
ORIGINAL RESEARCH
published: 29 March 2019

doi: 10.3389/feart.2019.00054

Frontiers in Earth Science | www.frontiersin.org 1 March 2019 | Volume 7 | Article 54

Edited by:

David Antoine,

Curtin University, Australia

Reviewed by:

Vittorio Ernesto Brando,

Istituto di Scienze Marine

(ISMAR), Italy

Severine Alvain,

Centre National de la Recherche

Scientifique (CNRS), France

*Correspondence:

P. Jeremy Werdell

jeremy.werdell@nasa.gov

Specialty section:

This article was submitted to

Atmospheric Science,

a section of the journal

Frontiers in Earth Science

Received: 02 November 2018

Accepted: 06 March 2019

Published: 29 March 2019

Citation:

Werdell PJ and McKinna LIW (2019)

Sensitivity of Inherent Optical

Properties From Ocean Reflectance

Inversion Models to Satellite

Instrument Wavelength Suites.

Front. Earth Sci. 7:54.

doi: 10.3389/feart.2019.00054

Sensitivity of Inherent Optical
Properties From Ocean Reflectance
Inversion Models to Satellite
Instrument Wavelength Suites

P. Jeremy Werdell 1* and Lachlan I. W. McKinna 1,2

1Ocean Ecology Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, United States, 2Go2Q Pty Ltd., Buderim,

QLD, Australia

The Earth science community seeks to develop climate data records (CDRs) from

satellite measurements of ocean color, a continuous data record that now exceeds 20

years. Space agencies will launch additional instruments in the coming decade that

will continue this data record, including the NASA PACE spectrometer. Inherent optical

properties (IOPs) quantitatively describe the absorbing and scattering constituents of

seawater and can be estimated from satellite-observed spectroradiometric data using

semi-analytical algorithms (SAAs). SAAs exploit the contrasting optical signatures of

constituent matter at spectral bands observed by satellite sensors. SAA performance,

therefore, depends on the spectral resolution of the satellite spectroradiometer. A

CDR spanning SeaWiFS, MODIS, OLCI, and PACE, for example, would include IOPs

derived using varied wavelength suites if all available wavelengths were considered.

Here, we explored differences in derived IOPs that stem simply from the use of (eight)

different wavelength suites of input radiometric measurements. Using synthesized data

and SeaWiFS Level-3 mission-long composites, we demonstrated equivalent SAA

performance for all wavelength suites, but that IOP retrievals vary by several percent

across wavelength suites and as a function of water type. The differences equate to

roughly ≤ 6, 12, and 7% for adg(443), aph(443), and bbp(443), respectively, for waters

with Ca ≤ 1mg m−3. These values shrink for sensors with similar wavelength suites

(e.g., SeaWiFS, MODIS, and MERIS) and rise to substantially larger values for higher Ca

waters. Our results also indicate that including 400 nm (in the case of OLCI) influences

the derived IOPs, using longer wavelengths (>600 nm) influences the derived IOPs when

there is a red signal, and, including additional spectral information shows potential for

improved IOP estimation, but not without revisiting SAA parameterizations and execution.

While modest in scope, we believe this study contributes to the knowledge base for

CDR development. The implication of ignoring such an analysis as CDRs continue to be

developed is a prolonged inability to distinguish between algorithmic and environmental

contributions to trends and anomalies in the IOP time-series.

Keywords: ocean color satellites, ocean remote sensing, bio-optics, semi-analytic inversion algorithms, inherent

optical properties, remote-sensing reflectance
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INTRODUCTION

The oceanographic community seeks to develop biogeochemical
climate data records (CDRs) from satellite measurements of
ocean color (NRC, 2011). The U.S. National Research Council
defines a CDR as “a time series of measurements of sufficient
length, consistency, and continuity to determine climate
variability and change” (NRC, 2004). The continuous global
data record from ocean color satellites now exceeds 20 years,
including (but not limited to) the following instruments: the
NASA Sea-viewing Wide Field of View Sensor (SeaWiFS;
1997–2010), the NASA Moderate Resolution Imaging
Spectroradiometers (MODIS; 1999-present onboard Terra
and 2002-present onboard Aqua), the ESA Medium Resolution
Imaging Spectrometer (MERIS; 2002–2012), the Visible Infrared
Imaging Radiometer Suite (VIIRS; 2012-present onboard
Suomi NPP and 2018-present onboard JPSS-1), the ESA Ocean
and Land Color Instrument (OLCI; 2016-present onboard
Sentinel-3A and 2018-present onboard Sentinel-3B), and the
JAXA Second generation GLobal Imager (SGLI; 2017-present).
NASA and several international space agencies plan to launch
additional ocean color instruments in the coming decade,
including the NASA Plankton, Aerosol, Cloud, ocean Ecosystem
(PACE; 2022 launch) ocean color instrument. To facilitate
CDR development, the community invests substantially into
ensuring the characterization of the space-borne radiometric
measurements (e.g., Meister et al., 2012; Zibordi et al., 2014;
Meister and Franz, 2014) and the consistency of their derived
data products (e.g., Franz et al., 2005; Werdell et al., 2009;
Melin and Sclep, 2015; Barnes and Hu, 2016; Mélin et al., 2016).
Sathyendranath et al. (2017) provides a useful exploration of
desired characteristics of satellite-derived ocean color products
for CDR development, including, and perhaps more importantly,
analyses to support discussion of the implications potentially
realized when these characteristics are not met.

Ocean color satellite instruments provide estimates of spectral

remote-sensing reflectance [Rrs(λ); sr
−1], the light exiting the

water normalized to the hypothetical condition of a non-

attenuating atmosphere with an overhead Sun, after atmospheric

correction (Mobley et al., 2016). Bio-optical algorithms are
applied to the Rrs(λ) to produce estimates of geophysical and
optical quantities, such as the near surface concentration of the
phytoplankton pigment chlorophyll-a (Ca; mg m−3) (O’Reilly
et al., 1998) and spectral marine inherent optical properties
(IOPs) (Werdell et al., 2018). Time-series of remotely-sensed
IOPs provide valuable data records for studying long-term
changes in ocean ecosystems. IOPs, the spectral absorption and
scattering properties of seawater and its particulate and dissolved
constituents, can be used to infer the contents of the upper ocean.
This information is critical for advancing our understanding
of biogeochemical oceanic processes such as carbon exchanges
and fluxes, phytoplankton community dynamics, and ecosystem
responses to disturbances (e.g., Behrenfeld et al., 2005; IOCCG,
2009, 2014, 2018; Siegel et al., 2014).

Semi-analytical algorithms (SAAs) provide one mechanism
for estimating marine IOPs from Rrs(λ) using a combination

of empiricism and radiative transfer theory (Werdell et al.,
2018). Most SAAs attempt to simultaneously estimate the
magnitudes of spectral backscattering by particles [bbp(λ); m

−1],

absorption by phytoplankton [aph(λ); m
−1], and the combined

absorption by non-algal particles and colored dissolved organic
material [adg(λ); m−1]. This is typically accomplished by
assigning constant spectral values for seawater absorption
and backscattering, assuming spectral shape functions for the
remaining constituent absorption and scattering components,
and retrieving the magnitudes of each remaining constituent
required to match the spectral distribution of Rrs(λ). Such
spectral-matching algorithms require contrasting optical
signatures for adg(λ), aph(λ), and bbp(λ) within the spectral bands
detected by the satellite. The performance of most SAAs therefore
depends on the spectral resolution of Rrs(λ) used as input to the
algorithm, which is primarily driven by the spectral resolution
of the satellite radiometer (Lee et al., 2007; Werdell et al., 2014;
Wolanin et al., 2016; Vandermuelen et al., 2017). Conventional
wisdom now supports the inclusion of additional ultraviolet-
visible wavelengths into new satellite radiometers (relative to
historical instruments such as SeaWiFS) to enable the improved
discrimination of particulate and dissolved components within
seawater and of absorbing and non-absorbing atmospheric
aerosols (PACE Science Definition Team, 2018).

Semi-analytical algorithms continue to evolve rapidly,
and substantial focus has been placed on intercomparisons
(IOCCG, 2006; Brewin et al., 2015), reducing the number
of required assumptions [e.g., Zheng and Stramski, 2013;
and estimation of uncertainties (Werdell et al., 2018) and
references therein]. Uncertainties in SAA-derived IOPs
arise from multiple sources: uncertainties in input Rrs(λ)
(Maritorena et al., 2010), assumptions embedded into the
adopted Rrs(λ)-to-IOPs relationship (Lee et al., 2004, 2011),
the choice of spectral-matching method [see Appendix A of
Werdell et al. (2013a)], accounting (or not accounting) for
inelastic scattering (Lee et al., 1994; Westberry et al., 2013;
McKinna et al., 2016; Loisel et al., 2018), the ancillary data
sources used for various corrections (Werdell et al., 2013b),
and the assignment of spectral shape functions for adg(λ),
aph(λ), and bbp(λ) to name only a few. With regards to the
latter, for example, any single spectrum cannot unequivocally
represent all water masses at all times and Werdell et al. (2013a)
demonstrated that selecting alternate spectral shapes can vary
derived IOPs by up to ∼100%. Note also that most SAAs do
not currently include account for the polarization of light
(Ibrahim et al., 2012; Gilerson et al., 2014).

In concert with this ongoing refinement, time-series of data
products from SAAs continue to be developed, with the larger
goal of producing CDRs (Behrenfeld et al., 2005; Siegel et al.,
2013). Some focus has been placed on merging satellite IOP
data records (Maritorena et al., 2010), but fewer studies have
explored differences in derived products that stem simply from
the use of different suites of input Rrs(λ). For example, SeaWiFS
had a green wavelength centered on 510 nm, whereas the
MODIS instruments’ green wavelength is centered on 531 nm
and VIIRS does not include a green wavelength. A CDR from
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these instruments spanning 1997 to present would therefore
include IOPs derived using varied wavelength suites if all
available wavelengths were considered. It remains conceivable
that different combinations of input Rrs(λ) yield differences in
IOPs that exceed the magnitude of observable environmental
change in a CDR. Albeit modest in scope, the goal of this paper
is simply to use a controlled modeling environment to quantify
the magnitude of change in derived IOPs associated with the
use of different spectral suites of satellite Rrs(λ). The implication
of ignoring such an analysis as CDRs continue to be developed
is a prolonged inability to distinguish between algorithmic and
environmental contributions to trends and anomalies in the
IOP time-series.

METHODS

Data Acquisition
For the sensitivity analyses, we generated a synthesized dataset
of coincident Rrs(λ), adg(λ), aph(λ), bbp(λ), and Ca that closely
mimics the IOCCG Ocean Color Algorithms Working Group
synthetic dataset (IOCCG, 2006), but with expanded and finer
spectral resolution. Appendix A describes its development (see
the online article page to access the Appendix). This dataset
maintains a spectral resolution of 1 nm intervals from 350 to
800 nm. We targeted Rrs(λ) and IOPs at the following center
satellite wavelengths:

• SeaWiFS: 412, 443, 490, 510, 555, 670
• MODIS: 412, 443, 488, 531, 547, 667
• MERIS: 412, 443, 490, 510, 560, 620, 665
• VIIRS: 410, 443, 486, 551, 671
• OLCI: 400, 412, 443, 490, 510, 560, 620, 665
• PACE: 400, 412, 425, 443, 460, 475, 490, 510, 532, 555, 583, 617,

640, 655, 665
• 410–670 nm: 5 nm intervals from 410 to 670 nm
• 410–600 nm: 5 nm intervals from 410 to 600 nm

The latter three wavelength suites all represent possibilities for
PACE, with the first of these three (15 wavelengths) indicating
aggregated bands to be distributed by the mission (PACE Science
Definition Team, 2018) and the second and third representing
the full science resolution of the spectrometer (5 nm) spanning
two ranges for inversion (410–600 nm vs. 410–670 nm). While it
remains tempting to execute the inversion using the full spectrum
of the synthesized dataset, we opted to limit our 5 nm examples
to a SeaWiFS-like range to specifically compare differences in
performance when using contiguous (so called hyperspectral)
spectra vs. discrete heritage wavelengths. Furthermore, we feel
the extension of SAA inversions into the ultraviolet remains
sufficiently underdeveloped to warrant examination in separate
works. We explored a more limited hyperspectral range—to only
600 nm in lieu of 670 nm—to evaluate the impact of very low red
radiometric signals in the inversion. For comparative purposes
with heritage instruments, we also estimated IOP retrievals for
the two 5 nm cases (410–670 and 410–600 nm) at 443 nm using a
cubic spline fit on the retrieved adg(λ), aph(λ), and bbp(λ).

The native synthesized dataset defines its IOPs using four
orders of magnitude of Ca (20 values within the range 0.03 to

30mg m−3, N = 500) (IOCCG, 2006). In most cases (specifically
noted), we limited our analyses to 0.03 ≤ Ca ≤ 5mg m−3,
as the SAA became sufficiently unstable from instrument-to-
instrument above 5mg m−3 such that low retrieval sample sizes
confounded meaningful reporting of results (N ∼= 350). We
discuss the strengths and weaknesses of these synthesized data for
our analyses in section Discussion. For the satellite comparisons,
we acquired the mission-mean (1997–2010) SeaWiFS Level-
3 Rrs(λ) bin file at 9 km spatial resolution from the NASA
Ocean Biology Processing Group (OBPG; https://oceancolor.
gsfc.nasa.gov; reprocessing version 2018.0). For several analyses,
we stratified the results into three Ca ranges—Ca ≤ 0.1mg m−3

(intended to represent oligotrophic water), 0.1 < Ca ≤ 1mg
m−3 (mesotrophic), and Ca > 1mgm−3 (eutrophic)—to broadly
evaluate performance differences as a function of water type. We
note that shape and magnitude of synthesized Rrs(λ) spectra shift
from being blue-dominated to red-dominated as the water type
transitions from oligotrophic to eutrophic as shown in Figure 1.

Regarding our use of single center wavelengths for this
exercise, we acknowledge that different satellite instruments
maintain inherently different radiometric bandpasses. Standard
NASA processing applies an out-of-band correction using
instrument-specific spectral response functions that adjusts the
retrieved Rrs(λ) to the nominal band centers after atmospheric
correction (Wang et al., 2001; Patt et al., 2003). Given that this is
done prior to execution of an SAA, our use of center wavelengths
sufficiently mimics the satellite input Rrs(λ)—acknowledging, of
course, that the out-of-band adjustment carries uncertainties that
inevitably impact the final IOP retrievals.

Inversion Modeling
Our default SAA adopts the default generalized IOP (GIOP)
form described in Werdell et al. (2013a). Briefly, Rrs(λ) are first
converted to their subsurface values following (Lee et al., 2002):

rrs
(

λ, 0−
)

=
Rrs (λ)

0.52+ 1.7 Rrs (λ)
. (1)

Subsurface remote-sensing reflectances relate to marine IOPs
following (Gordon et al., 1988):

rrs
(

λ, 0−
)

= 0.0949 u+ 0.0794 u2, (2a)

u(λ) =
bb (λ)

a (λ) + bb (λ)
(2b)

where bb(λ) is the total backscattering coefficient (m−1) and a(λ)
is the total absorption coefficient (m−1). Total backscattering
can be expanded as the sum of all backscattering components.
Further, each component can be expressed as the product of its
mass-specific backscattering spectrum (spectral shape; b∗) and its
magnitude or concentration (M):

bb (λ) = bbw (λ) +Mbp b
∗
bp(λ). (3)

Similarly, total absorption can be expanded to:

a (λ) = aw (λ) +Mdga
∗
dg (λ) + Mpha

∗
ph (λ) . (4)
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FIGURE 1 | Characteristics of the simulated AOP-IOP dataset: Three example Rrs(λ) spectra selected from the synthesized AOP-IOP dataset for Ca of 0.05, 0.5, and

5mg m−3 (A); Ca and a(443) as a function of the ratio of Rrs(443):Rrs(555) (B); bbp(443) and a(443) as a function of Ca (C); and, anap(443), acdom(443), and aph(443)

as a function of Ca (D).

where the subscript w indicates contributions by water. Both
bbw(λ) and aw(λ) are known (Pope and Fry, 1997; Zhang et al.,
2009). Werdell et al. (2013a) describes in the detail the rationale
for the default choices of b∗

bp
(λ), a∗

dg
(λ), and a∗

ph
(λ). By default,

we expressed b∗
bp
(λ) as λSbp, where Sbp defines the steepness

of the power law and typically varies between −2 and 0 in
natural waters (Stramski et al., 2004). We dynamically assigned
Sbp to each station/pixel using the Rrs(λ) band-ratio method
described in Lee et al. (2002). We expressed a∗

dg
(λ) as exp(-Sdg λ),

where Sdg describes the rate of exponential decay and typically

varies between 0.01 and 0.02 nm−1 (Roesler et al., 1989), and
adopted a fixed Sdg of 0.018 nm−1. Finally, we expressed a∗

ph
(λ)

as the Ca-specific absorption spectrum of Bricaud et al. (1998)
seeded using each station/pixel-specific Ca and normalized to
0.055 m2 mg−1 at 443 nm. Broadly speaking, many alternatives
for such parameterizations exist (as explored in Werdell et al.,
2013a), but our choices in parameterization remain of secondary
importance for this paper given that we apply them consistently
across analyses.

Three unknowns remain in Equations (1–4) after assignment
of the eigenvectors, namely Mbp, Mdg , and Mph. Using Rrs(λ)
as input, the SAA estimates these eigenvalues via non-linear
least squares (Levenberg-Marquardt) inversion of Equation (2)
with minimization of a χ2 cost function [see Equation (11) of
Werdell et al., 2013a]. We retained only those solutions with
viable estimates of Mbp, Mdg , and Mph [for example, −0.005

≤ adg(λ) ≤ 5 m−1] that resulted in reconstructed Rrs(λ) that
differed from the input Rrs(λ) by < 33% in the range 400 to
600 nm. We reconstructed Rrs(λ) using the retrieved eigenvalues
as input into Equations (1–4) and defined failure as non-
convergence in the inversion. Werdell et al. (2013a) outlines
exclusion criteria used to determine viable estimates, as well as
the similarities in accuracy shared by this SAA configuration and
other common approaches.

Analyses
We ran the inversion model using the synthesized Rrs(λ) for
every satellite input wavelength suite listed in section Data
Acquisition. We then statistically compared the model-derived
IOPs (hereafter referred to by satellite to identify the input
wavelength suite) with the source synthesized IOPs. Our reported
statistics include the sample size (N), the Type I linear regression
slope, the median absolute error (MAE), and the bias. We
calculated MAE as:

MAE = 10∧

(

∑N
i=1

∣

∣log10
(

satellitei
)

− log10
(

synthesizedi
)
∣

∣

N

)

(5)

and bias as:

bias = 10∧

(

∑N
i=1 log10

(

satellitei
)

− log10
(

synthesizedi
)

N

)

. (6)
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TABLE 1 | Statistics for SAA-derived vs. synthesized IOPs at 443 nm.

Bias MAE Slope

SeaWiFS a 1.08 1.10 1.07

N = 356 adg 0.93 1.27 1.03

aph 1.24 1.50 1.05

bbp 1.10 1.15 1.01

MODIS a 1.07 1.09 1.05

N = 335 adg 0.92 1.27 1.03

aph 1.17 1.51 0.92

bbp 1.08 1.14 0.99

MERIS a 1.04 1.06 1.02

N = 354 adg 0.91 1.26 1.01

aph 1.14 1.47 0.92

bbp 1.05 1.12 0.96

VIIRS a 1.07 1.10 1.06

N = 345 adg 0.91 1.27 1.03

aph 1.24 1.52 0.99

bbp 1.09 1.16 0.99

OLCI a 1.04 1.07 1.02

N = 364 adg 0.89 1.26 1.01

aph 1.23 1.48 0.97

bbp 1.07 1.13 0.97

PACE a 1.03 1.05 1.01

N = 343 adg 0.89 1.25 1.00

aph 1.11 1.54 0.85

bbp 1.05 1.12 0.94

410–670 nm a 0.98 1.05 1.00

N = 332 adg 0.85 1.27 1.00

aph 1.00 1.53 0.84

bbp 1.01 1.10 0.94

410–600 nm a 0.98 1.05 1.01

N = 347 adg 0.86 1.27 1.01

aph 1.04 1.50 0.87

bbp 1.01 1.10 0.94

Note that observations are log-transformed such that MAE and
bias present multiplicative metrics (that is, a MAE of 1.5 indicates
that the satellite observations are 1.5 × (50% greater) on average
than the synthesized observations and a bias less than unity
indicates a negative bias). Note also that Table 1 reports bias
and MAE as calculated in Equations (5) and (6), but we discuss
these performance metrics using their more intuitive percentage
counterparts throughout the Results and Discussion sections.

Next, we compared derived IOPs from each satellite
wavelength suite with those from every other satellite wavelength
suite. This comparison included determination of unbiased
percent differences (UPD). We calculated UPD for two satellites
(satellite1 and satellite2) as:

UPD = 200%

(

satellite2 − satellite1

satellite2 + satellite1

)

(7)

and report the median UPD for the complete population of
match-ups. A negative UPD indicates that the IOP from satellite2
is biased low relative to satellite1.

To evaluate if the results varied with the configuration of the
inversionmodel (that is, if they varied with assignment of spectral
shapes), we ran the inversion model for each satellite input
Rrs(λ) wavelength suite an additional seven times, sequentially
re-assigning one variable per run as: (1) default Sbp from Lee
et al. (2002) + 33%; (2) default Sbp from Lee et al. (2002)−33%;

(3) default Sdg + 33% (= 0.024 nm−1); (4) default Sdg−33% (=

0.012 nm−1); (5) seed Ca to calculate a∗
ph
(λ) using Bricaud et al.

(1998)+ 50%; (6) seed Ca to calculate a
∗
ph
(λ) using Bricaud et al.

(1998)−50%; and, (7) replacing 0.0949 and 0.0794 in Equation
(2a) with 0.0895 and 0.1247 as in Lee et al. (2002).

Finally, we twice ran the default inversion model (as defined
in section Inversion Modeling) on the mission-long mean Level-
3 SeaWiFS Rrs(λ) to determine if results from our controlled
modeling environment were generally representative of real
satellite data. To do so, we used OBPG-supported satellite data
processing software (l3 gen) to run the inversion model via
the GIOP software framework, which allows assignment of
wavelengths to be used in the inversion, on the Level-3 SeaWIFS
Rrs(λ). The NASA SeaWiFS Data Analysis Software (SeaDAS;
https://seadas.gsfc.nasa.gov) package includes this software. The
first run used all six SeaWiFS wavelengths. The second run
served to mimic VIIRS and, as such, we only assigned the
five common SeaWiFS-VIIRS wavelengths. Given the known
differences between SeaWiFS and VIIRS Rrs(λ) (Eplee et al.,
2015; Barnes and Hu, 2016), using a narrower SeaWiFS band
set as a surrogate for VIIRS provided a more suitable controlled
environment to explore differences in band selection.

RESULTS

Data Product Validation
Broadly speaking, the satellite-to-synthesized IOP validation
analyses demonstrated equivalent performance across all
wavelength suites (Figure 2, Table 1), with performance metrics
that mirror those from previous studies that used equivalent
simulated datasets (e.g., IOCCG, 2006; Lee et al., 2010; Werdell
et al., 2013a). All runs reported very similar MAE, ranging
from 5 to 10% for a(443) and 10 to 16% for bbp(443) and from
5 to 8% for a(555) and 8 to 14% for bbp(555). In general, we
achieved comparable results across blue-green wavelengths
for all analyses and, thus, our tables and figures focus only
on 443-nm for clarity in presentation of results. MAEs for
the absorption subcomponents ranged from 25 to 27% for
adg(443) and 47 to 54% for aph(443). Every wavelength suite
carried its lowest MAEs for a(443) and the highest MAE for
aph(443). The regression slopes behaved similarly. All runs
reported very similar values for a(λ), adg(λ), and bbp(λ), ranging
from 1.00 to 1.07 for a(443), 1.03 to 1.06 for adg(443) and
0.94 to 1.01 for bbp(443). Across IOPs for each wavelength
suite, aph(443) deviated most substantially from unity. It
also exhibited the broadest range across wavelength suites,
ranging from 0.72 to 1.05. Interestingly, the runs with the most
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FIGURE 2 | Synthesized-vs.-satellite IOPs at 443 nm for SeaWiFS (A–D), VIIRS (E–H), and 410–670 nm (I–L). IOPs include a(443) (A,E,I), adg(443) (B,F,J), aph (443)

(C,G,K), and bbp(443) (D,H,L). The solid line represents a 1:1 relationship. The colors indicate chlorophyll-a ranges, with the oligotrophic range presented in red (Ca ≤

0.1mg m−3), the mesotrophic in green (0.1 < Ca < 1mg m−3), and the eutrophic in red (Ca ≥ 1 mg m−3).

wavelengths (PACE, 410–670 nm, and 410–600 nm) reported
the aph(443) regression slopes that deviated most from unity.
The satellite-to-synthesized biases diverged more across runs
than either MAE or regression slope. While a(443) biases
spanned across unity, all adg(443) biases fell below unity (recall
that a bias less than unity indicates a negative bias), ranging
from 7% for SeaWiFS to 15% for the 410–670 nm run, and all
aph(443) biases fell either very close to unity or were positive,
ranging from exactly unity for the 410–670 nm run to 24%
for SeaWiFS and VIIRS. All bbp(443) biases exceeded unity

(were positive), ranging from 1% for the two 5 nm runs to 10%
for SeaWiFS.

These results predominantly encompass simulations with
Ca ≤ 5mg m−3, as 85% of SAA failures occurred for those
simulations with higher Ca values (reducing the viable N to
∼=350 as previously mentioned). Few failures resulted from non-
convergence in the inversion. Rather, most occurred because
of quality assurance metrics applied to the IOP retrievals,
including requiring them to fall within predefined acceptable
ranges (for example, −0.005 ≤ adg(λ) ≤ 5 m−1) and requiring
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FIGURE 3 | Satellite-to-satellite median UPD for a(443) at each Ca interval. Each panel title refers to the reference satellite to which the others are compared (satellite1
in Equation 7). Each comparative satellite (satellite2 in Equation 7) maintains a unique color: SeaWiFS (violet), MODIS (blue), MERIS (cyan), VIIRS (green), OLCI

(yellow), PACE (orange), 410-670 nm (red), and 410-600 nm (black).

that reconstructed Rrs(λ) differ from input Rrs(λ) by < 33% at
every wavelength in the range 400 to 600 nm. While relaxing

or modifying these quality assurance metrics would enable

extending our analyses into more complex water, we opted to not

do so to: (a) ensure that our results encompassed only the highest

quality SAA retrievals; (b) limit the introduction of results biases
that emerge from global SAA parameterizations that do not
properly represent complex waters; and, (c) acknowledge that
the simulated dataset itself may be the least representative of
natural conditions in this Ca range. Moreover, as simulations

with Ca > 5mg m−3 realized so few results (low sample sizes),
we opted to exclude them from subsequent analyses and data
product intercomparisons. Follow-on analyses will benefit from
additional attention to SAAs and datasets that better represent
optically complex water.

Data Product Inter-comparisons
IOP retrievals for the synthetic dataset varied across wavelength
suites and as a function of water type as defined by Ca

(Figures 3–6, Tables 2–4). UPDs in a(443), adg(443), aph(443),
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FIGURE 4 | As for Figure 3, but for adg(443).

and bbp(443) across all wavelength suites ranged from −3.83 to
2.91%, −3.14 to 5.27%, −11.57 to 6.33%, and −6.09 to 4.74%,
respectively, for the lowest Ca waters (Table 2). For comparison,
UPDs in a(555), adg(555), aph(555), and bbp(555) for SeaWiFS,
PACE, and the two 5 nm wavelength suites (the only four suites
with 555 nm) ranged from −0.51 to 0.35%, −0.74 to 3.13%,
−6.65 to 1.47%, and −2.78 to 1.52%, respectively. Generally
speaking, the differences between any two wavelength suites
remained constant for all Ca ≤ 0.1mg m−3 (Figures 3–6).
Retrievals for the wavelength suites we consider most similar,
SeaWiFS, MODIS, and MERIS, generally differed the least—by

≤ 0.92, 0.40, 1.11, and 1.25% for a(443), adg(443), aph(443),
and bbp(443), respectively, in absolute terms. OLCI retrieved low
adg(443) and high aph(443) relative to all other wavelength suites,
perhaps due to the inclusion of a 400 nm band that altered the
separation of the two absorption subcomponents. The two 5 nm
wavelength suites retrieved high adg(443), low aph(443), and low
bbp(443) relative to all other wavelength suites. With only several
exceptions, they also realized the highest magnitude UPDs.

For the mesotrophic Ca range, UPDs in a(443), adg(443),
aph(443), and bbp(443) across all wavelength suites ranged from
−1.66 to 1.80%, −3.18 to 4.79%, −10.46 to 4.50%, and −2.27
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FIGURE 5 | As for Figure 3, but for aph(443).

to 2.60%, respectively (Table 3). These ranges for adg(443) and
aph(443) generally match those for the oligotrophic Ca range,
whereas these ranges for a(443) and bbp(443) compress closer
to unity. For comparison, UPDs in a(555), adg(555), aph(555),
and bbp(555) for SeaWiFS, PACE, and the two 5 nm wavelength
suites ranged from −1.50 to 0.21%, −1.74 to 3.99%, −7.47 to
1.34%, and −1.32 to 0.24%, respectively. Generally speaking,
the differences between any two wavelength suites remained
invariant for 0.1 ≤ Ca ≤ 0.5mg m−3, above which they
started to diverge (Figures 3–6). SeaWiFS, MODIS, and MERIS
differed by ≤ 1.50, 2.32, 0.75, and 2.59% for a(443), adg(443),

aph(443), and bbp(443), respectively, in absolute terms. Like
the oligotrophic subset, OLCI retrieved low adg(443) relative
to all other wavelength suites. Unlike that subset, however, its
aph(443) retrievals exceeded all other wavelength suites. As for
the oligotrophic subset, the two 5 nm wavelength suites retrieved
high adg(443), low aph(443), and low bbp(443) relative to all other
wavelength suites. Their UPD magnitudes, however, fell more in
line with the others.

The eutrophic Ca range (capped at 5mg m−3) realized
the most diversity and highest magnitudes in UPDs across all
wavelength suites [noting that: (a) SAA retrievals often realize
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FIGURE 6 | As for Figure 3, but for bbp(443).

instabilities in such ranges (Werdell et al., 2009, 2018); and
(b) the synthesized dataset represents the widest diversity in
water in this range (IOCCG, 2006)]. UPDs in a(443), adg(443),
aph(443), and bbp(443) across all wavelength suites ranged from
−16.07 to 12.70%, −19.69 to 17.67%, −53.92 to 12.01%, and
−19.50 to 12.99%, respectively (Table 4). For comparison, UPDs
in a(555), adg(555), aph(555), and bbp(555) for SeaWiFS, PACE,
and the two 5 nm wavelength suites ranged from −17.00 to
5.33%, −0.24 to 11.23%, −42.26 to 9.31%, and −10.60 to 3.54%,
respectively. The differences between any two wavelength suites
varied considerably for Ca > 1mg m−3 (Figures 3–6). Even

SeaWiFS,MODIS, andMERIS differedmore substantially than in
other Ca ranges—by≤15.74, 15.03, 18.64, and 17.12% for a(443),
adg(443), aph(443), and bbp(443), respectively, in absolute terms.
Like the oligotrophic subset, OLCI retrieved low adg(443) and
high aph(443) relative to all other wavelength suites, with the
exception of MERIS. As for the other two subsets, the two 5 nm
wavelength suites retrieved high adg(443), low aph(443), and low
bbp(443) relative to all other wavelength suites. Their UPDs for
aph(443) far exceeded those for the other suites.

Differences in IOPs from SeaWiFS and SeaWiFS-modified-
to-look-like-VIIRS largely demonstrated similar patterns. For
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TABLE 2 | Satellite-to-satellite median UPD for IOPs at 443 nm for oligotrophic water (Ca ≤ 0.1mg m−3). Relative to Equation (7), columns represent satellite1 and rows

represent satellite2 (e.g., MODIS a(443) is 0.49% lower (thus, negative) on average than that for SeaWIFS).

SeaWiFS MODIS MERIS VIIRS OLCI PACE 410–670 nm

a(443)

MODIS −0.49

MERIS 0.30 0.92

VIIRS 2.30 2.91 2.08

OLCI 1.41 2.13 1.05 −0.44

PACE 0.56 1.10 0.35 −1.35 −0.71

410–670 nm −1.30 −0.84 −1.76 −3.78 −3.15 −1.97

410–600 nm −1.31 −0.88 −1.75 −3.83 −3.15 −1.95 0.00

adg(443)

MODIS −0.40

MERIS −0.13 0.28

VIIRS 0.19 0.60 0.20

OLCI −2.61 −2.42 −2.67 −3.14

PACE −0.74 0.10 −0.75 −0.62 2.38

410–670 nm 2.43 2.94 2.55 2.08 5.27 3.13

410–600 nm 2.43 2.93 2.56 2.08 5.27 3.13 0.00

aph(443)

MODIS −0.42

MERIS 0.64 1.11

VIIRS 4.37 5.04 3.50

OLCI 5.60 6.33 4.82 2.25

PACE 1.47 2.11 0.89 −1.72 −3.22

410–670 nm −5.15 −5.03 −5.99 −9.85 −11.57 −7.46

410–600 nm −5.15 −5.14 −6.08 −9.79 −11.56 −7.59 0.01

bbp(443)

MODIS −0.75

MERIS 0.48 1.25

VIIRS 4.13 4.74 3.55

OLCI 1.70 2.50 1.15 −1.68

PACE 1.52 2.21 1.00 −1.65 0.01

410–670 nm −1.22 −1.00 −1.64 −6.09 −3.63 −2.99

410–600 nm −1.18 −0.94 −1.65 −6.08 −3.61 −2.98 0.01

Sample sizes follow those presented in Table 1.

context, Figure 7 shows SeaWiFS-derived Ca (Hu et al., 2012)
and the spatial distribution of olig-, meso-, and eutrophic waters,
and Figure 8 shows the SeaWiFS-derived adg(443), aph(443), and
bbp(443). Naturally, the cumulative distribution of observations
falling into each of the trophic levels differs widely in comparison
to the synthesized data set, which might be considered in the
interpretation of these results. The median SeaWiFS-derived Ca

for its olig-, meso-, and eutrophic regions were 0.066, 0.19, and
1.6mg m−3, respectively. The corresponding median UPDs for
adg(443) for these regions were 1.7, 1.8, and 4.2%, respectively,
which approximately track the magnitude of the UPDs at these
Ca values in Figure 4 (upper left panel, green line). Note,
however, that VIIRS adg(443) falls below that for SeaWiFS by
∼2% on average across the synthesized mesotrophic subset.
Note also that the mesotrophic subset dominates globally and
represents a great diversity in water type (Figure 7). The median

UPDs for aph(443) for the three trophic regions were 9.8, 7.7, and
−3.4%, respectively. These also roughly track the UPDs at the
corresponding Ca shown in Figure 5, with the exception of the
eutrophic subset, which also has a sign difference. Finally, the
median UPDs for bbp(443) for these regions were 8.9, 8.0, and
2.3%, respectively. These UPDs match those shown in Figure 6

for the oligo- and eutrophic subsets. Geographically, adg(443)
differ the least between SeaWiFS and surrogate VIIRS, with UPDs
that hover around unity (Figure 8B). Both aph(443) and bbp(443)
show some latitudinal dependence in their UPDs and surrogate
VIIRS-derived values almost unequivocally exceed those from
SeaWiFS (Figures 8D,F).

As an additional thought experiment to loosely begin to tie
our results to marine particle size distributions (PSDs) and, thus,
phytoplankton functional types (PFTs), we applied the approach
of Hirata et al. (2011) to locate pixels in this SeaWiFS imagery
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TABLE 3 | As in Table 2, but for mesotrophic water (0.1 < Ca ≤ 1.0mg m−3 ).

SeaWiFS MODIS MERIS VIIRS OLCI PACE 410-670 nm

a(443)

MODIS −0.97

MERIS 0.44 1.50

VIIRS −1.09 −0.99 −1.66

OLCI 0.53 1.37 0.05 1.80

PACE −0.69 0.57 −0.58 0.77 −0.67

410–670 nm −1.20 −0.36 −1.06 0.07 −1.00 −0.53

410–600 nm −0.71 −0.15 −0.57 0.56 −0.74 −0.29 0.22

adg(443)

MODIS −1.83

MERIS 0.50 2.32

VIIRS −2.19 0.22 −2.39

OLCI −2.79 −1.08 −3.18 −0.94

PACE −1.74 0.08 −2.08 0.12 0.79

410–670 nm 1.82 3.31 1.31 4.01 4.50 3.73

410–600 nm 1.94 3.31 1.57 4.55 4.79 4.00 0.04

aph(443)

MODIS 0.75

MERIS 0.15 −0.50

VIIRS −0.25 −1.93 −0.67

OLCI 4.31 3.11 4.50 4.46

PACE 1.34 0.31 1.35 1.38 −2.55

410–670 nm −6.14 −6.84 −5.13 −6.29 −10.46 −7.37

410–600 nm −4.61 −6.50 −4.24 −5.81 −8.95 −6.26 0.45

bbp(443)

MODIS −1.53

MERIS 0.65 2.59

VIIRS −1.37 −1.08 −2.10

OLCI 0.94 2.60 0.40 2.45

PACE −0.55 1.50 −0.78 1.29 −1.17

410–670 nm −2.27 −0.41 −2.18 −0.30 −2.71 −1.66

410–600 nm −1.64 −0.18 −1.74 0.00 −2.21 −1.22 0.24

dominated by pico-, nano-, and microplankton (with dominance
defined as >50%). On average, SeaWiFS and surrogate VIIRS-
derived adg(443) differed by 1.7, 1.7, and 2.1% for these size
classes, whereas aph(443) and bbp(443) differed by 8.4, 7.6, and
7.8% and 8.0, 7.4, and 8.0%, respectively. These values do
not differ substantially from those of the previous exercise as
expected, given that Hirata et al. (2011) seeds with Ca, but they
offer a modest confirmation of the spatial patterns realized in
our analyses. While evaluating the impact of our findings on
PSD and PFT retrievals extends beyond the scope of this paper,
we feel it remains an obvious follow-on to this work. Many
options for estimation of PSDs and PFTs exist and follow-on
activities could: (a) build upon our brief example using model-
derived distributions of phytoplankton (e.g., Dutkiewicz et al.,
2009; Rousseaux and Gregg, 2015); (b) quantify the impacts
of varied SAA retrievals within PSD and PFT algorithms that
use IOPs as input (see, e.g., IOCCG, 2014; Bracher et al., 2017;
Mouw et al., 2017); or; (c) explore in more detail how differences

in SAA retrievals for multiple sensors compare to spectral
changes in marine IOPs that occur across natural variations in
phytoplankton community composition (Alvain et al., 2012).

Sensitivity of the SAA Parameterization
Our choice in SAA parameterization made little difference in
results achieved from the synthesized dataset. Figures 9–12
follow Figures 3–6 with the exception that the reported UPDs
represent the average for eight SAA parameterizations. At Ca

≤ 0.5mg m−3, the patterns in satellite-to-satellite UPDs for
the ensemble of runs almost exactly mimicked those for the
default SAA runs. This Ca range represents roughly 86% of the
retrieved ocean in Figure 7. The most obvious difference in UPD
patterns emerge at Ca > 2mg m−3, which represents roughly
1.5% of the retrieved ocean. Interestingly, when Ca exceeded
2mg m−3, UPD values for bbp(443) remained reasonably steady
(Figure 12) for wavelength suites that included one or more
orange/red bands placed between 550 and 670 nm (e.g., 620 nm
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TABLE 4 | As in Table 2, but for eutrophic water (1.0 < Ca ≤ 5.0mg m−3 ).

SeaWiFS MODIS MERIS VIIRS OLCI PACE 410–670 nm

a(443)

MODIS 9.07

MERIS −8.60 −15.74

VIIRS 6.58 −0.99 12.70

OLCI −9.15 −15.84 −0.18 −13.31

PACE −8.82 −16.05 −0.92 −13.91 −0.54

410–670 nm −8.24 −16.07 −0.36 −13.59 0.08 −0.17

410–600 nm −3.43 −12.72 3.12 −9.58 3.54 3.08 3.36

adg(443)

MODIS 13.14

MERIS −2.56 −15.03

VIIRS 2.79 −10.08 5.70

OLCI −8.78 −19.69 −5.85 −10.17

PACE −0.03 −13.52 2.04 −3.02 6.58

410–670 nm 9.53 −2.89 12.17 5.85 17.67 11.65

410–600 nm 9.62 −3.21 12.44 5.80 17.17 11.23 −0.24

aph(443)

MODIS 5.88

MERIS −18.64 −10.67

VIIRS 11.83 12.01 23.45

OLCI −8.67 −6.21 7.98 −19.08

PACE −21.02 −14.05 −3.60 −26.31 −12.40

410–670 nm −41.96 −32.87 −28.56 −53.92 −36.99 −25.70

410–600 nm −30.47 −22.87 −15.93 −41.08 −21.52 −15.05 9.31

bbp(443)

MODIS 9.33

MERIS −9.20 −17.12

VIIRS 6.34 −2.68 12.99

OLCI −8.38 −16.15 0.69 −12.02

PACE −8.40 −16.89 −0.47 −13.85 −1.56

410–670 nm −10.83 −19.50 −2.85 −15.52 −3.59 −2.58

410–600 nm −6.13 −15.51 1.35 −11.57 0.30 1.44 3.54

on MERIS, OLCI, PACE, and the two 5 nm suites). This may be
explained, in part, as due to eutrophic Rrs(λ) spectral features
being more distinct in the red and less so in the blue. While
differences in SAA retrievals almost certainly increase when
directly comparing two parameterizations (vs. comparing one
SAA to an ensemble of SAAs), this analysis serves to confirm
that our default parameterization sufficiently represents a global
average to reinforce that, in general, our results apply universally
and do not depend on our choice in SAA parameterization.

DISCUSSION

We set out to use a controlled modeling environment to reveal
and quantify the magnitude of change in derived IOPs associated
with the use of eight different suites of satellite Rrs(λ). Ignoring
such an analysis as CDRs continue to be developed will result
in a prolonged inability to distinguish between algorithmic

and environmental contributions to trends and anomalies in
the IOP time-series. We believe we chose a sufficiently robust
SAA (and parameterization) to execute this analysis, as we
achieved respectable validation results across varied satellite
wavelength suites and demonstrated that variations in algorithm
parameterization do not affect the final results. Our results
ultimately indicated, however, that different suites of satellite
Rrs(λ) do indeed result in divergent IOP retrievals and that these
divergences vary with global geography and water type.

Knowledge of these divergences carries implications and
provokes additional questions about remediation strategies and
paths forward. A comprehensive evaluation of the implications
of our results on trend analyses or CDR development exceeds
the scope of this paper. Suffice it to say, however, several of
the differences we report will exceed the IOP trends one might
wish to reveal, even for sensors with near common wavelengths.
These differences will potentially translate into differences in
downstream data products (e.g., PSDs, PFTs, and carbon and
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FIGURE 7 | SeaWiFS Ca calculated using mission-long Rrs (λ) as input into the OCI algorithm (Hu et al., 2012) (A) and the global spatial distribution of oligotrophic

(cyan), mesotrophic (green), and eutrophic (orange) waters (B). Black and white indicate land and SAA algorithm failure, respectively.

FIGURE 8 | Global IOPs calculated using SeaWiFS mission-long Rrs(λ) and the UPD between IOP values calculated using SeaWiFS and VIIRS wavelength suites

(SeaWIFS = satellite1 and VIIRS = satellite2 in Equation 7). Geophysical values and UPD for adg(443) shown in (A,B), for aph (443) in (C,D), and for bbp(443) in (E,F).
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FIGURE 9 | Satellite-to-satellite median UPD for a(443) at each Ca interval as for Figure 3, but cumulatively considering all eight SAA parameterizations introduced in

section Analyses.

primary production data products) that use IOPs as inputs. We
devote the remainder of this paper to brief discussions of what we
learned, the limitations of our analyses, other confounding issues,
and potential remediation strategies that might merit community
attention in the future.

As previously stated, we revealed that differences in
wavelengths in input Rrs(λ) lead to several percent differences
in derived IOPs when using SAAs (and spectral matching
approaches). We contend that this is critical to understand
when developing CDRs across satellite platforms. But, we also
acknowledge that, while the realized differences occasionally

exceeded several percent, the absolute differences may be small.
For example, a 5% window around an absorption value of
0.1 m−1 corresponds to ±0.005 m−1, which approaches the
detection limit of in situ absorption meters. With this in mind,
we offer that our results contribute to the knowledge base
for CDR development, but should not necessarily be cause
for enduring alarm. Perhaps more importantly—at least in the
context of identifying needs for future studies—our results also
suggest that: (a) validation exercises alone cannot unequivocally
identify the differences that will be realized across varied satellite
instrument wavelength suites; (b) including 400 nm (in the
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FIGURE 10 | As for Figure 9, but for adg(443).

case of OLCI) influences the derived IOPs and UPDs relative
to other wavelength suites; (c) using longer wavelengths (>
600 nm) influences the derived IOPs when there is a red signal
(e.g., eutrophic conditions); and (d) including additional spectral
information shows potential for improved IOP estimation [e.g.,
those suites with greater spectral resolution reported the lowest
combined biases in derived aph(443) and bbp(443)], but not
without revisiting SAA parameterizations and execution [e.g.,
they often also carried the highest biases in derived adg(443)].

What points (b)–(d) above really indicate is the need for
additional consideration of SAA behavior as the community

moves toward increased spectral information. This could
involve revisiting the use of alternate Sdg parameterization
when considering additional shorter wavelengths, improved
consideration of band-to-band covariances within the inversion
strategy, the use of alternate cost functions that exploit
additional spectral information (e.g., through weighting or
consideration of instrument noise and uncertainties), additional
evaluation of the AOP-to-IOP relationship expressed in Equation
(2), and the development of schemes that switch between
parameterizations under different regions, trophic levels, or bio-
optical, hydrological, or environmental conditions, to name
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FIGURE 11 | As for Figure 9, but for aph(443).

only a few (Werdell et al., 2018). Within the paradigm of
CDR development, the need also exists for robust datasets
to explore, train, and evaluate SAAs for application to varied
satellite instruments.

We considered two independent datasets, but neither perfectly
encapsulate or represent all marine conditions at all times.
Despite not being perfectly aligned in composition, the two
datasets revealed the existence of differences in derived IOPs
that generally matched each other in direction and magnitude.
Their differences in composition, however, should be considered
while interpreting our results. While the synthesized dataset

represents a wide dynamic range of water types, it only represents
those conditions that follow its inherent bio-optical assumptions
(and, recall, that all bio-optical relationships within this dataset
begin with Ca). Note that bio-optical relationships within our
SAA differ from those in the synthesized dataset. Furthermore,
the cumulative distribution of stations within the synthesized
dataset do not numerically represent natural global oligo-, meso-,
and eutrophic distributions of seawater. While the mission-
long Level-3 SeaWiFS data provided a representation of global
distributions of data, they offered long-term averages without
explicit consideration of seasonal and geographic variations that
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FIGURE 12 | As for Figure 9, but for bbp(443).

emerge in time-series analyses. All this said, we believe our
two datasets adequately complemented each other and offered
a broad dynamic range of conditions for this initial study.
They successfully indicated similar differences in IOP retrievals,
but future results will likely vary depending on the dataset
under consideration.

Our analyses used common and consistent input Rrs(λ) across
all eight wavelength suites, which we well known does not
represent real life in multi-mission CDR development (e.g.,
Franz et al., 2005, 2018). Space agencies invest substantial
effort into absolute and temporal radiometric characterization

of ocean color satellite instruments that minimizes cross-
instrument biases in Rrs(λ), but differences inevitably remain
(Zibordi et al., 2014; Barnes and Hu, 2016; Mélin et al., 2016).
Such differences will certainly further confound the compatibility
of derived IOPs across satellite instruments, although whether
they amplify or dampen our results will vary instrument-to-
instrument based on the relative consistencies of the Rrs(λ).
Naturally, relative temporal stability across satellite instruments
presents the greatest concern and challenge in long-term
CDR development. Other confounding issues include variations
in instrument design (e.g., pushbroom vs. whiskbroom and
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the resulting number of detectors providing science data),
differences in pre-launch instrument characterization activities
and methods, differences in protocols and data sources for on-
orbit instrument calibration, and variations in algorithms applied
prior to executing an SAA, all of which contribute in some way to
varied instrument-to-instrument uncertainties in Rrs(λ).

Once again ignoring the latter for the moment, several
proposed strategies exist to mitigate the use of differing Rrs(λ)
as input into bio-optical algorithms. The first, and perhaps
least satisfying, simply reduces the number of input wavelengths
to the lowest common suite (e.g., limiting SAA execution to
roughly 412, 443, 490, 547-555-560, and 667-670-665 nm for
MODIS-SeaWiFS-MERIS/OLCI for comparison with VIIRS).
Werdell et al. (2009) provides a relevant example of doing so in
Chesapeake Bay to retrieve Ca using an SAA. Approaches to shift
bands, say from Rrs(547) to Rrs(555), also exist. Several of the bio-
optical algorithms under theOBPGpurview, for example, require
such adjustment (e.g., Stramski et al., 2008; Hu et al., 2012),
which they perform using simple linear statistical relationships
developed using in situ data (Werdell and Bailey, 2005). Melin
and Sclep (2015) developed a more sophisticated band-shifting
approach that employs bio-optical models to adjust band centers.
Their approach uses preliminary estimates of IOPs such that its
use within the context of this analyses would ultimately results in
an iterative scheme.

Ultimately, none of these remediation strategies assist with
moving from multispectral heritage instruments to future
hyperspectral instruments (e.g., PACE). While degrading PACE’s
spectral resolution to mimic heritage instrumentation remains
possible, doing so discards the advances of its instrumentation
that we ultimately expect to improve SAA performance and
IOP estimation in general, such as inclusion of ultraviolet
bands. In the end, this may be unavoidable, with multi-
decade IOP-based CDRs in the PACE era reduced to the best
available approach across heritage instruments. While we expect
novel approaches to emerge that include additional ancillary
(environmental) information or spectral weighting/balancing
that somewhat mitigate differences in input wavelength suites,

the promise of the emerging era of satellite spectroscopy is that
additional wavelengths will result in superior data products.
Intuitively, we therefore expect two parallel paths forward in

SAA development: one that continues to push the boundary of
what is possible with heritage, existing, and plannedmultispectral
instruments (e.g., VIIRS and OLCI) and one that exploits
spectroscopy and contiguous spectral resolution. The challenge
to the community will then become tracking and understanding
differences between the two paths such that the presumably
advanced approaches (through spectroscopy) can inform on the
underlying limitations and additional uncertainties associated
with the long-term (multispectral) data record.
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