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Flood models predict inundation extents, and can be an important source of information
for flood risk studies. Accurate flood models require high resolution and high accuracy
digital elevation models (DEM); current global DEMs do not capture the topographic
details in floodplains, and this often leads to inaccurate prediction of flood extents
by flood models. Flood extents obtained from remotely sensed data provide indirect
information about topography. Here, we attempt to use this information along with
model predictions to produce better floodplain topography. The algorithm we describe
is a two-step process: first, we reduce the noise along the observed flood boundaries
for all particles. Then, the model predictions from these modified DEMs are assimilated
with observations using a particle batch smoother. We implemented the algorithm for
a synthetic test case. For the nominal case, we observed a significant improvement in
accuracy in terms of RMSE (35% reduction), bias (20%), and standard deviation (40%).
We conducted sensitivity analysis by using priors of varying bias (0.5, 1, and 2 m) and
standard deviation (1, 2, and 4 m). The bias reduced to ∼0.5 m or below in all the
cases: the reduction in bias varied from 11 to 76%. The standard deviation of errors in
the final estimate was almost half of the prior: the reduction varied from 40 to 49%. The
reduction in RMSE ranged between 35 and 67%. For the case with 2 m bias and 4 m
standard deviation (SRTM-like error levels), bias went down to 0.48 m (76% reduction),
and standard deviation reduced to 2.24 m (44% reduction). Flood inundation maps
produced from the final estimate DEMs also improved on its prior. For the 2 m bias
cases, true positive rate (TPR) for peak inundation went from ∼30% to more than 57%
in all three cases. The algorithm produces promising results, and this type of analysis
can be performed in data-poor floodplains where high resolution DEMs do not exist.

Keywords: digital elevation model, flood modeling, data assimilation, remote sensing, floodplains

INTRODUCTION

Prediction of inundation extents from flood models is an indispensable source of information
for assessing flood risk in the context of hazard studies, but inundation prediction accuracy is
often limited by the quality of topographic data available globally. Topographic data, generally
in the form of digital elevation models (DEMs), are the primary input data for flood inundation
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FIGURE 1 | (A) True DEM for the Buscot case and (B) maximum flooded
extent.

FIGURE 2 | Flood inundation area and available flood maps.

modeling. Airborne light detection and ranging (lidar) DEMs
offer the best horizontal resolution and vertical accuracy.
However, high resolution lidar DEMs are not available globally
and are expensive to obtain. Globally, the best available DEMs
are obtained from satellite data: the shuttle radar topography

mission (SRTM, spatial resolution 30 m) (Rodriguez et al., 2006)
and multi-error-removed improved-terrain (MERIT, spatial
resolution 90 m) (Yamazaki et al., 2017) DEM are a few
examples of freely available DEMs. The global average for vertical
relative error in SRTM is about 6 m (Rodriguez et al., 2006).
TanDEM-X DEM produced by DLR (German Aerospace Center)
has better spatial resolution (10–12 m) and vertical accuracy
(∼2 m) (Krieger et al., 2006; Eineder et al., 2012). However,
it is a commercial product and is not freely available. Because
the vertical inaccuracies of the SRTM DEM, flood inundation
modeling using SRTM produces spatial inconsistencies (Sanders,
2007; Yamazaki et al., 2012; Yan et al., 2015; Fernández et al.,
2016; Sampson et al., 2016). Hence, these DEMs are not suitable
for flood simulations as they do not represent the topography
well (Sanders, 2007). There have been calls to produce global
scale high resolution DEMs because of its impact on emergency
services and scientific research (Schumann et al., 2014).

Spaceborne remote sensing observations of inundation extent
contain indirect information about floodplain topography.
Remotely sensed data is widely used to study floods (Schumann
and Domeneghetti, 2016) for applications such as flood risk
assessment, emergency flood response, and flood mapping, but
inference of floodplain topography from inundation has rarely
been attempted; Mason et al. (2016) is an example of one such
study. Spatiotemporal inundation patterns in floodplains are
responses to a combination of factors and input variables like flow
rate in the river channels, soil type, vegetation, etc.: floodplain
topography determines where floodwaters flow after rivers flood
their banks. For this reason, inundation patterns contain indirect
information about floodplain topography. As a specific example,
the boundaries of flood inundation are essentially the contours
of ground elevation, if the water level is assumed to be flat (this
idea can easily be extended to account for river slope, as well).
Using inundation “contours” in this way is the inverse of the well-
known body of the literature that uses inundation intersected
with a high precision DEM to infer water levels (Matgen et al.,
2007; Cohen et al., 2018). It is intuitive that these contours could
be used to constrain relative variations in floodplain topography:
for example, noisy elevations could be smoothed by averaging
along inundation edges. Mason et al. (2016) used synthetic
aperture radar (SAR) derived flood extents to improve the height
accuracy in TanDEM-X DEM. They tested the method in a region
where the errors had a mean and standard deviation of ∼ 0.5
and∼2 m, respectively. The mean difference between TanDEM-X
and lidar DEM reduced from 0.5 to 0.3 m, and their standard
deviation reduced from 2 to 1.2 m. However, it is not certain the
method would work for regions with higher height errors, like
SRTM, which has mean and standard deviation of errors in the
range of∼ 1.2 and∼ 4 m, respectively.

Because inundation images reflect the complex flow paths that
water takes during flooding events that can only be captured
by flood models, methods such as Mason et al. (2016) (referred
to as “smoothing methods,” hereafter) are unlikely to extract
all possible topographic information from inundation imagery.
Because two-dimensional flood models encapsulate floodplain
processes, it is natural to attempt to use such models to help
extract topographic information from inundation. Indeed, the
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FIGURE 3 | Outline of the methods.

objective here is to infer floodplain topography using inundation
maps, while flood models do the inverse: predict inundation
using floodplain topography. Thus, this is a classic example of an
“inverse problem” (Yeh, 1986). Data assimilation is a technique
that can be used to solve inverse problems; assimilation combines
measurements and models to produce an estimate of the system
which is better than just the measurement or model alone.

To our knowledge, assimilation has not been used to estimate
floodplain DEMs, though related work has been done. Durand
et al. (2008) assimilated water surface elevation observations
along with LISFLOOD-FP hydrodynamic model to estimate
channel bathymetry. Observations from SAR images of river
inundation were assimilated with 2-D shallow water equations
to identify optimal Manning’s coefficients (Lai and Monnier,
2009; Hostache et al., 2010; Monnier et al., 2016). One obvious
impediment to using flood models to infer floodplain topography
is the high dimensionality of the problem: in principle, the
elevation value for each grid cell in the floodplain model must
be estimated. An additional consideration is that flood models
are computationally expensive, and many assimilation algorithms
require either repeated model runs or ensembles of runs. A final
concern is the high degree of non-linearity between the observed
inundation and the floodplain topography, as some approaches
[e.g., the ensemble-based assimilation of Durand et al. (2008)]
are based on linear estimation theory. The non-linearity can be
accounted for by using a so-called “Particle Batch Smoother”
(PBS), as described in Margulis et al. (2015), which is a non-
Gaussian estimator that directly approximates Bayes theorem.

In the present study, we present and test (using synthetic
observations) a new algorithm designed to infer floodplain
topography using globally available DEMs and inundation
imagery. The algorithm consists of two steps: smoothing and data
assimilation, that capitalize on the strengths of each method.

EXPERIMENT DESIGN

We tested our algorithm for a synthetic case of small domain.
This allowed us to explore the sensitivity of the algorithm to

errors of various magnitude. We used the Buscot model, a tested
example model distributed with LISFLOOD-FP, as our synthetic
test case. LISFLOOD-FP (Bates and De Roo, 2000; Bates et al.,
2010) is a raster-based inundation model. We considered the
DEM used in this model as the truth. The model had a defined
river channel, and the flow in it was defined by the inflow
boundary condition. The flow into the channel was defined as a
triangular hydrograph with a flow of 20 m3/s at time 0, 200 m3/s
at its peak and back to 20 m3/s at the end of the 5-day simulation.
Figure 1A shows the DEM, and Figure 1B shows the maximum
flooded extent for this test case.

To obtain best results from this method, we require multiple
unique flood extent observations. We used 9 flood inundation
maps obtained between day 1 and peak inundation on day 3
as observations. Our primary objective was to test the efficacy
of the algorithm itself, and we did not focus on studying the
impact of less or more flood inundation observations. In order
to focus on the effect of prior DEM error on the analysis, we did
not add white noise to the classified imagery; we leave for future
work how observational uncertainty and temporal revisit would
impact the algorithm accuracy. Figure 2 shows flood inundation
area for the simulation period, and the maps that were used as
observations.

In the design of the synthetic experiment, we attempt to
simulate a realistic situation where we attempt to correct a noisy
“prior” estimate of the floodplain DEM. We accomplish this by
taking the DEM distributed with the Buscot model to be the
“truth.” We then create a prior estimate of the DEM by adding
errors to the truth. Here we chose to add spatially uncorrelated
errors when creating the prior; the level of the errors varies
among the various cases. We define the “nominal case” to be
addition of 0.5 m bias and 1 m standard deviation of errors, which
is referred to as the prior henceforth. We performed sensitivity
analysis by considering 8 additional cases, by exploring bias
ranging from 0.5, 1, and 2 m, and standard deviation of 1, 2, and
4 m. The case with bias of 0.5 and 2 m is similar to the TanDEM-X
errors, which was used by Mason et al. (2016). The cases with
bias of 1 and 2 m, and standard deviation of 4 m is similar to
SRTM.
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FIGURE 4 | Elevations along the boundary for four sample ensemble members for the nominal case. Weight refers to the inverse of RMSE of the best fit line, and is
used to smooth the elevations along the boundary.

We evaluated the performance of the algorithm by calculating
bias, standard deviation of DEM errors and root mean
squared error (RMSE) for all the pixels modified by the
algorithm. We also evaluated the DEM’s ability to predict
inundation by using true positive rate (TPR), a statistical
measure of binary classification. TPR is the proportion of
predicted inundation area from the model that is accurate (from
observations).

MATERIALS AND METHODS

Our approach merges smoothing and data assimilation to better
extract floodplain topography information from inundation
maps. We will use the PBS concept described by Margulis
et al. (2015) for a different estimation problem. The PBS
is related to the Ensemble Kalman batch smoother used by
Durand et al. (2008) to infer channel bathymetry from inundated
area, but relies upon a fully Bayesian approach that does not
assume linearity between the observations and the quantities
to be estimated. The PBS represents the relationships between
observations and model parameters, as well as the associated
uncertainty, using a set of model simulations, which are referred
to as “particles.” Each particle represents an independent random
realization of the sample. The basic idea is to generate a
moderately sized set of particles, where each particle is a random
perturbation of the prior DEM. Here we adapt the usual PBS
algorithm by first performing smoothing on each of the particles
prior to the PBS estimation. Then the LISFLOOD-FP model is

run on each of the smoothed particles. Finally, the PBS estimate
of the DEM is computed by comparing the LISFLOOD-FP model
run output of each particle to the map of inundation observation.
The PBS estimate can be thought of as a weighted average
of all the DEM particles, where the weights are based upon
the accuracy of LISFLOOD-FP in simulating the inundation.
Figure 3 shows an outline of the method we use to estimate
an updated DEM using the PBS. One note of clarification: we
use weighted averages in two contexts. In the first case, they
are used for the smoothing elevations along flood boundaries,
and they are referred to as weights (ensemble and regression).
In the data assimilation step, we use particle weights to obtain
the final estimate, and these weights are referred to as particle
weights.

Generating Particles
It has been established from empirical evidence that DEM errors
are not completely random, and often have spatial correlation
(Hunter and Goodchild, 1997; Fisher, 1998; Kyriakidis et al.,
1999; Carlisle, 2005; Erdoǧan, 2010). Hence, we added spatially
correlated errors to the prior (It should be noted that, in this
implementation of a synthetic case, we created the prior by
adding uncorrelated random errors to the “true” DEM.), and
generated an ensemble of 50 particles. We added errors with
zero mean, 1 m standard deviation and 250 m correlation
length to the prior. We also added a constant bias to each
particle; the constant bias was randomly generated in the same
range as the bias of the prior (−0.5 to 0.5 m for the nominal
case).
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The set of randomly perturbed DEMs thus obtained might
be inefficient as the process may generate many unrealistic DEM
particles. Data assimilation style approach will require a large set
of particles to capture the complex spatial pattern of topography,
making the process computationally inefficient. One way to deal
with this problem is to make the ensemble of particles more
realistic. We make this ensemble of particles more realistic by
using the process described in Section “Smoothing Along Flood
Boundary”.

Smoothing Along Flood Boundary
We exploited the indirect information about elevations along
the flood boundary to produce a set of realistic particles.
For each particle in the ensemble, we extracted the elevations
along the flood boundary. We extracted two adjacent pixels
along the boundary: one flooded pixel on the edge (the “wet
boundary”), and the adjacent pixel on the non-flooded side
(the “dry boundary”). Then, we performed linear regression
along both boundaries, considering the wet and dry boundaries
separately. We consider the length along the boundary going
from upstream to downstream as the independent variable
and the extracted elevations as the dependent variable. We
modified each particle by updating the elevations along the
flood boundary as the weighted average of extracted elevations,
and its regressions. By doing this, the noise in elevations
along the boundary was reduced (Figure 4). The weights are
expressed as the inverse of RMSE of the prior, and of the
regression. We used nine flood inundation maps to perform this
operation.

We used the estimate of bias and standard deviation of errors
for the prior to calculate RMSE of the prior. We use this RMSE
to compute the ensemble weight, wen, as the inverse of RMSE of
the prior. For the regressed line along the boundary, the weight is
defined as:

wfit,j =
1

rms
(
zen − zfit,j

) (1)

where wfit,j is the regressed weight of jth particle, zen is the
elevation along flood boundary in the prior, and zfit,j is the
elevation along flood boundary in the jth particle. Figure 4
shows RMS of difference between regression (zfit,j) and prior
(zen) elevations along the boundary, and its corresponding weight
(wfit,j) for four sample particles. The updated elevation along the
flood boundary, z+j , is calculated as:

z+j =
wenzen,j + wfit,jzfit,j

wen + wfit,j
(2)

Figure 4 shows the elevations along the boundary for the particle,
regressed and updated elevations for four sample particles in the
nominal case. The flood boundary of each ensemble member was
replaced with this value of z+j from that particle to obtain an
updated set of particles.

When we modify elevations along the observed flood
boundary, we introduce sub-optimality into the analysis,
because the errors in the smoothed DEMs are now dependent
on errors in the observations. Thus the errors in the

LISFLOOD-FP predictions are also correlated with the
errors in the observations, whereas the PBS assumes that
they are not correlated. However, we assume that the degree
of sub-optimality introduced by using the observations
is relatively small compared to the large errors in the
prior DEM.

Data Assimilation
We ran a forward simulation of LISFLOOD-FP using the
updated particles (z+j ) to obtain inundation maps for each
particle. All the parameters (except the DEM) in the model
were the same as in the simulation using “true” DEM. The
inundation maps from this set of simulations were used along
with observed inundation maps using PBS (Durand et al., 2008;
Margulis et al., 2015) to estimate the updated DEM. PBS is
a non-Gaussian estimator which directly approximates Bayes
theorem. Initially, all ensemble members are assigned equal
particle weights. We evaluate the likelihood of each particle by
simulating flood inundation maps, and calculating the agreement
between the modeled and observed flood inundation. True
positive rate (TPR) is used to define the agreement between
the modeled and observed inundation. We used exponential
probability distribution to update the weights. The value of the
probability density function wj at any point tj=1−TPRj is defined
as the particle weight of the jth particle. The probability density
function for exponential distribution is defined as:

wj = λe−λtj for tj > 0 (3)

where tj is the random variable, λ is a rate parameter and
λ = 1

/
µ = 1/σ, µ being the expected value of the distribution

and σ the standard deviation. We then update the particle weight
according to its likelihood of producing accurate inundation
maps. The rate parameter λ is used to represent uncertainty in
observations, and we use a value of 0.1 in the current study. Here,
we calibrated the value of λ for the data assimilation to produce
largest error correction. This means that our confidence in
observations is high. The value of λ can be modified to represent
the confidence in the observations. Higher value of λ produces
less contrast between weights at t equal to 0 and 1. Hence, the
weights are close to each other, indicating a lower confidence in
observations. The updated particle weight is proportional to the
likelihood of the model predicting the observation. Particles that
produce inundation maps with high agreement have large particle
weights; particles that have poor agreement have small particle
weights. The posterior or updated DEM is the weighted average
of the prior DEMs, calculated as shown in (4).

DEM+ =

∑
wjDEM−j∑

wj
(4)

where DEM+ is the updated estimate, DEM−j and wj are jth
particle and its particle weight of jth particle. Figure 5 shows the
agreement in flood extent between the model and observations
for a sample of nine particles. TPR, and the corresponding
particle weight (wj) assigned to that particle for those nine
particles are shown in their respective panel in Figure 5. It can be
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FIGURE 5 | Agreement between observed and predicted flooded area for a sample of nine particles, and their corresponding weights for the nominal case. TPR is
the true positive rate; weight refers to the particle weights assigned using the exponential distribution.

TABLE 1 | Statistics for height errors along the flood boundary before and after smoothing.

Standard deviation (m)

1 2 4

Prior Smoothed Final estimate Prior Smoothed Final estimate Prior Smoothed Final estimate

M
ea

n
(m

)

Bias (m)

0.50 0.50 0.52 0.40 0.55 0.56 0.49 0.42 0.38 0.32

1.00 0.98 0.96 0.35 0.93 0.93 0.43 0.94 0.90 0.45

2.00 1.94 1.95 0.50 2.00 2.00 0.50 2.02 2.02 0.48

Standard deviation (m)

0.50 0.98 0.59 0.59 1.92 1.13 1.13 4.13 2.41 2.40

1.00 1.03 0.59 0.60 1.96 1.09 1.09 3.76 2.04 2.04

2.00 1.03 0.50 0.53 2.03 1.07 1.07 4.03 2.20 2.24

RMSE (m)

0.50 1.10 0.78 0.71 1.99 1.26 1.23 4.15 2.44 2.42

1.00 1.42 1.13 0.69 2.16 1.43 1.18 3.88 2.23 2.09

2.00 2.20 2.01 0.73 2.84 2.27 1.18 4.51 2.99 2.29

seen that the particles that produce inundation maps with high
agreement are given high particle weights, and vice versa. The
final estimate DEM is obtained by using these particle weights
to obtain a weighted mean of the updated ensemble of particles.

Sensitivity Analysis
In most continents, the mean SRTM error is less than 2 m, and
standard deviation is ∼4 m (Rodriguez et al., 2006). To ensure
that our methodology works in these ranges, we implemented
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FIGURE 6 | Error histograms for all cases.

FIGURE 7 | Total area where inundation is in both the observation and prediction for all cases.
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FIGURE 8 | Predicted flood inundation from prior and estimated DEM for two cases.

the algorithm for several cases with varying levels of error mean
and standard deviation in the prior. We created eight additional
priors to the nominal case. The nine cases had errors of mean
0.5, 1, and 2 m, and standard deviation of 1, 2, and 4 m added to
the “true” DEM. We applied the algorithm described in Section
“Generating Particles, Smoothing Along Flood Boundary, and
Data Assimilation” to the eight additional priors to obtain the
final estimate DEM for those respective cases.

RESULTS AND DISCUSSION

Root mean squared error for the prior for the nominal case
(errors of 0.5 m mean and 1 m standard deviation) was 1.10 m.
The set of particles generated from this prior had an RMSE of was
1.10 m. The RMSE of height errors along the flood boundaries
reduced to 0.78 m in the updated set of particles where we
smoothed elevations along the flood boundary. Table 1 shows
height errors in the initial ensemble and updated ensemble of
particles. After putting this modified set of particles through the
PBS, the RMSE further reduced to 0.71 m. The bias reduced from
0.5 to 0.4 m and standard deviation of errors went down from
0.98 to 0.59 m.

Sensitivity analysis also showed similar trends, improving
upon priors in terms of bias, standard deviation of errors and
RMSE. We found that the process of smoothing did not have
an effect on the bias before and after smoothing. The difference
between prior bias and smoothed bias is less than 4 cm for all
the cases (Table 1). However, the standard deviation of errors
went down after smoothing. The standard deviation of error
was reduced by 40 to 49% in all the cases (Table 1). Generally,
as the standard deviation in the prior increased, the amount

of reduction increased. The amount of reduction also increased
as the bias in the prior increased. Table 1 shows the values
of standard deviation for all the tested cases for the prior and
smoothed ensembles.

When this smoothed set of particles was put through a PBS,
the bias reduced in the final estimate from the prior and the
smoothed ensemble. Table 1 shows the details about error for
the final estimate of elevations along the flood boundary. In
general, the relative reduction in bias increased as the prior’s bias
increased. For the cases with 0.5 m bias, reduction in bias for
the final estimate ranged between 11 and 24%. In all other cases
(1 and 2 m bias), the bias reduced to 0.5 m or less. The reduction
in bias ranged between 52 and 76%. However, there was no effect
of the PBS on the standard deviation of error. The reduction is
standard deviation of errors was less than 4 cm for all the cases
(Table 1).

Figure 6 shows the histograms for errors in all tested cases. It is
clear from Figure 6 that there is a reduction in bias and standard
deviation of errors from the prior to the final estimate. A greater
number of cells have lower errors, and the number of cells with

TABLE 2 | True positive rate (TPR) at peak inundation.

Standard Deviation (m)

1 2 4

Prior Estimate Prior Estimate Prior Estimate

M
ea

n
(m

)

0.5 72 82 66 74 50 62

1 63 85 44 63 34 52

2 33 82 28 75 29 57
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high errors are reduced. The algorithm improved upon the prior
in all the cases, and the reduction in RMSE varied from 35 to 67%.

When we used the final estimate DEMs to predict flood
inundation, there was a consistent increase in TPR when
compared to the prior. Figure 7 shows the predicted inundation
area for the simulation period. In all the cases, the correctly
predicted flood inundation area (i.e., the total area where
inundation is in observation and prediction) was greater for the
final estimate than the prior. Figure 8 shows the flood inundation
maps obtained from the prior and final estimated DEMs for two
cases. The top row shows the peak inundation maps for the case
with error of 2 m mean and 1 m standard deviation on 2.3 days.
The TPR goes up from 33 to 82%. The second row corresponds
to the case with error of mean 2 m and standard deviation 4 m,
the case we believe is similar to SRTM DEM. In this case, the TPR
increases from 29 to 57%. Table 2 shows the change in TPR for
peak inundation in all the cases. There was greater improvement
of TPR with increase in bias of the priors. TPR for the peak
inundation obtained from the final estimate DEM for all the cases
with 1 m error standard deviation was greater than 82%. For
the cases with 2 m error standard deviation, TPR for the peak
inundation obtained from the final estimate DEM was between
63 and 75%; for cases with 4 m standard deviation of errors, it
ranged between 52 and 62% (Table 2). It can be seen than there
is a significant increase in TPR from prior to final estimate in all
cases.

CONCLUSION

We successfully implemented a new algorithm to improve
topography information in a floodplain by exploiting indirect
information of ground elevations from observed flood extents. In
synthetic tests, the algorithm reduced the bias, standard deviation
of errors and RMSE. Our primary motivation to produce better
topography was to obtain DEMs that are more suitable for flood
inundation simulations. The improved DEM we obtained from
this algorithm also predicted flood inundation much better than

the prior. We implemented the algorithm for nine different cases
with varying mean and standard deviation of errors, and obtained
similar trends in the reduction of bias and standard deviation
of errors. In fact, the magnitude and percentage reduction in
bias increases in cases with higher errors. The results from the
synthetic tests show potential, and we believe that the method
could be used to improve DEM accuracy. For example, SRTM
DEM could be used as prior, along with flood inundation
observations obtained from Landsat or radar to obtain a DEM
with better elevation accuracy.

Digital elevation models are the primary source of topographic
information, and accurate DEMs are hard to obtain in the
developing world. Globally available open-source products are
easy to obtain, but are not accurate. Hence, they not suitable
for flood inundation modeling (Fernández et al., 2016). It is not
always physically or financially feasible to obtain lidar DEMs in
data-poor regions. An algorithm to improve already available
DEMs is one way we can study these regions, and make better
predictions. This study has produced promising results, and we
believe this algorithm can be applied to real world cases to
improve floodplain topography. This will provide us with higher
accuracy DEMs in data-poor floodplains which are suitable for
flood inundation simulations.
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