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In heterogeneous aquifers, imaging preferential flow paths, and non-Gaussian effects

is critical to reduce uncertainties in transport predictions. Common deterministic

approaches relying on a singlemodel for transport prediction show limitations in capturing

these processes and tend to smooth parameter distributions. Monte-Carlo simulations

give one possible way to explore the uncertainty range of parameter value distributions

needed for realistic predictions. Joint heat and solute tracer tests provide an innovative

option for transport characterization using complementary tracer behaviors. Heat tracing

adds the effect of heat advection-conduction to solute advection-dispersion. In this

contribution, a joint interpretation of heat and solute tracer data sets is proposed

for the alluvial aquifer of the Meuse River at the Hermalle-sous-Argenteau test site

(Belgium). First, a density-viscosity dependent flow-transport model is developed and

induce, due to the water viscosity changes, up to 25% change in simulated heat tracer

peak times. Second, stochastic simulations with hydraulic conductivity (K) random fields

are used for a global sensitivity analysis. The latter highlights the influence of spatial

parameter uncertainty on the resulting breakthrough curves, stressing the need for a

more realistic uncertainty quantification. This global sensitivity analysis in conjunction

with principal component analysis assists to investigate the link between the prior

distribution of parameters and the complexity of themeasured data set. It allows to detect

approximations done by using classical inversion approaches and the need to consider

realistic K-distributions. Furthermore, heat tracer transport is shown as significantly

less sensitive to porosity compared to solute transport. Most proposed models are,

nevertheless, not able to simultaneously simulate the complementary heat-solute tracers.

Therefore, constraining the model using different observed tracer behaviors necessarily

comes with the requirement to use more-advanced parameterization and more realistic

spatial distribution of hydrogeological parameters. The added value of data from both

tracer signals is highlighted, and their complementary behavior in conjunction with

advanced model/prediction approaches shows a strong uncertainty reduction potential.

Keywords: joint heat and solute tracer tests, density-viscosity dependent flow and transport, alluvial sediments,

preferential flow paths, uncertainty investigation, distance-based global sensitivity analysis, principal component

analysis
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INTRODUCTION AND MOTIVATION

Heterogeneity in porous media, inducing preferential flow paths,
and non-Gaussian effects, influences significantly subsurface
transport (among others: Fuchs et al., 2009; Heeren et al.,
2010). An improved imaging of these preferential pathways, in
connection with reducing uncertainty in transport simulations
and predictions, is crucial for answering future groundwater
quality questions.

Innovative tracer test set-ups, along with relevant
interpretations, are possible new ways for quantifying more
realistically this heterogeneity and the associated uncertainty
(Davis et al., 1980; Maliva, 2016). In this context, heat is
considered as a complementary tracer, compared to conservative
solute tracers (saline tracer or fluorescent dye). Heat is usually
considered as a non-conservative tracer, allows information
about advection-conduction processes to be obtained, and heat
has a natural retardation and more diffusion linked to the heat
capacity of the solid (Anderson, 2005). Using both, solute and
heat, thus provides two tracer plumes that can be compared,
allows more information about the solid matrix properties to be
obtained, and enables the quantification of subsurface processes
(immobile water, matrix contributions) with a better resolution
(Anderson, 2005; Irvine et al., 2015). For example, Wildemeersch
et al. (2014) combine heat and solute tracer experiments to
assess the heterogeneity in an alluvial aquifer. Sarris et al. (2018)
also give a recent application of jointly interpreting heat and
solute tracer data. They show, in a deterministic way, how
these innovative tracer tests can contribute to a high-resolution
description of deposits, and a significant improvement of
transport processes understanding. In the joint heat and solute
tracer inversion by Sarris et al. (2018), heat and solute seem
to be sensitive to hydraulic conductivity and porosity. In their
case study, heat also shows a stronger sensitivity to vertical
hydraulic conductivity, resulting in a more complex aquifer
parametrization, and more realistic transport predictions.

Deterministic approaches are useful for process
understanding. However, predictions based on an unique
“best” model parametrization bear a lot of uncertainty and,
thus, must be justified and used with care (Renard, 2007;
Remonti and Mori, 2016). Deterministic approaches generally
reduce heterogeneity, typically by replacing spatially distributed
properties by averaged properties, leading to poorer predictions
with underestimated uncertainty (Alcolea et al., 2006; Renard,
2007). Using additional information gained from joint heat and
solute tracer tests adds more constraints to the inversion process.
However, when the tracer behavior is getting more complex,
deterministic approaches can quickly turn into ill-posed inverse
problems (Zhou et al., 2014), reducing their predictive reliability.
Classical deterministic inversion approaches could therefore
be questioned.

To explain and adequately represent the observed variables,
more advanced transport simulation and forecast approaches,
such as stochastic methods (Ptak et al., 2004), are generally
required. Monte-Carlo simulations may, for example, be used
to explore uncertainty ranges and to consider heterogeneity
(among others, Ptak et al., 2004; Renard, 2007, Ferré, 2017).
However, the full stochastic inversion of hydrogeological data

when spatial uncertainty plays a key role remains difficult
and time consuming, limiting the applicability of the methods
(Renard, 2007). In this context, transdimensional inference (e.g.,
Sambridge et al., 2012) is a possible approach to combine
the parsimony principle with stochastic inversion. In practice,
transdimensional inference includes the number of parameters
as an unknown, and therefore limits the complexity of the model
to what is necessary to explain the data.

However, if field data is sparse and prior uncertainty is
large, the transdimensional approach would also lead to an
oversimplification of the model, which can be harmful for its
predictive capability (referred to Hermans (2017), about the
importance of realistic consideration of prior uncertainty). In
contrast, a full stochastic approach allows realistically quantifying
the uncertainty for transport predictions, instead of having
a single deterministic inversion or multiple simulations with
(partly) non-quantified approximations (among others, Caers,
2011; Hermans, 2017; Hermans et al., 2018; Scheidt et al., 2018).
In combination with the use of complementary tracers such as
heat, stochastic approaches and data analysis methods have a
strong potential to learn more from collected data sets and falsify
approximations done in conceptual models and prior estimations
(Hermans et al., 2015a,b, 2016, 2018).

A further new potential for hydrogeological applications and
transport predictions is Bayesian Evidential Learning (BEL)
(Hermans, 2017; Hermans et al., 2018; Scheidt et al., 2018).
BEL relies on a limited number of Monte-Carlo simulations
sampling the prior distribution of model parameters, in
order to analyze the global sensitivity of parameters (Park
et al., 2016; Hermans et al., 2018) and falsify the prior
distribution. In comparison to common single parameter
sensitivity analysis, regionalized or global sensitivity analyses
consider heterogenous sources of model uncertainty (e.g.,
Park et al., 2016). The falsification step consists in obtaining
consistency between the sampled simulation data (i.e., prior)
and the reference data (Hermans et al., 2015a; Scheidt et al.,
2018). BEL can also be used, if necessary, to identify a
statistical relationship between historical and forecast variables
(Hermans, 2017; Hermans et al., 2018; Scheidt et al., 2018).
The common inversion step is thus replaced by finding the
direct relationship between the prior (sampled simulation
data) and the desired forecast, which only depends on the
complexity of the subsurface (i.e., model) (Hermans, 2017).
Using Monte-Carlo, samples from the prior distribution are
generated and used to simultaneously simulate synthetic data
and forecasts. Both outcomes are analyzed for detecting
direct relationships. Following this innovative approach, cost-
expensive inversion can be avoided by reformulating the
prediction problem, and the likelihood directly in terms of the
forecast (Hermans, 2017).

For addressing the uncertainty of transport predictions, for
instance due to preferential flow paths, any forecasting approach
should first consider realistic parameter uncertainty related to
heterogeneity. In this paper and the context of BEL, “prior” is
defined as the prior distribution of model parameters, according
to the current knowledge of the field, and from which outcome
samples are randomly drawn in Monte-Carlo methods (Rojas
et al., 2009; Caers, 2011; Hermans, 2017).
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In this paper, the prior uncertainty is investigated for a
heterogeneous alluvial aquifer, using joint heat and solute
tracer data, through a global sensitivity analysis. A performed
tracer experiment (Wildemeersch et al., 2014; Hermans
et al., 2015b) has been previously used by Klepikova et al.
(2016), to calibrate a deterministic model through automatic
inversion. The HydroGeoSphere code (HGS) was used allowing
full 3D simulations (Therrien et al., 2010; Brunner and
Simmons, 2012). HGS was used in conjunction with PEST
as a parameter estimation tool for inversion (Doherty, 1994,
2003). Although those first analyses helped to understand
groundwater flow and solute and heat transport in the
aquifer, they also showed that the approximations impeded
to explain simultaneously all observations. In Hermans et al.
(2015a, 2018), additional stochastic approaches considering
spatial uncertainty were successfully used in explaining
parts of the experimental data, but they considered only
limited data sets or parts of the whole aquifer system.
In this paper, the current conceptual approximations
(the prior) in the description of the alluvial deposits will
be revisited with the goal to improve the heterogeneity
characterization. Generating a prior, consistent with the
observed heat and solute tracer test data, is a necessary step
to being able to realistically predict transport in this complex
geological setting.

Within this context, the objective of the paper is to
take advantage of the complementary behavior of heat and
solute tracers to better characterize the heterogeneity in the
aquifer system. The aim is to formulate a more realistic
prior and analyze its consistency, before moving toward more
advanced prior analysis and direct predictions using the BEL
framework. For this purpose, the variability of the tracer output
signals will be analyzed (1) through a deterministic model,
and (2) using Monte-Carlo simulations, followed by a global
sensitivity analysis.

MATERIALS AND METHODS

Test Site: Hermalle-Sous-Argenteau
The test site of Hermalle-sous-Argenteau (HssA) in the north
of Liege (Belgium) lies between the canal Albert and the
Meuse River (Figure 1A) in an alluvial plain field with a
groundwater natural gradient of around 0.06%. Between the
20m distant injection well (Pz09) and the pumping well
(PP), there are three panels with 10 piezometers including
19 observation points (i.e., most piezometers are screened
at two different levels, Figure 1B). The first panel is located
at 3m, the second at 8m and the third at 15m from the
injection well. An evaluation of the borehole logs during
drilling shows that the aquifer is mostly composed of sandy
gravel. The sand matrix is finer in the top part and its
proportion decreases in the bottom part (Figure 1B). In
previous studies, the adopted conceptual model split the
aquifer in two layers, an upper (K = 2.38·10−3 m s−1)
and a lower (K = 4.67·10−2 m s−1) part (Klepikova et al.,
2016; Hermans et al., 2018). The estimated bulk thermal

conductivity is in the range κb = 1.37W m−1 K−1 to
1.86Wm−1 K−1 (Klepikova et al., 2016).

The reference data set used in this study was described
in Wildemeersch et al. (2014). A joint heat and solute
tracer experiment was performed with a 24 h and 20min
continuous injection of heat (1T = 25.5 K) and naphtionate
(C= 5.48mg L−1) at the rate of 3 m3 h−1, while 30 m3 h−1 were
extracted from the pumping well PP. Temperature distribution
was the focus and therefore measured in all observation
points, while the solute tracer was only measured in PP
for validation purposes. Measurements in Pz13 and Pz17
are not used because these observation wells are uniformly
screened all over the aquifer and do not allow separated
measurements in both the upper and lower compartments
(Klepikova et al., 2016; Hermans et al., 2018).

The observed heat tracer plume shows that the heat injected
in the lower aquifer part tends to move upwards very quickly
toward the first panel, then to be split and move downwards
(Wildemeersch et al., 2014). The measured temperature in
the second upper panel is significantly lower than in the
first upper panel (for detailed measured reference data at all
panels, we refer to the “Supplementary Material Figures 1–4”).
This observed behavior is currently difficult to be simulated
for all observation locations with just one deterministic
model inverted with common methods, e.g., using pilot
points (Klepikova et al., 2016).

Deterministic Porous Media Model
Based on the current conceptual two-layer aquifer model (each
3.5m thick), Klepikova et al. (2016) developed a numerical model
focusing on the heat transport simulation using HGS in finite
difference mode (Therrien et al., 2010) and a pilot point approach
(Doherty, 2003) to calibrate the model against heat data. This
model is density dependent during the first 24 h only, as density
effects were expected to be low afterwards (Ma and Zheng, 2009;
Klepikova et al., 2016). This model describes a 40 × 60 × 7m
volume of alluvial aquifer with a grid of 84,280 elements in total.
No recharge was assumed for the duration of the experiment.
Due to the high permeability of the gravel, the vertical leakage at
the bottom of the model was considered as negligible compared
to lateral input/output. The initial groundwater temperature was
set to Tini = 13.48 ◦C according to the measured values before
the experiment. The model was running under transient flow
conditions due to the simulation of the tracer experiment. Peclet
numbers of 300 for the upper part, and 14,000 for the lower part
were computed, suggesting an expected advection-dominated
transport (Klepikova et al., 2016).

Here, this model is extended with a simultaneous solute
injection. In HGS, the injection is simulated selecting two nodes
next to each other: at the first node, representing the screen
location in the borehole, the solute tracer is injected and one node
below the heat is injected, respecting the actual experimental set-
up. Both injections are simulated using Neumann (2nd type)
boundary conditions. For the solute injection, the prescribed
mass injection rate is 4.3 10−6kg s−1. For the heat injection, the
prescribed injection rate is 8.3 · 10−4 J K−1 s−1 (Klepikova et al.,
2016). The grid is refined to 140,140 rectangular elements with
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FIGURE 1 | (A) Overview of the field site location. (B) Borehole location showing the three panels between the injection well (Pz9) and the pumping well (PP), a typical

log, and borehole equipment [modified figure according to Wildemeersch et al. (2014)].

14 numerical grid sublayers (each 0.5m thick), allowing a better
representation of the spatial heterogeneity and uncertainty. To
account for the influence of immobile water on heat conduction,
an apparent thermal conductivity is computed using:

κs
′
=

κf (θ − neff) + κs (1− θ)

(1− neff)
(1)

θ is the total porosity with 0.12, neff the effective porosity
with 0.05, or otherwise called mobile water porosity, κf the
fluid thermal conductivity with 0.59W m−1 K−1 and κs the
solid thermal conductivity estimated from previous works
to around 1.43W m−1 K−1. As temperature affects the
groundwater density and dynamic viscosity, the injected heat
influences both groundwater flow and transport simulations.
In contrast to Klepikova et al. (2016), the new numerical
implementation allows fully density-dependent, but also
viscosity-dependent simulations.

Stochastic Prior Uncertainty Investigation
This study investigates the prior-uncertainty using Monte-Carlo
simulations, followed by a global sensitivity analysis and prior
falsification. The applied procedure in this study corresponds to
the first, second and third steps of the BEL method as described
by Hermans et al. (2018). In the Monte-Carlo simulations, part
of the calibrated values from the deterministic model parameters
are replaced by random values sampled from random uniform
distributions (Table 1).

In each Monte-Carlo simulation step (prior sampling), a new
HGS forward model is parameterized with randomly generated
advection global parameters, like the log(Kmean), the K variance,
the porosity, the variogram ranges in X,Y,Z directions, the
azimuth, and the gradient between the two main prescribed

head boundary conditions located upgradient from the injection
well and downgradient from the pumping well. Fixed values
[i.e., identical to those chosen by Klepikova et al. (2016)]
are considered for dispersivity, thermal conductivity, specific
heat capacity, specific storage, and bulk density (Table 1). To
represent the K-distribution within eachMonte-Carlo simulation
more realistically, sequential Gaussian simulations are used
following two scenarios.

Scenario A uses the prior distribution from Hermans et al.
(2015a). This prior was not falsified by geophysical and
hydrogeological data acquired during the experiment (Hermans
et al., 2015a) in the middle panel. It was thus not tested against
the whole available data set, as it is proposed here. In particular,
it uses the same two-layer approximation and ignores any trend
in the alluvial deposits grain size distribution. Random Kmean

values between 10−3.5 and 10−2.5 m s−1 in conjunction with a
K-variance between 1 and 100 m s−1 are considered. Models are
randomly generated without any additional constraint.

Scenario B considers the trend observed during
drilling (Figure 1B) in the alluvial deposits, in which it
is assumed that grain size distributions influenced the
hydraulic conductivity values. Within 14 constrained
sublayers, a vertical downwards increasing K-trend is
considered in the geostatistical simulations. Within every
Monte-Carlo step, for the 12 sublayers between the fixed top
(Kmean = 10−4 m s−1) and bottom (Kmean = 10−2 m s−1)
sublayer, new random generated mean values between
Kmean = 10−3.5 and 10−2.5 m s−1, increasing downwards,
are used. To account for field observations (see section Test site:
Hermalle-sous-Argenteau, Wildemeersch et al., 2014; Hermans
et al., 2015b) showing that the heat plume does not follow a
straight path toward the pumping well, the possible occurrence
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TABLE 1 | Parameter simulation ranges for the Monte-Carlo simulations (left column) and chosen fixed parameter values identical to those chosen by Klepikova et al.

(2016) (right column).

Parameter Simulation range U Unit Fixed parameter+ Value Unit

Log(Kmean) A: [−3.5 −2] m s−1 Longitudinal dispersivity (upper / lower part) 1.5/3 m

B: Trend [−4 −2] + [−3.5 −2.5] m s−1 Transversal dispersivity (upper / lower part) 0.15/0.3 m

Variance K [1 100] m s−1 Solid thermal conductivity (apparent) 1.37* W m−1 K−1

Porosity [0.05 0.12] 1 Fluid thermal conductivity 0.59 W m−1 K−1

X [1 to 8] m Solid specific heat capacity 1,000 J kg−1 K−1

Y=Z [0.1 0.5] m Water specific heat capacity 4,189 J kg−1 K−1

Azimuth [0 pi] 1 Specific Storage 10−4 m−1

Gradient at prescribed head BC [0.01 0.1] % Bulk density 1,950 kg m3

+The fixed values are taken from Klepikova et al. (2016).
*The solid thermal conductivity estimated at 1.43W m-1 K-1 is replaced by an apparent value for simulation (see section: Deterministic porous media model).

[ ] Sampled from a random uniform distribution.

of local low hydraulic conductivity zones (flow barriers) in the
aquifer is thus considered. The presence of loam lenses with low
hydraulic conductivity are actually observed at some places in the
Meuse river alluvial deposits and are here assumed as a possible
origin/explanation for the observed behavior. Two flow barriers
are placed in front of Pz14 and Pz17 in the upper part, and the
third one in the lower aquifer part between the injection well
and Pz11. The constrained hydraulic conductivity is four orders
of magnitude lower. Within the sequential Gaussian simulation,
the fixed constrained K-values are considered as hard data for
the random simulations. The size of the potential flow barriers is
thus dependent on variogram characteristics.

For each scenario, 250 simulations are generated through
Monte-Carlo methods. This number was considered sufficient
to model the variability in the prior data sets, while keeping
the computational cost to a minimum, and to estimate the
global sensitivity analysis (see below). The reason lies in the fact
that the used approach analyzes the data response (temperature
or solute curve) which is less complex than the model spatial
heterogeneity, therefore requiring only a limited number of
samples (Hermans et al., 2018).

A distance metric using the root of the square sums of
the difference between each simulated f(ti) and observed g(ti)
data over the same experimental time interval tExp (0–10
days), showing positive zero definition, symmetry, and triangle
inequality, is used to compare the ability of different simulations
to reproduce field data. It allows to identify the best realization
at each observation point within the generated 250 realizations,
separately for each scenario:

Best simulation at observation point means minimizing:

dObsP =

√

√

√

√

tExp
∑

i=1

(

f (ti) − g (ti)
)2

(2)

Best simulations are quantified calculating the root mean square
error (RMSE) and the correlation coefficient (R2).

Distance Based Sensitivity Analysis
A global sensitivity analysis reveals key information about
model parameters most influencing the simulated data at
observation points. With the output signals of the heat and
solute realizations, the distance-based global sensitivity analysis
(DGSA, Park et al., 2016) is applied, considering the global
and spatial parameters of each simulation. DGSA can also
identify conditional effects between pairs of parameters (Fenwick
et al., 2014; Park et al., 2016). In DGSA, the sensitivity is
defined by comparing the parameter cumulative distribution
function (cdf) within k clusters to the original distribution.
The number of clusters must be chosen so that there are
enough simulations in each cluster while allowing sufficient
discrimination between them (Hermans et al., 2018). The k
clusters are computed using the k-medoid clustering technique
applied on a multi-dimensional scaling map of the models.
The latter is computed based on the metrics of equation (2).
In DGSA, random parameters for each simulation are linked
to the corresponding output signal produced by the forward
model. We refer to Park et al. (2016) and Fenwick et al. (2014)
for details.

Every sample of the prior distribution is parameterized using
random generated global parameters, e.g., porosity, gradient,
Kmean, and K-variance values and local parameter, i.e., the
spatial random K-field, generated by geostatistical simulation.
A local parameter is highly dimensional (number of elements)
and therefore difficult to analyze using a sensitivity analysis.
However, those local parameters can be reduced using Principal
Component Analysis (PCA). PCA is one possibility to structure,
simplify and visualize complex data sets by replacing multiple
statistical variables with a limited, smaller, and approximated
amount of linear combinations using the decomposition in
eigenvectors (Krzanowski, 2000). With PCA, the first dimensions
are explaining the average K distribution and, thus, larger scale
heterogeneity, while higher dimensions will be characteristic of
smaller-scale heterogeneity (e.g., Oware et al., 2013; Park and
Caers, 2018). Therefore, the PCA’s first dimensions represent the
degree of heterogeneity in the aquifer. That is used to compute
the score variables for each of the 250 simulations subsequently
in the sensitivity analysis (Park and Caers, 2018).
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Tracer Velocity Comparison
The modified deterministic model and the Monte-Carlo
simulations are further used for a synthetic heat and solute
tracer velocity comparison. The velocity comparison follows
the approach of Irvine et al. (2015), but using here the peak
times instead of the time of 50% of tracer recovery in the
breakthrough curve. The peak time is here preferred, due
to the large uncertainty related to the missing solute tracer
information between the injection and pumping wells. Irvine
et al. (2015) equations are adapted by using, for the strong
advective aquifer system of Hermalle-sous-Argenteau, as thermal
retardation factor Rth = 1. An estimated thermal retardation
factor based on a fixed specific heat capacity is in this study not
sufficient to capture the difference between the two tracers as it
cannot account for spatial heterogeneity. The calculations are:

vsolpeak =
x

tsolpeak

(

modal velocity
)

(3)

vheatpeak = vthpeak · Rth =
x

theatpeak
. 1 (4)

where tsolpeak [s] is the solute peak time of each

prediction/simulation, x [m] is the shortest distance from
the observation well to the injection point and vsolpeak [m s−1]

the corresponding modal velocity. In the heat case theatpeak [s]

is the peak time of each prediction/simulation, Rth the thermal
retardation factor, vthpeak [m s−1] the thermal front velocity using

the peak time.
High K-zones (i.e., corresponding to preferential flow paths)

resulting in a mismatch of solute and heat distributions, lead to
different vheat and vsolute values (i.e., diverging from a 1:1 line in
a vheat vs. vsolute diagram) inducing a decrease of the regression
coefficient (Irvine et al., 2015).

RESULTS

Prior Uncertainty Investigation
The heat observations at panel 1, 2, 3, and the joint observed heat
and solute information at the pumping well are investigated and
used to attempt prior falsification. In a first step, the numerical
model considers groundwater density and dynamic viscosity
effects caused by the injected heat. In a second step, the multiple
heat breakthrough curves and the solute one at the pumping well
are simulated using the multiple realizations generated by the
Monte-Carlo procedure in conjunction with both K-distribution
scenarios. Figure 2 shows the comparison of the deterministic
solution of the density (basis model) and the density-viscosity
dependent model with the reference data, the two simulation
scenarios A and B and the individual best heat simulation for
the upper screened part in Pz11-up, Pz15-up, and Pz19-up
(observation points in the upper middle lane of Panel 1, 2, and 3).

The change of the dynamic viscosity, e.g., at the peak-time for
Pz11-up about 25% (upper screen), has a significant effect on
the simulated temperature, while the effect of density is limited
(0.02%) (Figures 2E,F, 3). Accounting for this effect allows slight
improvement to the fit with the observed heat breakthrough
curve at Pz11-up and Pz15-up using a deterministic approach

(Figures 2C–F). The simulated peak, e.g., at Pz11-up is slightly
improved, as well as the tailing, but the overall fit is still not
satisfying for all three observation points.

Monte-Carlo realizations surround the real data set of the heat
tracer at all three points (Figure 2). It highlights the influence
of spatial parameter heterogeneity on the resulting breakthrough
curves. However, the prior of scenario A seems to be falsified
by the tailing part of the curve observed in Pz11-up and Pz15-
up (Figures 2C,E). Clearly, scenario B considering the observed
vertical downwards increasing K-trend, and describes the tailing
part of the curve more realistically compared to the deterministic
approach and scenario A (e.g., compare Figures 2E,F). For Pz15-
up and Pz19-up the best simulation allows representing the
reference data more accurately, compared to the deterministic
solutions (Figures 2A–D). Again, scenario B gives more realistic
solutions than ignoring any trend in the simulations.

Selecting the 10 best heat simulations from both prior
scenarios for all observation points at panels 1 to 3, upper
and lower screen, further confirms that considering a vertical
downwards increasing K-trend in the simulations is a more
realistic description of spatial heterogeneity (referring to
“Supplementary Material Figures 1–4”). At panel 3 the
observed data fluctuates around a temperature change of 0 ◦C,
without a significant peak. Thus, the solution simulation with
1T = 0 ◦C is identified as the best one. The modeled 1T = 0 ◦C
is exactly zero for the simulation because it corresponds to a set
of parameters where diffusion is larger than advection transport;
the heat therefore does not reach panel 3. These results stress the
need for a more realistic prior-uncertainty quantification and
falsification of prior hypotheses. Here, a purely random K-field
can be considerably improved by including sedimentological
observations that the advocated procedure is capable of taking
advantage of it.

Previous paragraphs do not integrate the joint heat and
solute breakthrough curves at the pumping well (located 5m
downstream from panel 3). Here, the deterministic model
solution calibrated on heat data only (Klepikova et al., 2016),
including now both the density and viscosity changes, fails to
predict the heat and solute tracers behaviors at the pumping well
(Figures 4A,B. Note that the solution depending on density only
is not realistic and is not shown).

Monte-Carlo simulations, with the random K-field without
trend (scenario A), surround heat and solute observed data
(Figures 4A,B), adding indications that spatial heterogeneity is
necessary to generate realistic predictions. The best simulation
for the observed heat signal using equation (2) (R2

= 0.96,
RMSE = 0.01 ◦C) is however different than the one for the
solute signal (R2

= 0.99, RMSE = 1.2·10−5 g L−1). Thus,
the best heat simulation poorly predicts the solute signal and
vice versa (Figures 4A,B). For the random K-field with the
vertical downwards increasing K-trend (scenario B), the heat
breakthrough at the pumping well is not as well simulated
as in the intermediate panels and the solute breakthrough
concentrations are strongly underestimated, even though the
time occurrence of the peak seems to be correctly predicted
(Figures 4C,D). Near the pumping well, the tracer is intensively
diluted due to the high pumping rate (30 m3h−1), making
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FIGURE 2 | Comparison between deterministic solution, real data and prior + best simulation for both random K-distribution scenarios for Pz19-up (Panel 3): (A)

without K-trend (scenario A), (B), with a downwards increasing K-trend (scenario B), for Pz15-up (Panel 2): (C) without K-trend, (D) with K-trend, and for Pz11-up

(Panel 1): (E) without K-trend, (F) with K-trend (10 best heat simulations at each observation point are in Supplementary File). The index of the best solution refers its

number within the 250 simulations.

Frontiers in Earth Science | www.frontiersin.org 7 May 2019 | Volume 7 | Article 108

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Hoffmann et al. Prior-Uncertainty Investigation in Alluvial Sediments

FIGURE 3 | Variation of density and water viscosity influenced by the injected heat observed at PZ11-up as absolute change (A) and relative change (B). (Hoffmann

et al., 2018).

FIGURE 4 | Heat and solute simulation results at the pumping well ignoring any trend (A,B) and considering a downwards increasing K-trend (C,D) compared with

the deterministic density-viscosity model. Best heat and solute simulation were used to visualize the complementary tracer (Note that the simulations which consider

only the density dependence to temperature and not the viscosity dependence are not shown and rejected as they are not realistic enough).
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the heterogeneity around this well crucial for explaining the
breakthrough curve (see in Discussion section).

The K-fields corresponding to the best heat and solute
simulations describing the tracer breakthrough curves at the
pumping well using scenario A are largely heterogeneous
(Figures 5A,B). However, for both tracers, K-distributions are
slightly different, which explains in parallel to the less good
modeling of the tailing (Figure 2), why scenario A is not
suitable to adequately describe complementary tracer movement
(Figures 4, 5). The injected heat forms a plume around the
injection well enlarging with time by conduction and advection,
while its temperature amplitude decreases (Figure 5C). Further,
the solute prefers mainly the high hydraulic conductivity
pathways, faster in the lower part than in the upper part
(Figure 5D). Both tracers are best described by two different
parameter distributions and only stochastic inversion could
here result in simulations fitting both, while deterministic
inversion finding one global parameterization, may tend to
derive a smoothed parameter distribution poorly fitting the
data. However, it should be stressed that this prior (scenario
A) would not be able to reproduce the observations in
intermediate panels. For the K-field and tracer distribution of
scenario B (Supplementary Material Figure 5), the best solute
tracer simulation displays a strongly heterogeneous model with
preferential flow paths, while for heat, a more homogenous K-
field respecting the observed trend in the borehole drillings
sedimentology (Figure 1B) is found.

These single local best realizations, for each observation point,
do not explain the full data set, further highlighting the role
of local heterogeneity on the measured signals. This probably
explains why the global fit of the deterministic solution is poor
and highlights the need for more realistic priors instead of trying
to find unique parameterization describing reality.

For the Hermalle-sous-Argenteau test site, the prior
considering a vertical downwards increasing K-trend seems to
better represent the overall hydraulic conditions (until panel 3)
and constitutes a better prior assumption than neglecting any
K-trend. However, it seems to be somewhat falsified between the
last panel and the pumping well in terms of solute concentration
amplitude. This suggests that the current parameterization still
oversimplifies the heterogeneity of the deposits at a larger scale
and cannot be used for inversion or prediction. New hypotheses
should be formulated, or new data collected to identify the
specific processes taking place between the third panel and the
pumping well. Existing ERT transects (Hermans et al., 2015a,b)
and newly acquired cross-hole GPR sections are promising tools
to image heterogeneity patterns with a higher resolution and at a
larger scale.

Distance Based Sensitivity Analysis
The 250 generated models from scenario B are further used
for the distance-based global sensitivity analysis. The distance
metrics (Equation 2) between pairs of Monte-Carlo simulations
is calculated and used as starting point for DGSA. The
sensitivity analysis investigates the global simulation parameter
values within their given range (Table 1) and the spatial
heterogeneity. To analyze spatial heterogeneity, the K-fields

from Monte-Carlo simulations are represented using orthogonal
basis vectors computed through principal component analysis
(PCA) with 250 observation rows and 140,140 corresponding
cell K-values as columns (in total: 35,035,000K values). Only
the first 15 principal components are retained and used as
an approximate measure of heterogeneity. While, those 15
first dimensions explain only 23% of the total variance in K,
the first three principal components together describe 9.6%
of the variance. The small amount of explained variance is
related to the strongly variating K-values from one simulation
to the other. The 15 corresponding PCA scores are further
included in the sensitivity analysis to characterize the role of
spatial heterogeneity.

The sensitivity analysis results for the heat signal at the
panels 1, 2, and 3 in relation are presented in Figures 6A,C,E.
Figures 6B,D,F show the corresponding classification of the
250 models in three clusters. Clusters are used to group the
simulations according to their response (i.e., the first cluster
contains simulations with high temperature far above the
reference data, the second contains simulations with temperature
below the reference data and the third group consists in
simulations around the reference data). Using three clusters gives
satisfactory results in this case.

The sensitivity of a parameter is computed based on the
difference between its cumulative distribution function (cdf)
in each of the cluster compared to the global cdf. Significant
differences mean that the parameter is considered as sensitive.
For all panels, the resampling quantile of the distance is α = 0.95
(we refer to Park et al. (2016) for the detailed explanations of
parameters used in DGSA).

The global “log(Kvar)” is the most sensitive parameter at
Panel 1 and 2 (Figures 6C,E). Its sensitivity decreases within
the third panel (Figure 6A) while “log(Kmean)” is getting more
sensitive (Figures 6A,C,E). The influence of the first component
of spatial heterogeneity “PC1” is large at every distance from
the injection well. The increasing sensitivity and influence of
“PC1” with distance from the injection well is related to the
hydraulic conductivity in the direction of the gradient, which
indicates a strong link to preferential pathways (Figures 6A,C,E).
For the first two panels, most PCA components are sensitive.
This is in accordance with the previous results, showing that
the introduced K-trend is crucial to explain the observed
breakthrough curves (section Prior uncertainty investigation).
The global parameter “gradient” shows a decreasing sensitivity
with distance. The sensitivity of the gradient highlights the
influence of uncertain boundary conditions on the simulations.
The fluxes around the injection well are crucial to initiate the
tracer transport (Figures 6A,C,E). The global “porosity” and
the “azimuth” are, at all three panels, a much less sensitive
parameter for the strong advective system at Hermalle-sous-
Argenteau. The variance explained in the low dimensional
space is relatively constant over all three panels, but the
clusters are getting closer to each other (Figures 6B,D,F).
The sensitivity analysis further indicates that the scale of
heterogeneity playing a role on the tracer distribution at
panel three is different. The vertical K-trend is not sufficient
anymore to explain the observations. It underpins that more
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FIGURE 5 | Simulated results at the pumping well using a prior with no K-trend distribution (Scenario A): Spatial K-distribution as obtained for the picked up best

simulation for (A) heat data and (B) for the best napthionate simulation. Corresponding simulated tracer plumes for best simulation for (C) heat data and (D) for

napthionate data. Under each 3D visualization, a vertical 2D profile is shown along the gradient axis from the injection well through panels 1, 2, and 3, and down to the

pumping well.

realistic imaged preferential pathways (e.g., using improved
imagingmethods like full-waveformGPR inversion) are probably
necessary to understand the heterogeneity surrounding the
pumping well.

The sensitivity analysis results at the pumping well
using the heat and solute signals using the 250 simulation
of scenario B are presented in Figure 7. For the heat
and the solute signals, the “log(Kmean)” is more sensitive
than the “log(Kvar)” and the “PC1,” “PC2,” and “PC3.”
The local heterogeneity is still sensitive and important to
consider, but the results are less sensitive to small scale
heterogeneity as mostly “PC1” to “PC4” are sensitive. For
solute transport, “porosity” is also a sensitive parameter to be
considered (Figures 7A,B), probably due to its direct effect
on advection velocity. The analysis supports that simulating
complementary tracer behavior requires a realistic description
of heterogeneity.

The sensitivity analysis of the pumping well simulations
using scenario B is extended by using alternatively the synthetic
velocity ratio vheat/vsol as prior response for the DGSA (Figure 8).
Replacing the breakthrough curve as model response by the

velocity ratio vheat/vsol, averages the model response over the
complete transport path.

As a reference, the field measured derived modal velocities at
the peak time of heat (i.e., Rth = 1 ≥ wavefront velocity) and
solute at the pumping well are:

vsolpeak

vthpeak
=

2.05 · 10−4 m s−1

1.08 · 10−4 m s−1
= 1.90 (5)

Using the assumption of Rth = 1, for scenario B (Figure 8A), the
obtained velocity ratios are less spread around the observed data.
Many solute velocities forecasts have the same value, but with
a different corresponding heat velocity (Figure 8A). This is an
indication that the heat signal provides more information, while
the variance of the solute velocity responses decreases.

Applying now the DGSA using this alternative prior response,
the sensitivity of “porosity” is now less strong than in the solute
case, but stronger than in the heat case (Figures 7, 8B). Then,
similar to panel 1 to 3, the “log(KVar),” “gradient,” and “PC1” are
the most sensitive parameter at the pumping well (Figure 8B).
Interestingly, the velocity ratio seems to be not directly sensitive
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FIGURE 6 | Distance-based sensitivity analysis using the scenario B heat signals at (A) Panel 3, (C) Panel 2, (E) Panel 1, related to the corresponding cluster

cumulative distribution function (CDF) for (B) Panel 3, (D) Panel 2, and (F) Panel 1. The square within each cluster in (B), (D), and (F) is the center of mass of

each cluster.

to “log(Kmean),” but on the global heterogeneity (Kvar and range),
spatial heterogeneity (PC1) and fluxes (gradient). This is a clear
indication that preferential flow paths, being the result of an
interaction between K-heterogeneity and gradient, is the main
reason for the variation in velocity ratio.

At this stage, it can be assessed that the joint heat-solute
tracer experiment results are indeed better represented by a
K-distribution with a vertical downwards increasing K-trend.
The prior with the K-trend is the current best heterogeneity
representation for Hermalle-sous-Argenteau test site between
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FIGURE 7 | Sensitivity analysis at the pumping well using the scenario B for (A) heat and (B) solute signals.

FIGURE 8 | (A) Velocity ratio vheat/vsol comparison using the peak times of the heat and solute breakthroughs generated with Monte-Carlo using Scenario B

(K-Trend). (B) Sensitivity results using the derived velocity ratio vheat/vsol as prior responses for DGSA.

the injection well and panel 3. However, this K-trend is not
representative for the part of the simulated domain between
the third panel and the pumping well as shown by the Monte-
Carlo prior investigation and the DGSA results. This highlights
how important a not-falsified prior is for robust decision
making, and that every model containing approximations
must be use with care for predictions. Furthermore, if the
proposed prior seems valid at the local scale, it is not
sufficient to explain all observations made at the site. The
latter probably requires the inclusion of another level of
heterogeneity, accounting for the change of behavior for
the tracer.

DISCUSSION

In the field tracer experiment, the heat tracer arrives 1 day after
the solute transport and the recovered energy at the pumping
well is very low. This delay is a consequence of the different
transport processes, mainly the retardation effect related to heat
conduction in the solid phase and in the immobile water. For
example, the heat tracer test provides useful information to better
understand the matrix processes quantifying the immobile water
part. This complementary behavior helps to better characterize
the actual transport processes occurring in the aquifer, in
particular the preferential flow paths.
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The previous existing calibrated model was based on heat
tracing data only. The new numerical model implemented
in the framework of the presented study, showed that the
dynamic viscosity has a strong impact on simulated temperature
values even in a narrow temperature range. It clearly appeared
that this model was failing to reproduce the observed solute
concentrations at the pumping well. All attempts to find
one single deterministic model fitting both tracer data failed,
illustrating the difficulty to approximate solute advection and
heat conduction/storage with one single (smoothed) spatial
parameter distribution. Even if a global minimum was found,
any prediction would remain based on a simplified model with
limited prediction capabilities.

To overcome limitations of the deterministic approach,
and to avoid full stochastic inversions, performing prior
parameter uncertainty investigation using multiple Monte-Carlo
realizations offers the possibility to generate more geologically
realistic subsurface parameter distributions. Compared to
transdimensional inference, which although stochastic in essence
and would involve some degree of simplification or parsimony
(Sambridge et al., 2012), keeping the full variability in the model
is necessary to generate realistic predictions. Thus, in this study,
the analysis of those simulations revealed that increasing the
spatial heterogeneity of the alluvial deposits allows to better
reproduce the observed breakthrough curves. The considered
prior uncertainty generates a range of possible outcomes
surrounding the observed data. The specific behavior of the
breakthrough curves, such as the sharp decrease of temperature
after the peaks, is much better reproduced. It is also clearly shown
that approximations made in deterministic approaches (e.g.,
using smoothed K-distributions), strongly influence the results
and contribute to higher uncertainty. Furthermore, it appeared
that modeling the deposits with two separate layers did not allow
the reproduction of the tailing part of the breakthrough curves,
whereas a continuous distribution with a vertical downwards
increasing trend was more able to model this behavior. However,
it was also shown that the used vertical K-trend seems not to be
appropriate, i.e., between the third panel and the pumping well.
Investigating prior uncertainty here has greatly helped to update
the previous conceptual ideas that were mostly based on simple
investigations like borehole log description.

The proposed prior with the K-trend is consistent with all
observation points (Panel 1 to 3) except the pumping well and
Pz18, 19 in the lower aquifer part. Between panel 3 and the
pumping well, there are likely preferential flow paths influencing
the tracer behaviors, not properly described by the proposed
prior. The latter was mainly built based on the high borehole
density from intermediate panels. In the original log description
of the pumping well (drilled in the 90’s), there is no grain size
trend described. One possibility is therefore that the strongly
heterogeneous alluvial deposits cannot be described by a single
simplified parameterization (here Gaussian simulations with a
trend) but must include more heterogeneity at the larger scale
(for example different vertical trend). It appears that lateral
variations occur in the aquifer, stressing the need for a more
global description of the heterogeneity, including larger scale
sedimentological structures such as channels, and advanced
integration of secondary data such as geophysical tomographies

(e.g., Hermans et al., 2015a). Indeed, geophysical data acquired
on the site showed lateral variations in electrical resistivity related
to gravel structures (Hermans and Irving, 2017). A trade-off
between the acquisition of new data to refine understanding and
cost-affordable field studies must be found. In this framework,
the combination of hydrogeological testing (such as joint-heat
tracer tests) with static and time-lapse geophysical data (such as
GPR and ERT) at an early stage of site characterization is the key
to acquire informative data sets at limited costs.

The prior uncertainty analysis also reveals that each specific
temperature breakthrough observation is better reproduced by
a different prior realization and, therefore, spatial parameter
distribution. This clearly identifies spatial heterogeneity as
having a major influence on the simulation results. The
solute tracer breakthrough at the pumping well is better
represented with models showing preferential flow paths,
largely influencing advective-dispersive processes. In contrast,
temperature observations in the intermediate panels and at the
pumping well seem to be better represented with a slightly more
homogeneous model, as conduction is indeed important. This
might indicate that a significant part of the pore space is occupied
by immobile water. This interpretation shows clearly that the
previous conceptual model represented by Peclet numbers of
300 (in the upper layer) and 14,000 (in the lower layer) is not
adequate. Furthermore, it shows that the use of a heat tracer
alone is not necessarily a good choice to calibrate a model,
especially if solute transport should be predicted. Trying to use
one single deterministic model parametrization is limited here
by two points: (1) complementary tracers cannot really predict
each other with classic underlying simplifying assumptions and
one parametrization and (2) heterogeneity patterns are complex,
meaning that highly parameterized inversion might fail to
converge toward a realistic solution.

Similarly, stochastic inversion or optimization techniques
might be very complicated to tune to convergence in such
a complex layout. Here starts the potential of advanced
prediction approaches such as Bayesian Evidential Learning. An
informative prior sampled by multiple realizations containing
complementary tracer processes might be directly used for
prediction if a statistical relationship can be found between data
and prediction variables. This kind of approach is probably very
promising for the future of hydrogeological modeling where
the full, explicit inversion fails due to the lack of sufficient
qualitative data to constrain the geometry of the deposits. Some
uncertainty component might be irreducible and impossible to
resolve through inversion methodologies. Approaches such as
BEL, combined with an in-depth prior uncertainty analysis, can
therefore be a good way to account for those in prediction
uncertainty assessment in a computational efficient way.

The fact that a global sensitivity analysis shows different
sensitivity patterns for heat and solute responses, here the
porosity, is another indication of the complementarity between
the tracers. If heterogeneity is more realistically represented by
the K-Trend distribution (scenario B), heat seems, in comparison
to solute, insensitive to porosity. Although, the Hermalle-
sous-Argenteau site is characterized by a strongly advective
system, the heat data set remains dominated by the effect
of conduction. Heat is mainly stored around the injection
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well and is only slightly and very slowly withdrawn from
the reservoir at the pumping well. Some parts of the heat
are transported fully through conduction (immobile water and
solid matrix).

The presented study also shows that using the
Euclidean distance for the distance-based global sensitivity
analysis, might be of limited interest for data sets
containing strong complementary behavior. It can result
in different sensitivities between needed parameterization
for the related output. An alternative proposition is
to use the velocity ratio as a proxy for the model
response, as it allowed to clearly identify preferential
flow paths as the main explanation for the difference in
tracer behaviors.

CONCLUSION

New innovative imaging methods, namely joint heat and
solute tracer tests were combined with advanced field data
analysis tools to better assess preferential pathways and
associated uncertainty in complex alluvial deposits. This
paper demonstrates the limitation of deterministic inversion
approaches in capturing the complementary behavior of
heat and solute tracers. To overcome those limitations,
a prior-uncertainty investigation and a heat-solute velocity
comparison are applied. Monte-Carlo simulations are used to
investigate the range of simulated data and are complemented
by a distance-based global sensitivity analysis. The main
results are:

1) Heat injection with absolute measured temperature signals
between 10 and around 40 ◦C, as observed for common heat
tracer tests, requires considering dynamic viscosity effects in
the simulations.

2) Although much effort has been done to calibrate a
deterministic model on the complex heat tracer data, the
underlying approximations always yield a too smooth K
distribution, failing to predict the solute breakthrough curve.

3) In comparison to (over) simplified deterministic models,
stochastic models allow for the relaxation of those
approximations, and also consider K-fields in conjunction
with heterogeneity. Thus, stochastic models using Monte-
Carlo reproduce measurements significantly better. They can
better reproduce specific behaviors of breakthrough curves
(e.g., the tailing). A simple falsification procedure allows
to easily reject prior hypotheses inconsistent with the data.
It reveals that a single parameterization is not sufficient to
fully describe the complex behavior observed at Hermalle-
sous-Argenteau. Due to complex spatial heterogeneity and
different behavior of the tracers, the simultaneous fitting of
all observation points seems to be almost impossible using
explicit inversion approaches. Approaches focusing on the
prediction and avoiding model inversion (e.g., such as BEL)
might be more successful.

4) The global sensitivity analysis reveals that heat seems to
be less sensitive to advection parameters like porosity than
solute, as was expected based on previous studies. For the

strong advective system at Hermalle-sous-Argenteau, heat
transport does not seem to be affected by porosity, as
long as realistic heterogeneity is considered, using a vertical
downwards increasing K-Trend distribution respecting the
borehole sedimentology. Indicators linked to local spatial
heterogeneity are sensitive parameters for both heat and
solute transport, stressing the need to use an adequate prior
description of the deposits, a prerequisite for any stochastic
Bayesian inversion.

5) The tracer velocity comparison shows that the prior
and the sampled Monte-Carlo simulations yield a better
representation of the joint heat and solute behavior as
observed on the field. This is a key point for further research
steps in modeling and predicting the transport processes in
this aquifer.
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