).

For each of the flights, all available images were used as input
in a photo alignment procedure in Postflight. This procedure
generates an initial point cloud and determines the orientation
of the camera for each photo. Equal to SfM-MVS processing of
optical imagery, feature recognition algorithms were applied to
match similar points on multiple images. Visual pre-selection of
images based on quality was not performed because the quality
of the raw thermal imagery is difficult to judge and because of
the large number of images per flight. To achieve optimal output,
we ran the alignment procedure on the full resolution images
and used a high image tie point limit. Nevertheless, many of the
images were discarded by the software in this first processing step
for all three flights, because insufficient tie points were found on
certain image pairs. This is most likely due to the relatively low
contrast of the thermal imagery for the debris-covered glacier
surface. For Flight 1–3 a total of 800, 769, and 759 images (out of
2,127, 2,007, and 2,038) were maintained by Postflight for further
processing, respectively.

Georeferencing of the thermal imagery was achieved by
matching all available thermal GCPs (Figure 1) visually on all the
aligned images they appeared on. The markers were pinpointed
visually in Postflight’s raycloud editor. The number of images to
which a single GCP was matched ranged from 14 to 96. After
the GCP matching, a point cloud densification was performed
on highest accuracy settings to create a thermal 3D model of the
glacier surface. The model was then gridded into an orthomosaic
raster with a resolution of 0.3m.

3.4.6. Image Co-registration
Usage of the thermal GCPs in the SfM-MVS processing of both
the optical and thermal UAV imagery provides good geodetic
accuracy of the datasets. However, small spatial displacements
on the order of a few decimeters between all four orthomosaics
remain. To reduce those, the data were shifted horizontally using
the mean displacement of the imagery at the thermal markers
with the GNSS-measured coordinates, which was determined
visually in a geographical information system. This provides a
spatial match between the optical and thermal UAV products
that is sufficiently accurate for emissivity correction of the
thermal data. Implementation of co-registration algorithms for
multi-sensor imagery layers (Turner et al., 2014) can potentially
provide a better match and improved multi-band image analysis
capabilities, but this is beyond the scope of and requirements
for this study. The accuracy of the eventual co-registration was
determined separately for each pair of orthomosaics from the
displacements between the images at the thermal markers, and
error statistics were derived from this data.

3.4.7. Object-Based Emissivity Correction
To obtain surface temperature maps from the radiant
temperature orthomosaics an emissivity correction must be
applied (Li et al., 2013) using Equation (1). The debris-covered
surface of Lirung Glacier is spatially heterogeneous and within
the thermal survey area there are large boulders, gravel, sand,
patches with dry shrubs, supraglacial ponds, and ice cliffs. The
geology and consequently the supraglacial debris in this part
of the valley largely consists of gneiss and quartzite (Kohn
et al., 2005). Since all these surfaces have different emissivities,
spatially distributed emissivity data is required to derive an
accurate surface temperature. Such data could be acquired
using in situ measurements of emissivity, generally performed
with the box method (Sobrino and Caselles, 1993) or variants
thereof (Rubio et al., 1997). However, such measurements are
time and energy consuming, and as a result not feasible during
the field campaigns in our remote study area. Therefore, we
chose to estimate spatially distributed emissivity through image
classification of the optical orthomosaic with object-based image
analysis (OBIA) and the use of emissivity values (debris: 0.94,
dry vegetation: 0.87, rough ice: 0.97, water: 0.98) reported in
literature (Salisbury and D’Aria, 1992; Lillesand et al., 2015).

OBIA is a classification method that is preferred over
traditional pixel-based image analysis methods when the objects
of interest are multiple pixels in size (Blaschke et al., 2014). The
OBIA procedure consists of two main steps. First, imagery is
segmented into objects, i.e., groups of pixels that are spectrally
homogeneous or that are part of a shape (Trimble, 2017). Second,
the generated objects are classified based on specific object
features. These can be spectral statistics of the pixels of which
the object consists, but also object neighbor relations and object
shape (Blaschke et al., 2014).

Our OBIA procedure is performed entirely in eCognition
Developer 9.3 (Trimble, 2017). Input for the procedure are
the optical orthomosaic and the DEM-derived slope. Both
products were resampled to 0.2m to match resolution. A
single segmentation procedure was performed generating a
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single object level, purely based on the three-band optical
orthomosaic. To accurately capture small patches of vegetation,
small supraglacial ponds and exposed ice cliffs, the scale of the
output objects was chosen to be moderately small with respect
to the image resolution, i.e., an eCognition scale parameter
setting of 25 (Trimble, 2017). For the actual classification of the
objects a two-step approach was implemented. First, we chose
to classify water and ice cliff objects visually, since accurate
classification of these surface features requires sufficient training
data (Kraaijenbrink P.D.A. et al., 2016) and there are only two
relatively small ice cliffs with adjacent ponds in the thermal
survey area. Second, to distinguish between vegetation and debris
a nearest neighbor classifier was implemented in eCognition
(Kraaijenbrink P.D.A. et al., 2016; Trimble, 2017). For each class,
a training set of 15 samples was selected randomly. The classifier
was subsequently applied using the five object characteristics that
provided the largest class separability within the training set: blue
band mean, red band standard deviation, green band standard
deviation, brightness range, and mean slope. By evaluating
the classification visually at 100 random points for each class,
the classification’s producer accuracy, user accuracy and kappa
coefficient (Lillesand et al., 2015) were found to be 91.3, 94.0, and
0.85%, respectively.

To correct for emissivity through Equation (1), in situ
observations of LW↓ were used. During the surveys we measured
LW↓ only at the Kyangjin AWS. However, meteorological data
from previous years (Steiner et al., 2015; Buri et al., 2016b; Steiner
and Pellicciotti, 2016) and from recent field campaigns reveal
that it is higher over the debris-covered surface of Lirung Glacier
than at Kyangjin AWS due to longwave radiation emitted and
reflected by surrounding steep headwalls, lateral moraine slopes,
and debris mounds. Comparison of on- and off-glacier LW↓ data
frommultiple fields campaigns reveals an approximate additional
20Wm−2, which we used to offset the Kyangjin AWS LW↓

data.
To estimate the effect of uncertainty in emissivity on the

derived surface temperatures we have applied a Monte Carlo
sensitivity analysis. An ensemble of 1,000 random emissivity
samples per surface type was drawn from a truncated normal
distribution (0 ≤ ε ≤ 1) using a different mean and
standard deviation for each surface type [debris: 0.94 ± 0.015,
dry vegetation: 0.87 ± 0.062, rough ice: 0.97 ± 0.012, water:
0.98 ± 0.005, (mean ± sd)]. These were derived from sets of
emissivities for metamorphic rock, vegetation, rough ice and
sediment-laden water (Salisbury and D’Aria, 1992). For each
ensemble member surface temperatures were calculated for
each of the three thermal flights and ensemble statistics were
derived.

3.4.8. ThermoMAP Bias Correction
Surface temperatures derived from the thermoMAP sensor have
a remaining dark current bias that is due to the internal
mechanics and calculations of the camera. The thermal response
measured by an uncooled microbolometer sensor, such as from
the thermoMAP, must be corrected with the internal sensor
temperature (Ribeiro-Gomes et al., 2017), and this is performed
automatically in flight. The temperature is estimated at the

beginning of each flight leg (for each of the flights n = 24) by
measuring the camera’s shutter with the sensor, and comparing
this with an internal thermometer (SenseFly, 2017b). However,
if the internal temperature differs greatly from 20◦C large
deviations can start to occur, especially on long flight legs (pers.
comm. senseFly representative M. Montevecchio). Such a sensor
bias is likely to be the case for our study (relatively short flight
legs, but air temperatures of 0–8◦C at Kyangjin AWS). In our
case, the potential biasing influence of the atmospheric column
between the sensor and the ground on the measured temperature
(Li et al., 2013; Torres-Rua, 2017) is likely limited due to the dry
conditions, thin air and low flight height.

To remove the sensor bias it is required to know the skin
temperature and emissivity of an object that was captured in the
imagery at the time of the survey. Due to the lack of dedicated
markers in our case, we assume that exposed clean ice is at the
melting point of snow and ice (0◦C) during Flights 2 and 3,
and use the mean difference between the emissivity-corrected
surface temperatures of a vertical clean ice band of one of the
ice cliffs to calculate the sensor bias. The resulting sensor bias has
subsequently been removed from all three thermal orthomosaics
to obtain the final thermal imagery product. Note that this
approach assumes that the bias is constant over the range of
measured temperature values, which is most likely not the case.
The required data to estimate the non-linearity of the bias is
however unavailable.

3.5. In situ Temperature Measurements
3.5.1. Sensor Placement
A total of 25 HOBO TidbiT v2 temperature loggers with an
accuracy of ±0.2 ◦C (hereafter referred to as Tidbits) were
distributed on the surface of Lirung Glacier to validate surface
temperature estimates from the thermal UAV survey. The sensors
were placed in a semi-regular grid (Figure 1) on different surface
types (Figure 4). Two Tidbits were submerged 5 cm in the water
of a supraglacial pond underneath a float of semi-rigid foam.
Most sensors received direct solar radiation for almost the entire
day, but three Tidbits were placed into the shade to shield them
from solar radiation. All sensors were operational during the
aerial surveys and set to record temperature at a 5-min interval.

3.5.2. Correction for Solar Radiation
Tidbit temperatures are overestimated when exposed to direct
solar radiation due to the micro climate generated. To correct
for this, we ran reference experiments at two AWS sites, one in
Kathmandu and one in Langtang Valley. The Tidbit temperature
measurements (Ttid) were compared with surface temperature
(Ts) as derived from incoming and outgoing longwave radiation
(LW↓ and LW↑) that was measured with radiometers (Apogee
SI-111 and Kipp & Zonen CNR4), and using:

Ts =
4

√

LW↑ − (1− ε)LW↓

εσ
(2)

Two types of surfaces were examined below the AWSs. Debris
was artificially set up in the experiment that was run in
Kathmandu, while naturally occurring dry vegetation was
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FIGURE 4 | Different types of surfaces on Lirung Glacier the temperature loggers were placed on or in: vegetation (a), fine debris (b), coarse debris (c), and water (d).

The pink ribbons were attached to the Tidbits to improve their discoverability.

monitored at the Kyangjin AWS in Langtang Valley (Figure 1).
The artificial debris layer comprised of a mixture of irregularly
shaped concrete blocks, natural rocks and mud, which had
a size distribution representative for supraglacial debris and
comparable emissivity, as concrete has an emissivity of 0.92–0.94
(Lillesand et al., 2015). For practical reasons, the thickness of the
layer was shallower (5–10 cm) than what is usually found on
Lirung Glacier, but it was thick enough to completely cover the
concrete substrate. For each surface type, ε was first set as the
value minimizing the difference between Ts and Ttid (1T), using
night-time data only. As 1T increases with incoming shortwave
radiation (SW↓), separate regressions for each surface type were
calculated using daytime observations where SW↓ > 20Wm−2

Tcor = Ttid − aSW↓ (3)

where Tcor is the corrected Tidbit temperature and a the
correction factor (Km2W−1). It is assumed that with little or no
direct shortwave radiation, i.e., at night, Ts and Ttid are equal,
and so the regression was forced through the origin. Additionally,
since all our thermal UAV flights performed between 6:45 and
10:50, Equation (3) only considers experimental observations
collected before noon, which limits the influence of temperature
hysteresis caused by Tidbit lag. Correction factors for the most
suitable surface type were applied to the in situ temperature
measurements for the Lirung thermal surveys. Corrections were
not applied to Tidbits that were put in the shade or submerged
in water, since these were not subjected to direct shortwave
radiation.

SW↓ varies considerably spatially over the hummocky debris-
covered surface of Lirung Glacier because of varying aspects
and shading effects that result from the small-scale surface
topography. To account for this in the correction, we modeled
distributed SW↓ using the hemispherical viewshed algorithm
of Fu and Rich (1999) and a 30 cm resolution resampled
DEM derived from the optical UAV data. In the model, we
used an effective atmospheric transmissivity of 0.42, which was
determined by minimization of modeled and measured SW↓ at
the Kyangjin AWS (Figure 3). Any residual variability captured
by the AWS as compared to the idealized modeled SW↓ was
superimposed on the modeled data.

3.6. Ground-Based Thermal Imaging
To compare the UAV surface temperature measurements with
independent radiometric measurement, we have used a FLIR
C2 (hereafter C2) compact hand-held thermal camera during
the UAV flights. The camera has a 80 × 60 pixel uncooled
microbolometer TIR sensor and a 640× 480 pixel optical sensor
that take aligned images synchronously. The TIR sensor senses
objects of −10 to 150 ◦C in the in the 7.5–14 µm range, with a
thermal sensitivity of 0.1 ◦C. The accuracy of the sensor is ±2 ◦C
at an outside temperature of 25 ◦C (FLIR Systems, 2017).

The C2 survey was performed at a single location during
the entire survey (Figure 1). The camera was mounted on a
monopod that was fixed between debris, facing in west-southwest
direction at the largest largest ice cliff within the survey area.
In the field of view of the camera most of the ice cliff was
visible, as well as parts of the adjacent supraglacial pond and the
surrounding debris. The shutter of the C2 wasmanually triggered
at a semi-regular interval of 10 min between 06:40 and 11:09.

Radiometric thermal data and the optical images taken by
the camera’s sensors were retrieved using FLIR’s ResearchIR
software. As a result of the relatively unstable monopod setup
and the manual triggering of the shutter, the captured imagery
for the different time steps was not perfectly coregistered. To
coregister the data accurately, manual tie points were identified
on the optical imagery in a geographical information system,
which were subsequently applied to both the optical and thermal
image sets. From the optical imagery, zones of different surface
classes were identified visually corresponding to those of the
classified UAV data, but with an extra distinction between clean
and dirty ice. For each zone an emissivity correction was applied
using Equation (1) and the values reported in section 3.4.7.
For comparison of the data with UAV-derived Ts, zones that
correspond spatially to those defined on the C2 imagery were
identified visually on the UAV-derived orthomosaic.

3.7. Landsat 8 Thermal Infrared
Comparison
Medium resolution thermal infrared satellite imagery [e.g.,
Landsat 7 (60 m) (Rounce and McKinney, 2014), ASTER (90 m)
(Mihalcea et al., 2008a,b; Foster et al., 2012), and Landsat 8
(100 m) (Kraaijenbrink et al., 2017)] has been previously used
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to infer debris thickness using temperature inversion methods.
To get an impression of the accuracy and spatial detail of
such spaceborne thermal infrared imagery for analyses of the
debris layer, we compared satellite and UAV-derived surface
temperatures.

For the comparison, surface temperatures of Lirung
Glacier’s debris cover were estimated from Landsat 8 Thermal
Infrared Sensor (TIRS) data. We used a Landsat 8 scene
(LC81410402016123LGN00) that was acquired on 2 May 2016
at 10:32 local time (Table 1), one day after the thermal UAV
survey. Although the original sensor resolution of the TIRS
instrument is 100m, the only data that is made available by the
United States Geological Survey comprises thermal imagery that
is coregistered, geometrically corrected and resampled using
irreversible cubic convolution to match the 30m resolution
of the satellite’s optical data (USGS, 2016). Uncertain weather
conditions prevented us from performing the UAV and in situ
measurements the same day as the Landsat 8 overpass, but
atmospheric and meteorological conditions during the morning
of both acquisition days were generally comparable (Figure 3).
Nevertheless, comparison of absolute temperature values of the
two different products is inaccurate because of three reasons:
(1) a small amount of cloud cover was present during the final
UAV flight, which was not the case at the time of the satellite
acquisition; (2) we observed slightly more atmospheric haze on
2 May 2016, but we did not quantify changes in atmospheric
transmissivity; (3) Landsat 8 TIRS is affected by stray light,
which can result in considerable overestimations of the recorded
radiance that are hard to correct (USGS, 2016). Comparison of
spatial variability, on the other hand, is still meaningful.

Surface temperatures were determined from the satellite’s
band 10 by first calculating the top of atmosphere brightness
temperature from the Level 1 satellite product using the
standard procedure described by USGS (2016). A subsequent
correction for emissivity was applied using Equation (1) and
the UAV-derived emissivity map, resampled to the satellite
product resolution. Comparison with the UAV-derived surface
temperatures was performed by evaluating pixel statistics of the
UAV thermal data for each Landsat pixel.

3.8. Surface Temperature and Topography
To evaluate the influence of the small scale hummocky
topography of Lirung Glacier on debris surface temperatures, we
have compared the mean warming rate over the entire morning
(K h−1) with themodeled SW↓ and four DEMderivatives: aspect,
slope, flow accumulation and high pass filtered DEM (see next
paragraph). For the analysis, we have fitted a random forest
regression model with the warming rate as dependent variable
and the five topography indicators as independent variables. A
random forest is a statistical machine learning algorithm that
can fit non-linear relations, is insensitive to overfitting, has no
requirements on the statistical distribution of variables, and
is largely insensitive to multicollinearity (Breiman, 2001). It is
therefore particularly suitable for this analysis. The algorithm
can also provide a natural measure of variable importance
in model prediction as well as measures of total explained
variance (Breiman, 2001; Louppe et al., 2013). These were used

to determine to what extent solar insolation in combination
with topography is causing temperature change, and how much
is unexplained by different processes. The entire analysis was
performed only for the actual glacier surface (Figure 6a), and
using data resampled to 3 m (n = 33, 999) to reduce the required
processing time for the random forest algorithm and to remove
noise in both the surface temperature maps and the DEM.

Aspect is closely linked to SW↓, since the amount of insolation
at a point is directly related to the solar azimuth and the local
aspect. However, on the contrary to SW↓ it is not affected by
the viewshed at a point. It can easily be calculated from a DEM
and does not require data on surrounding topography, and is
therefore of interest as a predictor of the warming rate. Slopes
(facing toward the sun) are exposed more directly to the sun than
flat areas and may be dryer, since water is expected to run off to
lower areas. As a result, it could be that areas of relatively high
slope have an increased warming rate due to increased radiation,
decreased debris heat capacity, and less evaporative cooling. A
flow accumulation map, or upstream area map, indicates the size
of the catchment upstream of a pixel. The larger the upstream
area, the higher the debris moisture content may be due to
supraglacial runoff and the lower the warming rate. Note that
supraglacial melt water runoff also depends strongly on the
configuration of the englacial drainage network. A high-pass
filtered DEM, here created for a large circular focal window of
25 m, provides information on relative local elevation. That is,
whether a point is relatively high or low in comparision with
it’s surroundings. Local depressions can be expected to be more
humid and cooler, whereas mounds and crests may be dryer and
warmer.

4. RESULTS

4.1. Tidbit Correction and Measurements
Radiometer-derived Ts (section 2) and Ttid showed considerable
deviations for both reference experiments (Figure 5).
Temperature differences between the two methods (1T)
were as high as 10 ◦C over the course of the morning. The debris
experiment performed in Kathmandu revealed a more linear
relation between 1T and SW↓ than the vegetation experiment
performed near the study area at the Kyangjin AWS. There is
more hysteresis for the latter, which is most likely caused by
evaporation of moisture from the vegetation and the top soil
layers. The range of SW↓ for the two experiments is considerably
different because of the difference in altitude (∼1,400 and
∼4,000 m) and atmospheric pollution at the two reference sites.
The regression analysis of1T against SW↓ (section 3) resulted in
correction factors a of 13.3× 10−3 and 11.4× 10−3 Km2 W−1

for debris and vegetation, respectively.
The Tcor values for the morning of 1 May 2016 reveal a

large range in temperatures between flights and between different
surfaces (Table 2). During thermal Flight 1 (06:45), measured
in situ temperatures were generally just below freezing point with
little variability between different Tidbits. This is similar to air
temperature observations at the Kyangjin AWS, which are just
above freezing point but measured 250m lower (Figure 3). As
incoming radiation and temperature increase over the course
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FIGURE 5 | Difference between radiometer-derived and Tidbit-derived surface

temperatures versus incoming shortwave radiation for daytime measurements

before 12 a.m. The two panels show the biases for an experimental debris

layer in Kathmandu (A) and natural vegetation present at below the Kyangjin

AWS (B). The red lines show the linear regressions that were used for bias

correction of the Tidbits.

TABLE 2 | Statistics of Tcor at the time of the thermal UAV flights for the four

different surface types (mean ± sd).

Flight 1 Flight 2 Flight 3

Vegetation (n = 4) −0.5 ± 2.4 27.8 ± 5.5 27.0 ± 9.4

Debris (n = 16) −1.2 ± 1.9 15.0 ± 6.5 16.0 ± 6.1

Shade (n = 3) −0.1 ± 0.7 8.9 ± 5.3 16.4 ± 9.4

Water (n = 2) 0.4 ± 0.2 1.6 ± 0.1 1.8 ± 0.1

of the morning, Tcor increases considerably with mean values
up to 28 ◦C for vegetated surfaces. Water temperatures only
changed slightly throughout the morning and shaded tidbits
warm considerably slower than those in direct sunlight.

4.2. Image Registration Accuracy
After SfM-MVS processing of the optical and thermal UAV
surveys we co-registered the imagery by applying shift factors
(x, y) for the optical survey (0.05 , 0.03m), thermal Flight 1
(0.18 , −0.15m), thermal Flight 2 (0.14 , −0.16m), and thermal
Flight 3 (0.13 , −0.15m) to optimally match all orthomosaics
with the GNSS-measured thermal GCPs. The root mean square
errors (RMSE) at the thermal markers show a considerable
improvement after application of the shift (Table 3). Before
shifting, the thermal orthomosaics were already reasonably
well registered with each other, despite completely independent
processing of the three flights in Postflight. The horizontal shift
between the optical and thermal orthomosaics may thus be

TABLE 3 | Root mean square errors (m) of orthomosaic co-registration at the

thermal markers locations (n = 17).

GCPs Optical TIR F1 TIR F2

Optical 0.09 (0.11) –

TIR F1 0.19 (0.31) 0.18 (0.29) –

TIR F2 0.19 (0.29) 0.19 (0.29) 0.17 (0.18) –

TIR F3 0.19 (0.28) 0.18 (0.27) 0.17 (0.18) 0.03 (0.03)

Errors are shown between the imagery and the GNSS-measured ground control points,

and for every orthomosaic pair. The errors between the orthomosaics before applying the

horizontal shift are shown in parentheses.

caused largely by differences in processing and optimization
algorithms between Photoscan (optical data) and Postflight
(thermal data).

4.3. Image Classification and Emissivity
The result of the object-based image classification is shown in
panel C of Figure 6. The most abundant surface type in the study
area is debris with 92.3%, followed by vegetation (7.2%), ice cliff
(0.3%), and water (0.2%). Vegetation is mainly present on the
western lateral moraine, and not so much on the glacier surface
itself. Using the classification and emissivity values reported in
section 3.4.7, the emissivity map withmean emissivity of 0.93 was
derived (Figure 6d).

4.4. Thermal Correction and Imagery
The three final thermal orthomosaics that were corrected for
emissivity and sensor bias are shown in Figure 7. Due to the
non-linear nature of Stefan-Boltzmann’s law and the spatial
distribution of emissivity, the emissivity correction is both
spatially and temporally variable. Mean corrections that were
applied to the imagery of Flights 1–3 were in the order of 0.5 ±

1.3◦C, 0.8 ± 1.9◦C, and 0.7 ± 1.9◦C (mean ± sd), respectively.
The magnitude of mean sensor bias was determined to be 7.5◦C
(7.6◦C for Flight 2 and 7.4◦C for Flight 3) from the ice cliff surface
at melting point. The bias for the same ice cliff pixels for early
morning Flight 1 is indeed less, i.e., 4.6◦C, indicating that the
ice surface was not yet at melting point at that time. For the bias
correction the mean bias based on flight 2 and 3 was subtracted
for all three flights.

Similar to the in situ measurements of Tcor, the magnitude
of UAV-derived Ts varies greatly over the morning, with
temperatures for thermal Flights 1–3 (◦C) of −1.4 ± 1.8, 11.0
± 5.2, and 15.3 ± 4.7 (mean ± sd), 95th percentile ranges of
−3.4 to 3.6, 4.0 to 25.7, and 8.6 to 27.5, and maxima of 9.1,
43.0, and 49.7, respectively (Table 4). It is clear that in the early
morning the mostly shaded glacier surface has not yet warmed
and surface temperatures have low spatial variability. Flight 2
shows a much warmer surface with high spatial variability. On
the hummocky debris-covered surface of the glacier there are
warm areas that received greater insolation, e.g., crests and slopes
that face toward the azimuth of the rising sun, and colder parts
in local depressions and north-facing slopes (Figure 7B). The
last flight, with the debris exposed to greater and more evenly
spatially distributed insolation under higher solar elevation
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FIGURE 6 | The input data used and the output data created in the emissivity estimation procedure: (a) the orthomosaic and (b) digital elevation model that follow

from SfM-MVS processing of the optical UAV data; (c) the object-based image classification; and (d) the final emissivity map used to calculate surface temperatures.

angles, has overall high values of Ts that are less spatially variable
(Figure 7C). For all three flights there is a distinct lateral trend
in Ts that is directly related to the duration of insolation, with
the western parts of the glacier being exposed by to the sun first.
With respect to the different surface classes, debris and vegetation
are warmer than ice and water for all three flights, as expected.
Remarkably, vegetation is consistently warmer than debris for all
flights. This is likely due to its higher abundance on the western
moraine slope. Also worth noting is that ice is generally warmer
than water, which could be due to the dark debris film on large
parts of the ice cliffs.

The sensitivity of Ts for variations in emissivity of the surface
classes is limited (Table 4). The standard deviations of raster
average Ts for each Monte Carlo member in the ensemble (n =

1, 000) for F1–F3 are only 0.33, 0.43 and 0.43 ◦C, respectively.
The uncertainty in the surface temperature for vegetation only
is considerably larger, as the emissivity of dry vegetation is more
uncertain (section 3.4.7), emissivity is lower, and vegetation has
the highest surface temperatures. Ice and water, on the other
hand, have relatively certain and high emissivities as well as
generally low temperatures, and consequently have low ensemble
uncertainty.

4.5. Surface Temperature Comparison
Comparison of surface temperature derived from the Tidbits
(Tcor) and from the UAV imagery (Ts) for each of the three

thermal surveys and for all Tidbits showed that the recorded
temperatures were largely in agreement (Figure 8A). The data
scatter mainly around the 1:1 line and are generally the same
order of magnitude (r = 0.93). The data of Flight 1 show the
best agreement with a mean TF1

cor and TF1
s of −0.9 and −1.6◦C,

respectively, and a RMSE of 0.9◦C. Note that of the three thermal
flights, the Tidbit correction that was applied for this flight was
minimal because of low SW↓ in the early morning, and that the
applied thermal sensor bias correction was independent of TF1

s .
The agreement between Tcor and Ts for Flight 2 is less, as there
were considerable overestimations of surface temperature by TF2

cor
of over 10◦C for some of the Tidbits. The RMSE for this flight
was also considerably higher with 7.0◦C. The last flight of the
morning shows again better agreement with an RMSE of 5.1◦C.
Tidbits that were put on vegetation still have a considerable bias
in this case, but especially those on debris show relatively good
agreement with RMSE values of 7.8 and 3.7◦C, respectively.

Time series of a selection of the Tidbits (Figures 8B–E) for
each surface type that have a good match between Tcor and Ts

show the variability in Tidbit temperature over the course of
the morning. Tidbits in direct sunlight clearly had fluctuating
temperature profiles, while measurements in the shade or in
water are relatively stable and smooth over time. The temperature
of Tidbits directly exposed to the sun deviate considerably from
Ts, but temperature measurements in the shade and in water
agree well. Therefore it is likely that the deviations between
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FIGURE 7 | Emissivity and bias-corrected surface temperature orthomosaics of the three UAV flights on 1 May 2016 (A–C; 06:45, 09:20, and 10:35) and the

brightness temperature of the Landsat 8 band 10 on 2 May 2016 at 10:32 (D). The black rectangle in (D) indicates the extent of Figure 10.

Tcor and Ts can be largely explained by errors in the Tidbit
measurements.

4.6. Ground-Based Thermal Imagery
Time series with statistics for four zones of different surface type
(Figure 9a) of the surface temperatures derived from the C2
imagery (TC2

s ) are shown in Figure 9e. Similar to Tcor and UAV-
derived Ts, surface temperatures measured by the C2 are low in
early morning at the start of the time series (−7.4 ± 0.7◦C) and
quickly rise as radiation increases. TC2

s for debris continues to rise
steadily until 10:00 when it reaches 19.9 ± 3.7◦C, while for ice it
stabilizes relatively quickly to a temperature just below 0 ◦C, i.e.,
around the melting point of ice. Since the imagery thus has very
low sensor bias, no bias correction was required. Only a slight
difference between clean and dirty ice patches is present, as after
08:00 dirty ice has a mean temperature that is on average 0.2 ◦C
above that of clean ice. On the C2 imagery, the temperature for
the supraglacial pond (5.1 ± 3.8◦C) rises to levels considerably
above those of the ice, but remain well below that of debris.
After 10:00 all zones exhibit a decrease in surface temperature
of ∼2.5 ◦C, which coincides with the thin local clouds that were
observed during the last flight.

Figure 9f shows boxplots of TF1
s , TF2

s (Figure 9c) and TF3
s

for the zones corresponding to Figures 9a,b. Compared to
early morning TC2

s , TF1
s appears to be considerably higher with

temperatures of−2.7±0.4◦C. Note, however, that over the course

of Flight 1 TC2
s rapidly changes with a warming of about 5 ◦C, and

that the C2-measured temperature right after the flight at 07:10 is
more comparable (−3.5 ± 1.7◦C). Contrastingly, temperature is
8 ◦C lower than TC2

s in the late morning, with a TF3
s of 11.9± 1.8

◦C for debris. Supraglacial pond temperatures measured by the
UAV as well as by the Tidbits (Figure 8E) are consistently near
freezing and lower than TC2

s .

4.7. Landsat vs. UAV
The Landsat 8 (L8) thermal imagery of 2 May 2016 that was
processed into a surface temperature map (TL8

s ) shows that the
satellite image failed to capture any substantial spatial variation
over the area of interest (Figure 7). The pixel size of 30m of the
Landsat 8 thermal data, which is created by cubic convolution
of the 100m raw product (USGS, 2016), results in substantial
smoothing and loss of detail as compared to the data obtained
from theUAV. The raw data product is unavailable unfortunately.
While TF3

s had a total range of about 50◦C, a mean of 15.3
and standard deviation of 4.7, TL8

s only ranges between 18.2 and
27.3 ◦C, with amean of 22.0 ◦C and a standard deviation of 2.1 ◦C.
The overall spatial pattern of TL8

s , however, appears to match the
pattern of TF3

s , with generally higher temperatures on the western
side of the glacier.

A more detailed view on both the UAV and Landsat data is
presented in Figure 10, where the same spatial subset of 240 ×

240m is shown for both datasets. Here it is further evidenced

Frontiers in Earth Science | www.frontiersin.org 12 May 2018 | Volume 6 | Article 64

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Kraaijenbrink et al. Mapping Glacier Surface Temperatures With UAVs

TABLE 4 | Mean, standard deviation, 2.5 and 97.5 percentiles of Ts for the three

UAV flights for the survey area and for each class.

Flight Class Mean SD P2.5 P97.5 Ensemble sd

1 All −1.4 1.8 −3.4 3.6 0.33

Debris −1.7 1.3 −3.4 1.5 0.33

Vegetation 2.8 1.9 −1.1 6.7 1.47

Water −2.9 0.3 −3.1 −2.3 0.20

Ice −2.8 0.4 −3.5 −1.9 0.01

2 All 11.0 5.2 4.0 25.7 0.43

Debris 10.2 3.9 4.2 19.8 0.43

Vegetation 22.2 5.7 8.3 31.8 2.28

Water 0.0 1.2 −0.9 3.7 0.20

Ice 1.4 2.0 −0.1 7.6 0.02

3 All 15.3 4.7 8.6 27.5 0.43

Debris 14.6 3.5 8.8 22.5 0.43

Vegetation 25.0 5.1 13.9 34.8 2.21

Water 0.3 1.6 −0.9 5.1 0.19

Ice 1.7 2.3 −0.2 9.1 0.02

The right column shows the ensemble standard deviation of the Monte Carlo emissivity

sensitivity analysis.

that the satellite image cannot capture the heterogeneity of Ts

over a debris-covered glacier, and that moderate scale features
with distinctly low temperatures such as ice cliffs and supraglacial
ponds appear to have little to no effect on the temperature
recorded by the satellite. Figure 10c shows a scatter plot of
TL8
s against TF3

s for each Landsat pixel over thermal survey
area. Although there is a significant correlation between the two
products (r = 0.79), Ts found by the two different sensors
is considerably different, with a mean overestimation of TL8

s
of 6.9◦C. This may partly be attributed to actual differences
in surface temperature between the two days of acquisition,
since there were differences in Tair and SW↓ (Figure 3), and
to differences in atmospheric transmissivity. The overestimation
of radiance at the sensor caused by stray light is also likely
to play a role, as it may result in biases of up to 5 ◦C for
band 10 (USGS, 2016). Standard deviations of TF3

s within each
Landsat pixel (Figure 10c) show there is a very large variation
in the relatively small 30 m plots of debris-covered glacier
surface.

4.8. Topography and Surface Temperature
The results of the random forest analysis that was used to
evaluate the relation between topography and surface warming
rate are presented in Figure 11. Of the five DEM derivatives
that were analyzed there were only two that showed a clear
relation: asp ect and SW↓. Pixels with an east-facing aspect (45–
135◦) warm significantly more (+1.0 K h−1) than west-facing
pixels (225–315◦) (Figure 11g), a logical result as morning flights
are analyzed. North-facing (315–45◦) and south-facing (135–
225◦) pixels do show a difference in warming rate, but only
very moderately with 0.1 K h−1. A more distinct effect on surface
warming is caused by SW↓, although the variable also exhibits

considerable residual variability (Figure 11k). Linear regression
revealed that SW↓ alone explains 29.4% of the variance in
the warming rate. The slope, upstream area and local relative
elevation are all shown to have very limited influence on the
warming rate (Figure 11l). In total, the combination of all
independent variables can account for 38.8% of the variance.

5. DISCUSSION

5.1. Applications of Thermal UAV Imagery
The methods employed in this study reveal the possibility of
capturing spatially distributed Ts on a debris-covered glacier
with unprecedented detail using a UAV equipped with a thermal
infrared sensor. There are distinct spatial patterns in the output
maps of Ts and the temporal variability of temperature is
captured well in the three flights that were performed. The
spatial variability in temperatures is partly explained by the
complex local topography, as sunlit slopes and big boulders
will warm more than shaded slopes and local depressions, and
by differences in ground cover. The random forest analysis
performed in this study shows that, of topography-related
variables, incoming shortwave radiation has the largest effect on
the warming rate of the glacier surface. In general, however,
surface topography is unable to account for the majority of
the warming rate signal, as 61.2% of the variance remains
unexplained. Consequently, spatial variations in the glacier’s
surface properties and processes seemingly play a large role
in controlling debris surface temperatures. The high-resolution
thermal imagery therefore has various potential applications in
the research of the debris-covered glaciers.

An obvious application of high-resolution thermal imagery
is to inversely estimate debris-cover thickness (Mihalcea et al.,
2008b; Foster et al., 2012; Rounce and McKinney, 2014;
Schauwecker et al., 2015; Gibson et al., 2017; Kraaijenbrink et al.,
2017), since thickness is an important variable in the surface
energy balance of debris-covered glaciers (e.g., Nicholson and
Benn, 2006, 2013; Collier et al., 2015; Ragettli et al., 2016).
As we show in this study, the UAV is able to capture spatial
patterns and heterogeneity in Ts (Figures 7, 10). This would
allow for detailed estimations of debris thickness, which in
turn may lead an improved understanding of small-scale glacio-
hydrological surface processes on debris-covered glaciers. The
temporal information on Ts provided by the repeat UAV surveys
might be particularly valuable. Analysis of spatially variable
warming rates of the debris (such as presented in Figure 11), for
example, may provide more detail on actual debris thickness than
a single image. Performing more flights over the course of the
day and increasing the temporal resolution would therefore be
worthwhile.

Secondly, surface temperature imagery at such high resolution
may reveal important insights in the energy balance of a debris-
covered glacier. The energy balance drives the melt of the
debris-covered tongues and several studies point toward a yet
unexplained faster surface lowering of the tongues of these
glaciers than what can be expected based on the melt suppression
by thick debris (Kääb et al., 2012; Gardelle et al., 2013; Pellicciotti
et al., 2015; Azam et al., 2018). It is unclear whether this behavior
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FIGURE 8 | Corrected Tidbit temperature measurements (Tcor) against corrected surface temperatures from the three UAV flights (Ts) (A). Point shape denotes the

UAV flight, point color the surface class, and the black line a 1:1 relation. (B–E) Show time series for selected Tidbits of the surface classes vegetation, debris, shade,

and water, respectively. For vegetation and debris both the uncorrected (Ttid) and corrected temperatures (Tcor) are plotted. The points on (B–E) indicate Ts at the

Tidbit location.

FIGURE 9 | Ground-based FLIR C2 optical (a) and thermal infrared (c) imagery (09:28 example) of a selected ice cliff, supraglacial pond, and the surrounding debris

location indicated in Figure 6a. UAV optical (b) and thermal infrared nadir orthomosaics (d) of the same location (Flight 2, 09:20–09:35). Image regions used for

comparison of the two datasets are indicated by the polygons (a,b). Time series with region statistics (mean, interquartile range and 95th percentile range) of TC2s are

shown in (e), and boxplots of TF1s , TF2s and TF3s for the corresponding regions on the UAV imagery in (f).
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FIGURE 10 | Comparison of a subset (extent denoted in Figure 7d) of Ts derived from Landsat 8 TIRS band 10 (2 May 2016 10:32; a) and from the thermal UAV

survey (Flight 3, 1 May 2016 10:35; b). The grid overlay denotes the 30 m grid in which the Landsat data is provided. Panel (c) shows, for the entire extent of the UAV

survey, a plot of Landsat pixel values against mean UAV surface temperatures within those pixels. The whiskers denote ±1 sd of the UAV surface temperatures.

FIGURE 11 | Comparison of the average warming rate (f) over the surveyed glacier surface area (Figure 6a) with five different DEM derivatives: aspect (a,g), slope

(b,h), upstream area (c,i), relative local elevation (d,j), and mean incoming shortwave radiation (e,k). The relative importance of each variable as a predictor in a

random forest regression is shown in (l).

can be attributed to turbulent fluxes, supra-glacial features such
as cliffs and ponds, a reduced emergence velocity or other
processes (Vincent et al., 2016; Azam et al., 2018). Highly detailed
information about the surface temperature provides LW↑, a
term often assumed to be spatially constant and only measured
point-scale at a weather station (Reid et al., 2012; Steiner and
Pellicciotti, 2016). Our results show it is highly variable and will
therefore also explain a large part of the variability in net energy
available for melt. In addition, the surface temperature controls
the sensible heat flux, which plays an important role in the
energy balance of debris-covered glaciers and ice cliffs (Steiner
et al., 2015; Buri et al., 2016a,b; Steiner and Pellicciotti, 2016).
A comparison of thermal imagery collected before and after
precipitation events might also help identify the role of moisture
in the debris layer and its effect on latent heat fluxes, and lead to

an overall improvement in turbulent flux parameterizations (e.g.,
Radić et al., 2017).

Thirdly, thermal UAV imagery could be applied in
understanding the surface and subsurface hydrology. Englacial
hydrology likely plays a key role in the drainage and transport of
melt water through the glacier to the outlet (Miles et al., 2017),
but the drainage paths are complex and difficult to measure.
With a combination of thermal imagery, optical imagery, and
the high-resolution DEM, it may be possible to infer supraglacial
(sub-debris) and englacial drainage patterns.

5.2. Satellite-Based Surface Temperatures
Spaceborne thermal infrared imagery has the advantage that,
if atmospheric conditions permit, Ts can be acquired relatively
accurately for large spatial extents and remote areas (Li et al.,
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2013). Currently, this is a limitation of UAVs, since it is
infeasible to deploy them over large inaccessible areas on a
regular basis. However, in the study of supraglacial debris,
the distinct advantages of thermal satellite imagery are largely
counteracted by the inability of its moderate resolution to resolve
the spatial heterogeneity in Ts found over debris-covered glaciers
(Figure 10). Although the imagery can be used for coarse maps
of debris thickness (e.g., Mihalcea et al., 2008b; Kraaijenbrink
et al., 2017), surface melt varies considerably over smaller spatial
scales, as indicated by the hummocky surface of most debris-
covered glaciers. The heterogeneity of surface elevation changes
(Immerzeel W. et al., 2014) and the thermal UAV data presented
in this study further supports a high variability of melt rates and
possibly debris thickness. To better understand the local surface
energy balance and the processes involved, thermal imagery with
a sufficiently high resolution, i.e., a resolution finer than the
spatial scale of the melt patterns, is required. An additional
advantage of the UAV is the possibility to deploy it synchronously
with other in situmeasurements to acquire complementary data.

In addition to the limitations imposed by sensor resolution,
spaceborne thermal imagery is unable to capture sub-daily
temporal variations in surface temperature (with the exception
of very coarse-resolution geostationary meteorological satellites).
The temporal variation observed in Ts over the three UAV flights,
shows us that the use of a single satellite image in the assessment
of the debris-layer could be an issue. Surface temperatures on
debris-covered glaciers will vary significantly with day of year,
time of day, and cloud conditions prior to acquisition, and the
variability that occurs on short time scales (Figures 8B–E) will
affect satellite-based analyses of the debris layer.

However, further implementation of the method we present
in this study in the research of debris-covered glaciers does
not only have the potential to improve our knowledge of
small scale debris-covered glacier surface processes. Together
with more process-oriented studies, more elaborate comparison
of satellite and UAV data has the potential to improve the
moderate resolution spaceborne thermal products, spatially and
temporally. Namely, development of optical- or DEM-based
downscaling of spaceborne thermal data using the UAV products
could provide a way to upscale our knowledge on small scale
surface processes to the glacier or catchment scale, which will
enable better assessments of the impacts future changes in debris-
covered glacier dynamics may have. Moreover, UAV data could
prove valuable in the validation of thermal satellite imagery of
debris-covered glaciers.

5.3. Bias Correction and Errors
The presence of the sensor bias of 6.9 ◦C reveals difficulties
in the determination of absolute debris temperatures with the
thermoMAP. The sensor bias correction we have applied is
based on the assumption that clean ice cliff surfaces will be at
melting point and thus 0 ◦C during Flight 2 and 3. This is a
reasonable assumption, but admittedly there are uncertainties
regarding its usability. For instance, atmospheric variability,
such as air temperature and water vapor content, may affect
the bias over time (Torres-Rua, 2017). It was not taken into
account because of a lack of accurate data of the atmospheric

column over the glacier that is required for such a correction
(e.g., Perry and Moran, 1994; Li et al., 2013; Torres-Rua, 2017).
The potential effect on the measurements is likely limited,
however, due to the relatively shallow column of about 90m
and the generally dry air (Figure 3). The Tidbit measurements
and the independently corrected Flight 1 thermal data are in
relatively good agreement (Figure 8A), and the FLIR C2 data
reveals stabilization of ice cliff temperatures at the melting point
(Figure 9). We therefore have confidence that the magnitude
of the applied bias correction is correct, but it is impossible to
determine this with high accuracy. Future efforts in determining
the bias may be improved by deploying additional markers
on the glacier with known emissivity and known temperature,
measured by a well-calibrated hand-held thermal infrared sensor.
Preferably these would be distributed over a range of different
surface temperature to evaluate non-linearity of the bias.

5.4. Temperature Measurement
Comparisons
The experiments performed to determine Tidbit temperature
overestimation under incoming solar radiation revealed a clear
and distinct relation of 1T with SW↓ for both reference
surfaces. Comparison of Tcor with UAV-derived Ts on the other
hand, shows deviations between both datasets, especially under
higher temperatures (Figure 8A). One of the probable causes
is insufficient Tidbit bias correction, indicated by much better
performance of Tidbit measurements in the shade and water.
Also, the correction of near-surface temperature measurements
uses only two correction slopes that will not work equally
accurate for all surfaces on which the Tidbits were placed, because
of slight variations in surface type,moisture content, shading, and
indirect radiation among others.

Probably most important in this case, however, is that the
thermodynamic temperature measured by the Tidbits is different
from the skin temperature measured radiometrically by the UAV
(section 3.1), and a direct comparison of the two temperatures
is not entirely fair. The Tidbit measurements are greatly affected
by a micro climate that develops within the plastic casing of
the Tidbit sensor, which will heat up differently than the skin
of the underlying surface that is measured by the UAV. This
mismatch is expected to be of different magnitude for different
surface types. Ground-based radiometric measurements with a
hand-held TIR sensor are better suited to validate the UAV-
derived Ts (e.g., Turner et al., 2014). This is not trivial, however,
since for proper validation measurements would have to be
performed at the time of the survey at multiple locations within
a UAV survey area, which is practically infeasible on a debris-
covered glacier. Furthermore, such comparisons are also subject
to uncertainties (Ribeiro-Gomes et al., 2017), as is also shown by
the skin temperatures measurements made using the FLIR C2.

TC2
s is considerably lower than UAV-derived Ts in early

morning, which may partly be attributed to the uncertainties
in exact timing of the UAV images. That is, the UAV
imagery is captured over a ∼15 min timespan in which
Ts can rapidly change. Unfortunately, the flight pattern of
the UAV (Supplementary Data) in combination with the
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SfM-MVS orthomosaicking makes it impossible to know the
exact measurement time of each pixel in our setup. Improving
the timing of UAV to ground-based data is advisable. It could
possibly be improved by capturing ground-based thermal video
instead of images, as this would ease syncing. While lower at
the beginning of the survey in early morning, TC2

s for debris is
considerably higher than TF2

s and TF3
s . This is likely explained

by the difference in camera angle, i.e., forward looking (C2)
in comparison with nadir (UAV). The C2 imagery was taken
in west-southwest direction and consequently the east faces of
boulders, which heat up first, were in view. The UAV captures
the entire surface including the colder west faces, leading to a
lower average Ts. The viewing angle of a thermal camera has a
considerable effect on the emissivity of an object. For instance,
viewing angles of 70◦ for water lower the emissivity to about
0.89 (Sobrino andCuenca, 1999) and thereby increase reflectivity,
since these are inversely related. This is likely the cause of the
higher temperature readings of the C2 for supraglacial pond class,
since the angle between the sensor and the pond normal was
very large. Primarily the part of the pond located center right on
the image (Figure 9c) has an increased temperature, which could
originate from reflected thermal infrared signal of the debris face
behind.

6. CONCLUSIONS

In this study we present a method to map the surface
temperatures of a high-elevation debris-covered glacier using a
thermal infrared sensor mounted on a UAV. From our study and
method development we draw the following main conclusions:

• Thermal surveys from UAV platforms provide an easy and
reasonably quick method to acquire high-resolution and
multi-temporal temperature maps of the surface of debris-
covered glaciers.

• Obtaining absolute temperatures of the glacier surface using
UAV-based thermal imaging is difficult, and it is important to
have accurate ground control with reference temperatures and
emissivity to improve accuracy of the results.

• The temperature of the debris layer on Lirung Glacier is
temporally highly variable, with temperatures ranging from
near-freezing to about 50◦C over the course of 4 h. Spatially,
surface temperatures are highly heterogeneous.

• Little to none of the spatial variability is captured by Landsat 8
thermal imagery, and satellite revisit times prohibit acquisition
of any data on diurnal temperature variations. This raises
questions regarding the utility of spaceborne remote sensing
for small to moderate scale debris thickness estimations and
surface energy balance studies.

• High-resolution, multi-temporal thermal mapping of debris
cover has the potential to improve analyses of debris thickness,
surface hydrology, and turbulent fluxes, thereby improving the
understanding of the surface energy balance of the debris layer
and the glacier surface.
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