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The rise of phylogenetic systematics (Hennig, 1950) uncovered many natural groups of amniotes
with Synapsida-characterized by one temporal opening, and Reptilia (Modesto and Anderson,
2004)-which contains ancestral, typically anapsid groups, without temporal openings, and
Diapsida, with two temporal openings and diverse secondary modifications. The ancestrally
anapsid parareptiles partly show, with certain ontogenetic, inter-, and intra-specific variation, one
opening or marginal excavation in their temporal region (Cisneros et al., 2004; Tsuji and Müller,
2009; MacDougall and Reisz, 2014), although evidence from other characters clearly separates
them from Synapsida (Müller, 2004; Tsuji et al., 2012; Brocklehurst et al., 2018). Furthermore,
the phylogenetic position of one early “classical” synapsid group (i.e., varanopsids) has become
controversial, as it has appeared within Reptilia in some phylogenetic analyses (Ford and Benson,
2018; Laurin and Piñeiro, 2018). Compared to historical classifications (Osborn, 1903; Williston,
1917; Goodrich, 1930), there is a common consensus that temporal openings are only a weak
indication for higher taxon interrelationship, although it can be informative on lower taxonomic
level (Müller, 2003; Laurin and Piñeiro, 2018; MacDougall et al., 2018). Here, I present a rather
morphofunctional categorization of temporal openings, introduce a refined terminology, and
provide an ontogenetic explanation on their evolutionary origins.

MORPHOFUNCTIONAL CATEGORIZATION

I) Anapsid
The ancestral amniote skull likely had an anapsid shape comparable to the skull of non-amniote
groups such as the lungfish with full temporal coverage. Jaw muscles broadly originated from the
internal surface of the dermatocranial bones of the temporal region and inserted on the lower jaw
(Figure 1I, B, B′, C).

II) Monapsid
When compared to early anapsid tetrapods, temporal openings in amniotes are correlated to higher
domed skulls, which provide space for longer, more voluminous, and hence stronger jaw muscles.
Partly via tendons, jaw musculature originates mainly from the edges of an opening, which, due
to its round shape, provides a greater structural stability than a flat bone (Case, 1924; Frazzetta,
1968; Tarsitano et al., 2001; Werneburg, 2013a). In that way, a different bite performance can
be reached on shore. Early fossil Synapsida were predators and herbivores and their temporal
opening might have supported the progressing development of stronger jaw musculature for
biting (Figure 1-II) (Kemp, 2005; Angielczyck and Kammerer, 2018). Adaptive radiation, later on,
resulted in the secondary evolution of diverse feeding modes, correlated to tooth morphology, for
example, illustrating that the morphofunctional category of a temporal opening is not a general
proxy for feeding ecology.
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FIGURE 1 | (Continued)
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Monapsid skulls can also appear in parareptilians and the
fenestra can be formed between different bones (Tsuji and
Müller, 2009; MacDougall and Reisz, 2014; Laurin and

Piñeiro, 2017). The variable position and shape of the
fenestra in different parareptilian taxa suggests diverse jaw
muscle attachments and bite performances in that group,

FIGURE 1 | Evolution, development, and morphofunctional categorization of temporal openings in amniotes. (I–IV)Morphotypes with schematic cross sections through

the temporal region of amniotes with (I) a pure anapsid morphotype visualized for a generalized early amniote, (II) a monapsid morphotype visualized for generalized

early Synapsida, (III) a diplapsid morphotype visualized for generalized Diapsida, and (IV) the excavated morphotype with expanding jaw musculature is visualized for a

therian mammal likeMonodelphis. Note that the sections show late fetal stages to illustrate the ontogenetic origin of skull elements (chondro-, viscero-, dermatocranium).

Section levels in 8, 19, 20, 21 only indicate the rough adult correspondences to these fetal stages. (1–21) Skull shapes of different taxa per morphotype including

evolutionary and ontogenetic changes. Note that the color lines between the skulls do not necessarily represent phylogenetic relationships, they just indicate shape

transformations within early Reptilia, Diapsida, and Synapsida. Different clades can transform to similar morphotypes (e.g., the ventral excavation type: 6, 11, or the

monapsid type: 5, 20). (1) Ontogenetic change in the ancestral anapsid condition of the skull examplified in the Australian lungfish Neoceratodus forsteri. In the free

living larva (A, stage 51/52), the skull bones are only little developed (A′, stage 52) and jaw musculature originates from the cartilaginous chondrocranium only [(A′′)

stage 51/52 larva; section level is indicated in (A, A′)]. Later in development, different bite performance and water pressure (blue arrows) result in the development of

a fully formed anapsid temporal skull armor (B, adult; B′, juvenile). For that, the presence of opercular bones as a nearby edge of the temporal region supports an

easy closure of the temporal region. The jaw musculature expands and inserts to the fully developed temporal armor (orange arrow). Note that the homologies of the

dermatocranial bones are largely unclear between lungfish and tetrapods. Nevertheless, the constructural principals of an encapsuled, anapsid skull are the same in

lungfish and early tetrapods. (2) Evolutionary transition from aquatic to terrestrial life with the acquisition of an amniotic egg (large white oval), which is fully independent

from aquatic habitat. (3) Ontogenetic change of an amniote inside the egg. The shown embryonic lizard skull (C′) is obviously highly derived but helps visualizing the

principle difference to non-amniotic skull development (1), the temporal bones are very small and not fused. The section through the skull (C′′) also illustrates jaw

musculature, which is highly differentiated and comes in contact with the small temporal bone precursors. In the last common amniote ancestor (illustrated by a skull of

the early reptilian Captorhinus), the region of the late fusing temporal bones is indicated by a dotted oval (C). This area is about to open in later evolution. Whether the

earliest amniote actually had a temporal opening or not is difficult to reconstruct (Piñeiro et al., 2012b; Laurin and Piñeiro, 2018). As seen in some early Reptilia, closure

of the temporal opening could have happened in postnatal/posthatching ontogeny (Reisz et al., 1984; Haridy et al., 2016). (4) Most early Reptilia, such as captorhinids

or pareiasaurs, have a plesiomorphically anapsid skull (examplified by the skull of Palaeothyris herein). (5) In some parareptilian groups, a temporal opening can occur

in different places of the temporal region. As such, those belong to the monapsid morphotype, e.g., Australothyris (MacDougall and Reisz, 2014). A recent discussion

concerns the anatomy of the temporal region in mesosaurs. As one of the stratigraphically oldest clades of amniotes, they illustrate the rapid radiation of skull shapes

in early amniotes. Probably, mesosaurs also had a temporal fenestration as illustrated for Mesosaurus herein [(Huene, 1941; Laurin and Piñeiro, 2017) and references

therein], although some concerns about this condition have been raised (MacDougall et al., 2018); but those have been refuted again with strong arguments (Laurin

and Piñeiro, 2018). (6) In other parareptiles, such as Eunotosaurus (Keyser and Gow, 1981), one ventral excavation of the temporal region occurs, whether it is derived

from an anapsid or a monapsid (or even a diapsid) morphotype is difficult to reconstruct. (7) Several procolophonian parareptiles, such as the illustrated Procolophon,

show a orbitotemporal expansion, which represents an emargination of the orbit to possibly serve as refined origin site for the adductor musculature. (8) The clade

Diapsida most likely derived from anapsid ancestors. They are characterized by an upper temporal opening related to a broad skull roof, illustrated for Petrolacosaurus

(Reisz, 1977). (9) Whether the last common ancestor of Diapsida had a pure diapsid or katapsid morphotype is difficult to reconstruct due to bad preservation of most

early Diapsida (Evans, 2008). Within Diapsida, the katapsid skull is most common for lizards, illustrated for Tubinambis. (10) There is a hypothesis that the katapsid

skull evolved by the development of a unique lateral jaw adductor muscle, which secondarily suppresses the lower temporal arcade (Rieppel and Gronowski, 1981).

(11) Within squamates, fossorial, and miniaturized forms close their upper temporal opening (Rieppel, 1984), such as in Anguis. Their skull morphotype resembles the

one shown for some parareptiles herein (6). (12) The upper temporal arcade can be reduced in snakes (illustrated for Nerodia), in which the jaw musculature can travel

to the skull roof. (13, 14) When a lower temporal opening is absent, euryapsid [sauropterygians; illustrated for Cryptoclidus, (13)], or parapsid/metapsid [ichthyosaurs;

illustrated for Utatsusaurus, (14)] skulls can develop. This is often correlated with high predatory behavior and high jaw muscle power. Partly, also ventral temporal

excavations can appear, which likely represent the reduced lower temporal fenestrations (15). In archosauriforms (and mesosaurs), an antorbital fenestra developed

making the whole skull, together with the double-fenestrated temporal region, highly grazile. It likely did not serve as insertion site for jaw musculature but might be

related to glands, air sacs, flexibility of the snout, and/or reduction of weight (Witmer, 1997; Rayfield, 2004; Weishampel et al., 2004; Piñeiro et al., 2012b,c; Werneburg

and Maier, 2019). Illustration shows Shunosaurus (16). In birds, examplified by Eudyptes herein, the temporal openings fuse with the enlarged orbita (17). Turtles most

likely evolved within Diapsida and, as such, they must have had ancestors with temporal opening(s) (Schoch and Sues, 2015) (indicated by dashed temporal fenestrae

in the illustrated skull of Proganochelys). The stem turtles had an anapsid morphotype, which might have evolved to resist the tensile forces of the neck during the turtle-

specific neck retraction (short black arrow) (18). Increased neck retraction (long black arrow) in crown turtles resulted in deep emarginations to best distribute tensile

forces (illustrated for Pelomedusa). For that, the ancestral posttemporal fenestra is excavated to form the posterodorsal emargination. The anteroventral emargination

appears to be a response to that excavation to permit a bridge-shaped, i.e., stabilizing morphology of the temporal region (Werneburg, 2015). (19) Modern marine

turtles, illustrated by Chelonia, reduced neck retraction to a large degree (short black arrow) and, together with water pressure (blue arrows), the temporal excavations

largely closed to re-evolve a more or less anapsid morphotype (type I) (Werneburg, 2012). Nevertheless, small emarginations still persist (type IV). (20) Early in amniote

evolution, the Synapsida evolved with a stabilized monapsid temporal region (examplified by the skull of Haptodus). (21) Later in synapsid evolution, examplified by

Monodelphis herein, the temporal opening shifted dorsad and excavated. As a result, it is fused with the orbit in most mammals [secondarily, the postorbital bar re-

evolved in primates, for example, incl. Homo] and the ancestral posttemporal fenestra is supressed [a remainder of it can be found as canalis temporalis in monotremes

(Schulman, 1906)]. Even a parietal crest can develop as attachment site of the jaw musculature as seen in therocephalians, non-mammaliaform cynodonts, several

Mesozoic mammaliaforms and several Theria. It is often lost for enlargement of the skull related with large brains.Color code: White arrow below 1, ontogenetic change;

blue lines, early Reptila taxa; orange lines, Synapsida taxa; green lines, Diapsida taxa; brown, dermal bones; blue, chondrocranium/brain case; red, derivates of the first

pharyngeal arch [Meckel’s cartilage, epipterygoid/alisphenoid; (Maier, 1989)]; white (in sections), musculature; yellow, nervous system: green, intracranial space (cavum

epipterygum); red, blood vessels. Abbreviations: am, jaw adductor musculature; bc, primary braincase wall (derived from chondrocranium); bp, basal plate; br, brain;

ca, caroid arteries; ce, cavum epiterygum; e, posteriormost expansion of the eye ball; ep, epipterygoid (alisphenoid in mammals); lj, lower jaw; Mc, Meckel’s cartilage;

mm, masseter jaw adductor muscle in therian mammals; mt, temporalis jaw adductor muscle in therian mammals; ob, opercle bone; pa, palatal bones; pt, pterygoid;

pm, pterygoid related musculature; rb, skull roof bones; tel, expansion of telencephalon in therian mammals; tb, temporal dermatocranial bones; to, temporal openings

with temporal fascia(e); uj, upper jaw; V, trigeminal ganglion; V1, nervus olphthalmicus trigemini; V2, nervus maxillaris trigemini; V3, nervus mandibularis trigemini; za,

zygomatic/postorbital arch. Images modified after: (A, A′′) Ziermann et al. (2018): Figure 2D; (A′) Kemp (1999): Figures 12A, 17E; (B) Parker (1899): Figure 229, (B′)

Ziermann et al. (2018): Figure 2E, (C′) Rieppel (1994): Figure 1, (B,C′) Rieppel (1987): Figure 3C, (I–IV) Maier and Werneburg (2014): Figures 10.6A–C. Adult skulls

after: (C, 17) Gaffney (1990), (4, 8, 20) Carroll (1988), (5–7, 13–15) Benton (2005), (9, 10) Rieppel (1993), (16) Zusi (1993), (18, 19) Gaffney (1979), (21) Novacek (1993).

Lungfish embryo staging after Kemp (1982).
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which included herbivores, carnivores, and insectivors. In many
cases, it is not certain whether a “skull hole” is a taphonomic
artifact or a real temporal opening (Brocklehurst et al., 2018).

III) Diplapsid
Diapsida usually have broader skull roofs (Weishampel et al.,
2004), which permits an upper temporal fenestra to develop
(Figure 1-III) (Tarsitano et al., 2001). Whether a second, lower
temporal opening is ancestral for Diapsida is debated (Evans,
2008), but likely (Figure 1-8). When that bar is not present, the
skull is called katapsid (Figure 1-9).

Different to the carnivorous and herbivorous early Synapsida,
early Diapsida were certainly insectivorous and had to handle
the agile food. For that, the edges of two temporal openings
(diplapsid condition; I avoid the term ‘diapsid’ for this
morphotype to prevent confusion with the taxon Diapsida -
similar to ‘synapsid’/Synapsida) provided complex attachment
sites for a highly differentiated jaw musculature permitting very
flexible movements of the jaw apparatus (Holliday and Witmer,
2007; Evans, 2008; Daza et al., 2011). Later in evolution, also
other feeding modes evolved within Diapsida, partly associated
to comprehensive cranial kinesis (Figure 1-9, 10, 16).

IV) Excavation
To increase force with longer fibers and to develop more
diverse attachment sites, musculature can expand beyond the
restrictions of the ancestral temporal anatomy resulting in deep
embayments in the dermal skeleton and/or the loss of temporal
arcades (Figure 1-IV). Those excavations are known as (a)
emarginations, marginal reductions of bones at the edge of the
whole temporal region, as well as (b) internal expansions of
the temporal fenestrae themselves. Different combinations and
degrees of excavations exist, like all morphofunctional categories
presented herein are usually fluent.

In different clades of Synapsida, the temporal opening
increased in size (Figure 1-21). By suppressing the ancestral
posttemporal opening in the occipital region and partly the
postorbital bar, the temporalis muscle expands through the
temporal fenestra, extends to the external surface of the skull
roof and, with that, develops longer muscle fibers to increase
bite force. The zygomatic arch serves as origin site for the
newly differentiated masseter muscle, enabling chewing along
the mammalian stem and leaving an emargination in the arch
(Figure 1-21) (Abdala and Damiani, 2004; Werneburg, 2013a;
Lautenschlager et al., 2016).

Similar evolutionary patterns can be recognized in some
extinct marine reptiles (Figure 1-13, 14), for example, in which
the upper temporal opening expands in diameter and even a
dorsal parietal crest for the origin of jaw musculature can be
developed (Rieppel, 2002), like in several groups of Synapsida.
High predatory behavior in the diapsid marine ichthyosaurs and
sauropterygians (Liu et al., 2017) might have triggered the dorsal
expansion of the jaw musculature and hence the expansion of the
upper temporal opening resulting in the secondary modification
(i.e., closure and/or emargination) of the lower temporal region
as well (Rieppel, 2002). Associated to expanding and hence
stronger jaw musculature, a stiffening of the originally kinetic

skull toward an akinetic morphology can be recognized (e.g.,
reduction of basicranial articulation, formation of a secondary
braincase wall) (Werneburg et al., 2019).

There is growing consensus that turtles are derived from
diapsid (Figure 1-17) reptiles (Rieppel, 2008; Wang et al., 2013;
Schoch and Sues, 2015). Neck retraction in stem turtles certainly
resulted in the closure of the ancestral temporal opening(s)
to resist with a more compact, anapsid skull the tension
of the neck musculature in the occipital region (Werneburg,
2015; Werneburg et al., 2015a,b). This novel skull anatomy,
consequently, differs from the anapsid skull bone configurations
of early Reptilia (Müller, 2003). Crown turtles evolved longer
necks and highly elaborated neck retraction modes (Herrel
et al., 2008). To resist the resulting increased neck tension,
reductions were introduced to the margins of the temporal
region, as they provide broader neck-muscle attachment sites
that enable better force distribution (Figure 1-18) (Werneburg,
2012, 2015). The posterodorsal emargination, an excavation of
the ancestral posttemporal (occipital) fenestra, finally enabled the
jawmusculature to expand. This muscle expansion was necessary
to bend around the large otic region in modern turtles, which
restricts the space inside the adductor chamber (Rieppel, 1990;
Werneburg, 2013b; Ferreira and Werneburg, 2019). As a result,
although longer, jaw musculature is - different to mammals -
more narrow and relatively less powerful. As such, it might not
trigger the reduction of cranial kinesis in that way (Herrel et al.,
2002). Nevertheless, skull stiffening takes place in the turtle stem
already (Sterli and De La Fuente, 2010) to resist embryonic neck
muscle activity (Werneburg and Maier, 2019).

Large marginal excavations are not only present in Diapsida
or Synapsida. They can even be formed within anapsidian
parareptiles, including orbital expansions (Figure 1-6, 7).

The temporal openings in diapsids experienced numerous
modifications including the reduction or closure of the
lower temporal opening (Figure 1-9, 10, 13, 14) (Rieppel
and Gronowski, 1981; Reisz et al., 1984), a fusion of both
openings with the reduction of the temporal arcades (Figure 1-
12) (Cundall and Irish, 2008), and a fusion of both openings
with the expanded orbita (Figure 1-16) (Zusi, 1993). Almost
all amniotes, including Diapsida, evolved highly diverse feeding
modes, ranging from insectivory and herbivory to piscivory
and carnivory, from biting and chewing to filter and suction
feeding, among others (Schwenk, 2000; Silva et al., 2017). This
illustrates the general and extraordinary functional plasticity
of the temporal skull anatomy in amniotes (Müller, 2003),
which breaks phylogenetic constrains and opens avenues for
the evolution of new skull shapes (Werneburg et al., 2019). To
understand diversity of the temporal region, phylogeny appears
to be less useful than studies of functional adaptations.

ONTOGENETIC PLASTICITY

The obviously non-exhaustive and simplified functional
categorization of temporal fenestrations presented herein only
concerns the more proximate explanations of phylogenetically
young functional adaptatations. The ultimate causation in
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the sense of deep time evolutionary change, however, might
be detected in life history changes (Sánchez-Villagra, 2012).
The majority of non-amniote vertebrates has an anapsid
morphotype. Exceptions are chondrichthyans, which lost
their dermatocranium completely (Kardong, 2008), some
microsaurian lepospondyls (Gee et al., 2019), and batrachian
lissamphibians, which, by flattening of their ancestor’s skull,
largely rearranged their jaw musculature and skull architecture
(Rieppel, 1981; Schoch, 2014). The new muscle arrangements
in batrachians correlate with the loss of ossification centers
through ontogeny as those are no longer recruited as attachment
sites through development. This eventually resulted in the
complete loss of several “non-used” temporal skull bones in the
adults (Schoch, 2014).

Amniotes are characterized by the amniotic egg, which
enables complete development of the animal outside an
aquatic environment and consequently the invasion of different
terrestrial habitats (Sumida and Martin, 1997; Laurin, 2010;
Skawiski and Tałanda, 2014; Brocklehurst et al., 2018). With
development inside the egg [or, secondarily, inside the mother’s
womb (Piñeiro et al., 2012a; Werneburg et al., 2016)], the larval
stage is lost and more or less fully formed, adult-resembling
hatchings leave the eggs (Figure 1C). This is not the case in most
extant non-amniotes, in which larvae hatch and have to feed
(Figure 1A). For that, jaw (and branchial) musculature inserts
primarily to the embryonic neurocranium (chondrocranium), as
dermatocranial bones are not yet well-developed (Figure 1A′,
A′′) (Edgeworth, 1935; De Beer, 1937; Ziermann et al., 2018).
As such, compared to amniotes, the primordial cartilaginous
skull is highly functional. Dermatocranial and temporal skull
bones are later influenced developmentally by the functional jaw
musculature near the neurocranium and are incorporated to the
feeding apparatus as further attachment sites (Figure 1A′′, B′)
(Ziermann et al., 2018). Furthermore, in non-tetrapods, opercle
bones also contribute to the dermatocranial armor to protect
gill arches, to regulate gill ventilation, and to form a natural
and broad edge of the temporal region (Figure 1A′: dotted line)
(Goodrich, 1930; De Beer, 1937; Kemp, 1999). Temporal bones
“just” fill the narrow “gap“ between opercle bones and the
skull roof.

Also water pressure on the skull in larvae and, if aquatic, in
adults might result in the formation of a fully encapsulated skull
in non-amniotes (Figure 1A, B) as is indicated by the extant
amniotic marine turtles (Figure 1-19). Mesozoic marine turtles
such as Toxochelys showed a typical turtle-emargination of the
temporal region (Matzke, 2009) related to neck retraction. With
the reduced ability of neck retraction and a shorter neck in crown
marine turtles, a secondary closure of the temporal armor might
also correspond to water pressure (Zdansky, 1923; Werneburg,
2012), a factor not present in pure terrestrial amniotes.

By skipping the larval stage (Figure 1C), the amniote’s skull
architecture and growth rate differs. The chondrocranium
of amniotes becomes less functional for feeding, is hence
anatomically more conserved, and the pharyngeal arches are
highly modified (De Beer, 1937). The bones not spatially
arranged by musculature in early development result in

“the embryological failure to close sutures” (Tarsitano et al.,
2001). Jaw musculature receives more freedom to diversify
and to evolve in response to different feeding requirements
as it is non-functional for a long period of development
until hatching/birth. Depending on functional demands, just
recently developed temporal bones [still losely “floating” on
the head’s surface (Figure 1C′)] are recruited by the specialized
jaw musculature in ontogeny and are spatially arranged to
become the newly required attachment sites (Figure 1C′′)
(Rieppel, 1987; Fucik, 1991). In that way, generally, apomorphic
skull bone mosaics can be explained and, more specifically,
the diverse shapes of temporal skull openings can be best
interpreted by the functional (future) demands of the developing
musculature. As correctly pointed out by the above-mentioned
phylogenetic observations, temporal fenestrations between
synapsids, parareptiles, and diapsids cannot be homologized
(only tissue can): the “holes” in the dermatocranium are just
the result of developmental plasticity driven by functional
adaptations, which, again and finally, can only be informative on
certain taxonomic levels.

At the dawn of amniote evolution, new habitats were invaded
and new ecological adaptations were necessary (Sumida and
Martin, 1997; Brocklehurst et al., 2018). The great diversity and
plasticity of the temporal region of the skull in early amniote taxa
of the Permian and Triassic, such as in parareptiles (Figure 1-
4, 5, 6, 7) (Colbert, 1946; Tsuji et al., 2012; MacDougall and
Reisz, 2014; Laurin and Piñeiro, 2017), illustrates the rapid
adaptive radiation of vertebrates on land (Nuñez Demarco
et al., 2018). The monapsid morphotype stabilized in Synapsida
(Figure 1-20, 21), whereas an upper temporal opening stabilized
in Diapsida (Figure 1-8), although secondary modifications
occurred. These are driven by internal and external forces acting
on the skull (Gregory and Adams, 1915) as best observable in
turtle evolution.
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