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Department of Earth Sciences, University of Firenze, Firenze, Italy

We propose a methodology to couple rainfall thresholds and susceptibility maps for

dynamic landslide hazard assessment at regional scale. Both inputs are combined in

a purposely-built hazard matrix to get a spatially and temporally variable definition of

landslide hazard: while statistical rainfall thresholds are used to accomplish a temporal

forecasting with very coarse spatial resolution, landslide susceptibility maps provide static

spatial information about the probability of landslide occurrence at fine spatial resolution.

The test site is the Northern part of Tuscany (Italy), where a recent landslide susceptibility

map and a set of recently updated rainfall thresholds are available. These products

were modified and updated to meet the requirements of the proposed procedure:

the susceptibility map was reclassified and the threshold set was expanded defining

additional thresholds. The hazard matrix combines three susceptibility classes (S1, low

susceptibility; S2 medium susceptibility; S3 high susceptibility) and three rainfall rate

classes (R1, R2, R3), defining five hazard classes, from H0 (null hazard) to H4 (high

hazard). A key passage of the procedure is the appropriate calibration and validation

of the matrix, letting the hazard classes have a precise meaning in terms of expected

consequences and hazard management. The employ of the proposed procedure in

a regional warning system brings two main advantages: (i) it is possible to better

hypothesize when and where landslide are expected and with which hazard degree,

thus fostering a more effective hazard and risk management (e.g., setting priorities of

intervention); (ii) the spatial resolution of the regional scale warning system is markedly

refined because from time to time the areas where landslides are expected represent

only a fraction of the alert zone.

Keywords: landslide, hazard, rainfall thresholds, susceptibility maps, northern Apennines

INTRODUCTION

Since landslides are continuously responsible of damages and casualties worldwide, landslide
hazard assessment is a cogent research topic, aiming to determine the spatial and temporal
probability of occurrence of landslides (Fell et al., 2008; Corominas et al., 2013).

Spatial occurrence is called susceptibility. A landslide susceptibility map subdivides the terrain
into zones with differing likelihoods that landslides of a certain type may occur (Fell et al., 2008). A
large part of the quantitative methods to produce landslide susceptibility maps relies on regression
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or classification approaches (Aleotti and Chowdhury, 1999; Fell
et al., 2008). The techniques most widely used are discriminant
analysis (Carrara, 1983; Chung and Fabbri, 1995; Baeza and
Corominas, 1996), logistic regression (Hosmer and Lemeshow,
2000; Lee, 2005; Manzo et al., 2013), artificial neural networks
(ANN) (Bianchi and Catani, 2002; Lee et al., 2003, 2004; Ermini
et al., 2005; Yilmaz, 2009; Lu et al., 2012), linear regression
(Atkinson and Massari, 1998), fuzzy membership (Kanungo
et al., 2006), conditional probability or Bayesian methods
(Yilmaz, 2010; Catani et al., 2013).

The temporal occurrence of landslides is normally expressed
in terms of frequency, return period, or exceedance probability
(Corominas et al., 2013). Usually the approaches followed to
determine the temporal occurrence of landslides are: heuristic
methods (judgmental approaches) (Lee et al., 2000; Wong, 2005),
physically based methods (Montgomery and Dietrich, 1994; Pack
et al., 1998; Iverson, 2000; Crosta and Frattini, 2003; Baum et al.,
2005; Godt et al., 2008; Mercogliano et al., 2013; Rossi et al., 2013;
Tofani et al., 2017) and empirical/statistical rainfall thresholds
(Guzzetti et al., 2008; Segoni et al., 2018; and references therein).

Hazard assessment can be quantitative or qualitative. It
is generally preferable to determine the actual frequency of
landsliding in a quantitative way but in some situations it
may not be practical to assess frequencies sufficiently accurately
and a qualitative system based on hazard classes may be
adopted (Catani et al., 2005; Fell et al., 2008). Landslide
susceptibility maps and hazards assessments are static products
that provide a detailed quantitative or qualitative scenario
with a good spatial resolution. In this regard, they have
complementary characteristics respect to rainfall thresholds,
which are widely employed in regional scale landslide warning
systems with good temporal resolution but with very coarse
spatial resolutions, since warnings are usually issued over
large alert zones (Segoni et al., 2018). Indeed, the joint use
of rainfall thresholds and landslide susceptibility maps has
already proven to be a promising tool in advanced landslide
hazard assessment. Hong and Adler (2008) hypothesized a
real-time detection system at global scale where a prototype
global landslide susceptibility map was overlaid with satellite-
based observations of rainfall intensity-duration, to identify the
location and time of landslide hazards when areas with significant
landslide susceptibility are receiving heavy rainfall. Segoni et al.
(2015b) integrated a landslide susceptibility map into a regional
scale landslide waning system based on rainfall thresholds to
increase the spatial resolution of a warning system used in
Emilia Romagna (Italy). Jemec Auflič et al. (2016) described a
prototype prediction system for rainfall-induced landslides in
Slovenia based on a landslide susceptibility map and a rainfall
threshold.

In this work we propose a methodology to couple rainfall
thresholds and susceptibility maps for dynamic landslide hazard
assessment at regional scale, according to the workflow shown
in Figure 1. While statistical rainfall thresholds are used
to accomplish a dynamic temporal forecasting with good
temporal resolution but very coarse spatial resolution, landslide
susceptibility maps provide static spatial information about
the probability of landslide occurrence with a finer resolution.

The test site is the Northern part of Tuscany (Italy), where a
recent landslide susceptibility map (Segoni et al., 2016) and a
set of recently updated rainfall thresholds (Rosi et al., 2015)
are available. This work provides an added value to these two
products because for the first time two very different techniques
are coupled together to establish a landslide hazard management
tool. The proposed approach is based on the definition of a
purposely-built hazard matrix that provides different qualitative
level of landslide hazard based on different intensity-duration
rainfall thresholds and susceptibility classes. In the discussion
section, the potential application to real time hazardmanagement
is outlined.

MATERIALS AND METHODS

Test Site
The test area is located in Northern Tuscany (Italy), including
part of the northern Apennines with an extension of 3,103
Km2 (Figure 2). We selected this area as a test site since we
have at disposal the results of a recent landslide susceptibility
study (Segoni et al., 2016) and a set of recently updated rainfall
thresholds (Rosi et al., 2015), regarding five alert zones (namely
A3, A4, B3, B4, and B5) of the Tuscany regional warning system
(Segoni et al., 2015a) (Figure 2).

The Northern Apennines is a complex thrust-belt system
made up by the juxtaposition of several tectonic units, piled
during the Tertiary under a compressive regime that was followed
by extensional tectonics from the Upper Tortonian. The latter
phase produced a sequence of horst-graben structures with an
alignment NW-SE that resulted in the emplacement of Neogene
sedimentary basins, mainly of marine (to the West) and fluvio-
lacustrine (to the East) origin (Vai andMartini, 2001). Today, the
morphology is dictated by the presence of NW-SE trending ridges
whereMesozoic and Tertiary flysch and calcareous units outcrop,
separated by Pliocene-Quaternary basins.

These geological settings clearly affect the typology and
occurrence of surface processes, primarily through the
differences in the mechanical properties linked to the various
prevalent lithologies while the rainfall is the main triggering
factor. In particular, the study area shows two different geological
settings in the east and west sectors respectively (Tofani et al.,
2017). In the west sector carbonaceous rocks and metamorphic
sandstone and phyllitic–schist mainly outcrop. The slopes
are largely characterized by soils that are rather thin (0.5–2m
thick). On the contrary, the calcareous and dolomitic slopes
are usually rocky or with very thin soil cover. The east sector
shows a more uniform geological condition with the prevalence
of flysch formation rock-type (Macigno) which is composed of
quartz and feldspar sandstone alternated with layers of siltstone.
The slope gradient varies from 0◦ in the plain to 55◦. In the
mid and upper sections of the valley, where most landslides
usually occur, the stratigraphy consists of a 1.5–5m thick layer
of colluvial soil overlying the bedrock (Tofani et al., 2006,
2017).

In the study area, mean annual precipitation varies from
about 800 mm/y in the southern valleys to about 1,800 mm/y
on the north-western mountain ridges. During the year, rainfalls
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FIGURE 1 | Workflow.

concentrate in autumn and spring, with November and March
being the rainiest months, while summer is typically dry, except
for occasional short and intense storms (Rosi et al., 2012).

Northern Tuscany is affected by serious geological hazards as
landslides and subsidence (Rosi et al., 2014, 2018). According to
the Inventario dei Fenomeni Franosi Italiani (IFFI) (Trigila et al.,
2010, 2013) database, more than 5,000 landslides are present.
Their dimensions range from 102 to 106 m2 (Rosi et al., 2018) and
they are almost entirely categorized as rotational/translational
slides (37% of the entire database) of or as complex movements
(63%), i.e., shallow landslides or soil slips evolving into flows. It
is worth to notice that the hazard assessment procedure that we
propose in this work is related only to these types of landslides
involving mainly soil material, while we do not take into account
rock falls and topples (less than 1% of the database).

Data and Previous Works
Rainfall Thresholds
Tuscany is covered by a prototype regional warning system
based on a set of rainfall thresholds differentiated for 25
alert zones (Segoni et al., 2014b, 2015a). Rainfall thresholds
are based on intensity and duration and were defined with
a highly automated procedure using a purposely developed
software calledMaCumBA (Segoni et al., 2014a). The subdivision
into 25 alert zones following the main regional divides
allows relating each threshold to a hydrographic basin with
homogeneous meteorological and geomorphological settings,
thus strengthening the forecasting effectiveness of the system
(Segoni et al., 2014b). In the alert zones extending over the
study area, the thresholds have been recently updated using an
extended landslide dataset (Rosi et al., 2015).

The source of landslide data is mainly constituted by event
reports performed by the regional Civil Protection offices and by
a catalog of geotagged internet news (Battistini et al., 2017), which

was automatically obtained using a purposely-developed web-
based semantic search engine called SECAGN (Battistini et al.,
2013). These landslide data were also used to calibrate the hazard
matrix, which is the main objective of this work (section Hazard
Assessment).

To date, each alert zone of the regional warning systems
is monitored by a rainfall threshold, calibrated at the 95%
confidence level, that discriminates between “warning” and “no
warning.” The high confidence level is a conservative choice that
allows having a high “hits” rate at the cost of a not negligible
number of false positives (Rosi et al., 2015).

Susceptibility Model
In the study area, a susceptibility assessment has been recently
carried out (Segoni et al., 2016) using “Random forest,” a
machine-learning algorithm for non-parametric multivariate
classification (Breiman, 2001). Although this methodology can
be considered relatively new, it has already been consolidated
in landslide studies through different applications (Brenning,
2005; Vorpahl et al., 2012; Catani et al., 2013; Trigila et al.,
2013; Segoni et al., 2015b; Pourghasemi and Kerle, 2016;
Youssef et al., 2016). Random Forest has the advantage of
handling both numerical and categorical variables without
requiring assumptions about the distribution of the input data.
Moreover, it can use a large number of input parameters,
then a procedure of forward selection, which accounts also for
interactions and nonlinearities among variables, discards the
ones that do not bring a positive contribution and selects the
optimal configuration. The landslide susceptibility analysis was
performed using the software ClaReT (Lagomarsino et al., 2017),
which uses a random forest implementation based on Matlab
[Matworks, version 7.11, treebagger object (RFtb) and methods].

Two kinds of input parameters were considered as
explanatory variables for the susceptibility map: morphometric
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FIGURE 2 | Study area, subdivision into Alert Zones, morphology and lithology.

attributes and attributes derived from thematic maps. In
particular, the morphometric attributes are: curvature, flow
accumulation, topographic wetness index, elevation, profile
curvature, planar curvature, slope gradient, aspect. The
thematic attributes are: land use and lithology. Topographic
attributes were derived from the official and most recent
10m resolution DEM (Digital Elevation Model) produced
by Tuscany Region. Land use was derived from CORINE
Land Cover Map (1:50,000), updated in 2006 (https://www.
eea.europa.eu/publications/COR0-landcover) which in the
study area was reclassified into 9 classes: urban areas, crops,
grasslands, heterogenic rural areas, forests (broad-leaved);
forests (conifers); shrubs; bare rocks; humid areas. Lithology
was derived from Regional Geological Maps at the 1:10,000
scale, by reclassifying each geological formation into six
lithological classes (Segoni et al., 2016): conglomerates
and weekly cemented limestones; marl rocks and compact
clays; metamorphic rocks; flyschs (pelithic layers prevailing);
flyschs (massive layers prevailing); cohesive and granular soils
(Figure 2).

The IFFI database (Trigila et al., 2010), the Italian national
inventory of landslides at 1:10,000 scale, was used to train and
validate the susceptibility model.

As described in Segoni et al. (2016) the grid for each
morphometric or thematic attribute was resampled to a 100m
pixel size and split into two variables: the average value
encountered in the 100 × 100m cell (mean value for numerical
attributes and prevailing class for categorical values), and the
variability inside the 100 × 100m cell (standard deviation
for numerical attributes and number of classes for categorical
values). For the slope gradient and all kinds of curvature we have
considered also the maximum value. The total number of input
parameters used is 23 (Segoni et al., 2016).

To calibrate the “Random forest” classification algorithm, the
study area was randomly sampled to select 10% of the pixels for
training and 10% for testing. Such percentages have been proved
to be a good compromise between quality of the results and
speed of the calculations (Catani et al., 2013); indeed, a validation
of the susceptibility map provided satisfactory results, with an
AUC (area under ROC curve) value of 0.84 (Segoni et al., 2016),
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highlighting a good agreement with the observed truth and the
potentiality of new landslide activations in the future (Segoni
et al., 2016).

The raw output data of the susceptibility assessment is a raster
map with a 100m cell size, where each pixel has a percentage
value expressing the probability of being affected by a landslide.
The map has a range of susceptibility values from 0% to 91.

In this work, these raw data will be reclassified in three
classes: low susceptibility (S1), medium susceptibility (S2), and
high susceptibility (S3). The definition of the thresholds values
between the susceptibility classes is part of the calibration of our
hazard model; therefore, it is explained in the following section.

Hazard Assessment
To assess the landslide hazard, the rainfall levels defined from the
rainfall thresholds have been integrated with the susceptibility
classes. The basic assumption of this work is that if the
susceptibility map is classified in a number of classes that equals
the number of possible alert levels featured in the threshold
system, a square matrix can be built and it is possible to establish
a straightforward correspondence between hazard, rainfall rates
and susceptibility classes.

The general classification scheme is reported in Figure 3,
where the hazard matrix, based on susceptibility classes (S1, low
susceptibility; S2, medium susceptibility; S3, high susceptibility)
and rainfall classes (R1, low rainfall; R2,medium rainfall; R3, high
rainfall), defines five hazard classes from H0 (null hazard) to H4
(very high hazard). The hazardmatrix is based on the assumption
that the higher the susceptibility, the lower the rainfall level that
could trigger landslides.

To obtain the needed number of rainfall classes to build a
square matrix, in each alert zone an additional threshold has
been defined to discriminate between low and high criticality. To
define this threshold, we simply translated upward the original
threshold until a consistent reduction of false alarms (i.e., rainfall
events above the thresholds without triggering landslides) is
obtained. The downward or upward translation of a previously
defined threshold to defining different alert levels is a quite

FIGURE 3 | Combination of susceptibility classes and rainfall rates into the

hazard matrix: H0, null hazard; H1, low hazard; H2, medium hazard; H3, high

hazard; H4, very high hazard.

consolidated approach in the international literature (Guzzetti
et al., 2008; Segoni et al., 2018). In this work, three warning levels
have been defined for each alert zone: R1 (low rainfall rate), R2
(medium rainfall rate), and R3 (high rainfall rate) (Table 1).

For each alert zone, the three susceptibility classes have been
defined separately using, in order to define the class breaks,
a simple trial and error optimization procedure. All 1,761
landslides used in the rainfall threshold analysis were taken into
account and they were associated to: (i) a landslide susceptibility
value (by means of a simple elaboration in GIS environment);
(ii) a rainfall class as defined above (querying the database of
past events of the regional warning systems). Then, optimal
susceptibility class breaks have been defined after this procedure:

• First, the class breaks from Segoni et al. (2016) have been
taken into account and the hazard matrix (Figure 3) has been
defined.

• The S1/S2 limit has been progressively lowered until no
occurrence was found in the S1/R1 cell of the hazard matrix.

• In case the S1/R1 cell was already at zero, the S1/S2 limit
was progressively raised to the highest susceptibility value that
allows maintaining a count of zero landslides in the S1/R1 cell.

• The S2/S3 limit has been lowered or raised until the count of
landslides in the H2, H3, and H4 classes was 90% of the total.

This procedure has been applied separately to every Alert Zone.
Therefore, every AZ is expected to have a characteristic set of
susceptibility values defining the susceptibility classes.

RESULTS

Hazard Matrix Implementation
According to the methodology described in the previous section,
susceptibility classes have been defined with class break values
very different from ZA to ZA (Table 2). Figure 4 displays the
reclassified susceptibility map for the whole test site.

An original feature the proposed reclassification is that the
classes are conceived to be used in conjunction to rainfall
thresholds and to become hazard classes of different severity
according to the dynamic outputs of the regional warning system
based on rainfall thresholds. In other words, based on the rainfall
rate (R1, R2, or R3) of each alert zone, the landslide susceptibility
classes are transformed into hazard classes according to the
scheme reported in Figure 3.

TABLE 1 | The system of rainfall threshold proposed for this work.

Alert zone R2 (Rosi et al., 2015) R3 (this work)

A3 I = 32.702 D−0.577 I = 61.850 D−0.577

A4 I = 37.220 D−0.635 I = 61.134 D−0.635

B3 I = 93.553 D−0.828 I = 145.50 D−0.828

B4 I = 48.643 D−0.737 I = 66.00 D−0.737

B5 I = 46.529 D−0.810 I = 93.00 D−0.810

The lower bound of the intermediate rainfall rate (R2) is represented by a literature

threshold, while the lower bound of the most critical rainfall rate (R3) is an original outcome

of this work.
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To test this approach, we performed a back-analysis on the
whole landslides dataset: each landslide was associated to a
hazard class according to the susceptibility class of its location
and to the rainfall rate provided by the thresholds of the warning
system for the day in which the landslide was triggered. Table 3
shows the results of this test counting the hazard level associated
to each landslide. In Table 3, the count is provided separately for
each alert zone and it is also aggregated over the whole test site.
It can be easily verified that only about 10% of the landslides is in
the H1 class and no landslide is in the H0 class.

Validation
The proposed approach was validated using an independent
dataset, pertaining to the period from 01-01-2017 to 30-4-2108.
The validation consists in simulating an operational employ of
the dynamic hazard matrix through the whole validation period

TABLE 2 | Class break values for the susceptibility classes of each alert zone.

Alert zone S1–S2 (%) S2–S3 (%)

A3 4 18

A4 7 15

B3 7 22

B4 4 22

B5 7 26

and to check what is the hazard class associated to each landslide
occurred in the study area during that period.

SECAGN search engine (Battistini et al., 2013, 2017) was
applied to retrieve online news of landslides occurred in the study
area during the validation period. The result was a catalog of 39
landslides for which triggering time is knownwith hourly or daily
approximation. For each landslide, the rainfall level (R) provided
by the warning system during the day of occurrence and the
landslide susceptibility class characterizing the landslide location
were combined to get the corresponding hazard level (according
to Figure 3).

It was possible to ascertain that in a hypothetic operational
employ of the proposed dynamic hazard assessment, 9 landslides

TABLE 3 | Back-analysis of the landslides dataset: each landslide is associated to

a hazard class according to the susceptibility class of its location and to the rainfall

rate provided by the thresholds of the warning system.

A3 A4 B3 B4 B5 TOT

H0 0 0 0 0 0 0 0%

H1 115 8 17 23 9 172 10%

H2 179 27 24 66 8 304 17%

H3 425 25 106 113 62 731 42%

H4 435 39 35 36 9 554 31%

TOT 1,154 99 182 238 88 1,761 100%

FIGURE 4 | Reclassified susceptibility map.
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would have occurred in H4 class, 14 in H3, 15 in H2, 1 in H1 and
none in H0. These numbers are in accordance with the criteria
used for the hazard assessment calibration: no landslides would
have occurred in the “no hazard class,” less than 10% (namely, a
single landslide) in the H1 class and 38 out of 39 would have been
associated to one of the hazard levels interpreted as very likely to
be associated with landslides.

Although the validation results are encouraging, we are
aware that the dataset used for validation is limited; therefore,
further tests should be performed before deeming the proposed
procedure ready for the operational employ in the risk
management.

DISCUSSION

Hazard Interpretation
Given the physical meaning of the input susceptibility and
rainfall classes and the outcomes of the back-analysis, the
qualitative hazard classes obtained with the proposed approach
could be interpreted as follows:

• H0 - null hazard. No landslides are expected. This hazard class
can originate only from the intersection of R1 and S1 classes: it
represents a condition for which both the susceptibility map
and the threshold model calculated the minimum level of
hazard. A landslide occurrence in this box would represent an
error of the proposedmethodology, as it would occur in a pixel
deemed as stable by the susceptibility assessment and during a
time when no alarm in terms of rainfall duration and intensity
(neither moderate nor high) is issued. Therefore, the hazard
matrix was calibrated to have no landslides in this cell, in an
effort to account also for the errors and the uncertainties in the
data and in the two input models (susceptibility and rainfall
thresholds) originating the hazard matrix.

• H1 - low hazard. Theoretically, no landslides should
be expected. However, this class encompasses a residual
possibility of landslide occurrence because of errors in one of
the input models (susceptibility model or rainfall thresholds
model), uncertainties in the data, or triggers other than rainfall
(e.g., snow melting). The hazard matrix has been calibrated
to encompass only 10% of the known landslides dataset in
this hazard class. This hazard class can be generated in two
different cases:

◦ R1/S2. Landslides occurred here represent an error of the
proposed hazard model, because harmless rainfalls (no
alarms issued by the rainfall thresholds) actually triggered
some landslides in a medium susceptibility area.

◦ R2/S1. Landslides occurred here represent an error of the
proposed hazard model, because mild rainfalls (medium
criticality level provided by the rainfall thresholds)
triggered some landslides in an area where landslides
should not be expected (low susceptibility).

• H2 - medium hazard. In this hazard class, landslides are
expected, since one of the inputs is high and the other is low,
or they both are medium:

◦ R1/S3. Landslides are located in the highest susceptibility
class but in the low rainfall rate class. These situations

represent errors of the rainfall thresholds model, for
example situations related to snow melting, which is not
taken into account in the rainfall thresholds definition.
Therefore, with this class the proposed dynamic hazard
approach is capable of accounting also for occurrences that
would be missed by the original warning system.

◦ R3/S1. Conversely, this class could be associated to an
intrinsic error of the susceptibility model, since landslides
occur in an area with low susceptibility, but according to
our hazard approach this could be possible only in rainfall
conditions belong to the highest rainfall class.

◦ R2/S2. In this class, both input models provide the
intermediate level of criticality, thus resulting in an
intermediate hazard level.

• H3 - high hazard. In this hazard class, one of the input models
provides the maximum level of criticality while the other
provides the intermediate one:

◦ R3/S2. The interpretation of this class is that when the
rainfall rate is at the maximum level, landslides can be
expected also in areas with medium landslide susceptibility.

◦ R2/S3. Where the susceptibility to landslides is at the
highest level, landslides can be triggered also when the
rainfall rate is at a medium level of criticality.

• H4 - very high hazard. This hazard class originates only from
the intersection of R3 and S3 classes, thus representing a
condition for which both the susceptibility assessment and the
threshold model calculated the highest possible level of spatial
and temporal (respectively) hazard.

Possible Use
The methodology presented could be easily integrated into the
regional landslide warning system and used to obtain real time
dynamic hazard maps. Since the warning system combines
rainfall forecasts and real time rainfall data recorded at hourly
time step by a network of automated rain gauges, the hazard
scenarios could be displayed both for the real-time condition and
for the future.

In addition, the dynamic hazard scenario may change as soon
as new outputs of the warning systems are provided. If the system
is running in now-casting mode, every hour the dynamic hazard
map can be refreshed and a new scenario can be built using
the new rainfall data coming from the regional network of rain
gauges providing hourly rainfall measures. If the system is run
in forecast mode, whenever a new forecast of distributed rainfall
field is available (normally, twice a day), the dynamic hazard map
can be refreshed and updated.

Traditionally, regional warning systems provide a spatially
constant alert level for the whole area of application or for
large subdivisions called alert zones. The actual consequence of
the application of our methodology is that when a rainfall rate
(R1, R2, and R3) is recorded/forecasted in a given alert zone,
its territory is automatically partitioned in three hazard classes,
thanks to the availability of the susceptibility map (Figure 5).
Therefore, a double advantage is obtained:

1. It is possible to better hypothesize where landslides are
expected and with which hazard degree, thus fostering a more
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FIGURE 5 | Example of dynamic hazard map for a complex rainfall scenario, with different rainfall rates (R3, R1, R1, R1, R2) in the alert zones (A3, A4, B2, B3, B5,

respectively).

effective hazard and risk management (e.g., setting priorities
of intervention);

2. The spatial resolution of the warning system is markedly
refined because from time to time the areas where landslides
should be expected are only a fraction of the alert zone.

Table 4 quantifies to which extent the spatial resolution of the
warning system can be refined by the proposed approach: at
every time, the territory of each alert zone is partitioned into
three out of the five proposed hazard classes, depending on the
current rainfall rate. As instance, when the maximum rainfall
rate is encompassed (R3: rainfall above the highest threshold),
in 26% of the territory of the A3 alert zone the landslide hazard
is medium, in 52% is high and in 21% is very high. Taking into
account the rainfall threshold warning system alone, the whole
alert zone territory would be considered at the maximum hazard
level. Therefore, the proposedmethodology can be used to obtain
a consistent refinement of the spatial resolution of the hazard
assessment providing a dynamic hazard classification, which can
be used in hazard and risk management.

Comments on the Physical Settings
Rainfall thresholds and susceptibility maps are products that
are traditionally created independently for different needs
(namely: temporal forecasting for warning purposes and spatial
assessment for land management). The objective of this work is
finding a dependence between the two approaches to couple the

temporal and the spatial forecasting. Form this point of view,
rainfall thresholds and susceptibility maps can be considered as
complimentary products that can be conveniently coupled to
have a dynamic hazard assessment. These twomethodologies can
be considered complimentary also from another point of view:
while rainfall thresholds relate landslide initiation with the main
triggering factor (rainfall), susceptibility maps relate landslide
occurrence to the predisposing factors (e.g., morphometry,
lithology, and land use). It is important to note that both
approaches neglect an explicit analysis of the physic behind the
landslide initiation: both rainfall thresholds and susceptibility
maps used a statistical approach and not a physically based one.
As a consequence, the same can be said for the resulting hazard
matrix and hazard assessment proposed in this work. However,
some characteristics of the hazard assessment can be put into
close correlation with some physical features of the test site.

The study area is wide and presents heterogeneous physical
features; therefore the approach of subdividing the site into
alert zones calibrated independently allowed strengthening
the statistical correlation between landslide initiation and
triggering/predisposing factors. The very different threshold
equations (Table 1) and the difference in susceptibility values
used to separate susceptibility classes (Table 2) corroborates
further the effectiveness of the approach consisting in
partitioning the study area into independent physiographic
units. Among these, A3 is the most prone to landslides: here
landslide density is higher than in the other alert zones (Segoni
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TABLE 4 | Spatial extension of the hazard classes determined in each alert zone

in case of rainfall rates R1, R2, or R3.

R1 (%) R2 (%) R3 (%)

A3 H0 26 N.A. N.A.

H1 52 26 N.A.

H2 21 52 26

H3 N.A. 21 52

H4 N.A. N.A. 21

A4 H0 54 N.A. N.A.

H1 40 54 N.A.

H2 6 40 54

H3 N.A. 6 40

H4 N.A. N.A. 6

B3 H0 55 N.A. N.A.

H1 41 55 N.A.

H2 4 41 55

H3 N.A. 4 41

H4 N.A. N.A. 4

B4 H0 54 N.A. N.A.

H1 43 54 N.A.

H2 3 43 54

H3 N.A. 3 43

H4 N.A. N.A. 3

B5 H0 61 N.A. N.A.

H1 37 61 N.A.

H2 2 37 61

H3 N.A. 2 37

H4 N.A. N.A. 2

et al., 2014b; Battistini et al., 2017), due to the higher slope
gradients, the highest altitudes and the presence of lithologies
very susceptible to landslides (pelitic flyschs and shistose
metamorphic rocks). This is also reflected by the outcomes of
the calibration procedure: A3 has the lowest rainfall thresholds
combined with the lowest susceptibility, while B3 shows the
highest ones. The subdivision of the study area into alert zones to
be monitored independently allow also the better encompass the
spatial and temporal variability of the rainfall variable: a check on
the validation period revealed that in 39% of the days, the rainfall
amounts were so different from an alert zone to another that the
systems returned different rainfall rate classes (R1, R2, R3), and
this occurred mainly during storms: during the validation period
it never happened that all the alert zones were at the R2 or R3
level during the same day.

According to the validation procedure, the dynamic hazard
assessment proposed in this work underestimated landslide
hazard only in one circumstance out of 39. A thorough
investigation of this error revealed that it is related to a single
landslide event occurred in a S2 spot of the alert zone A3, in a day

when the warning system state was in R1 mode, thus providing
a H1 (low hazard) matrix output. In this case, both the rainfall
threshold system and the susceptibility map underestimated the
hazard: the former because no threshold was overcome, the
latter because probably some anthropic predisposing factor were
not take into account properly (indeed, the landslides occurred
close to a mountain road and to a drainage system, which both
could have favored the triggering mechanism). This was the only
circumstance for which the proposed hazard assessment could
not encompass properly the inherent uncertainty of the two
original models that were combined into the matrix, but it is
a flaw within the error limits imposed by the calibration and
optimization procedure explained in section Hazard Assessment.

CONCLUSION

We propose a dynamic landslide hazard assessment procedure
based on the combination of rainfall thresholds and susceptibility
maps. Inside each alert zone, the dynamic but spatially constant
input provided by a warning system based on rainfall thresholds
is combined with the spatially variable but static input provided
by a susceptibility map into a matrix defining five possible hazard
levels.

The proposed hazard classification scheme underwent a
calibration procedure against a large landslide dataset, counting
1,761 landslides, to ensure a good constraint between hazard
classification and experimental data. This allowed minimizing
the number of landslide occurrences in the lowest hazard
classes and to provide an interpretation of the hazard classes.
A validation procedure was performed against an independent
dataset simulating an operational employ of the dynamic hazard
assessment through a 16 months period. The validation provided
encouraging results, as 38 landslides out of 39 would have been
associated to a consistent hazard level.

The proposed procedure could be easily applied to early
warning systems based on rainfall thresholds bringing two main
advantages: a consistent refinement of the spatial resolution
of the forecasts and a robust tool to assist hazard and risk
management and spatial-temporal forecasting of rainfall induced
landslides at regional scale.
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