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Megathrust subduction faults have caused the largest earthquakes ever recorded in

human history. In addition, they are often associated with devastating tsunamis. Thus,

assessing their potential maximum magnitude and respective return periods is vital

for seismic-tsunami hazard assessment. However, empirical data are limited, owing to

their very-long recurrence period that can be several centuries or millennia. To bridge

this gap of empirical data with seismotectonic observations, a combined assessment

of maximum magnitudes and return periods was undertaken applying a variety of

machine learning and conventional methods. For this purpose, 76 subduction zone

segments have been assessed worldwide. This includes a 3D modeling of subduction

slab geometries on the basis of earthquake hypocenters and a collection of various

relevant parameters e.g., those of local geology, geodesy or seismicity. These parameters

have been used to assess the potential maximum magnitudes using machine learning

classification and other statistical methods. The results have been combined with a

tapered Gutenberg-Richter seismicity model and plate tectonic modeling to quantify

earthquake return periods and their uncertainties. They show that almost all major

subduction zones have the potential to produce earthquakes Mw ≥ 8.5 and that the

maximum magnitude highly correlates with the subduction zone geometry. The results

also highlight the potential of large megathrust earthquakes in regions where no large or

significant events have been recorded during human written history. It is hoped that the

results of this study support the development of tail-end hazard and risk studies for long

return period events and the quantification of tsunami hazard and risk.

Keywords: megathrust, hazard, global, maximum magnitude, earthquake, tsunami

1. INTRODUCTION

Identifying the potential for very large earthquakes and their return periods has been a common
research interest since the very beginning of earthquake science. Great megathrust earthquakes
are of primary interest. They can be defined as the largest possible earthquakes of magnitudes
Mw ≥ 8.0 occurring along large thrust faults, so-calledmegathrusts, always found along convergent
plate boundaries. Thrust earthquakes are characterized by a major displacements which have the
potential, depending on the event depth and overlaying surface topography, to cause large tsunamis
as they have been observed in 2004 in the Indian Ocean, 2011 in Japan or several times in the last
years around Chile.
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The quantification of likelihood and potential for great
earthquakes is a frequent but not yet well answered question
(Geller et al., 2015) highlighted by the question to identify the
largest possible magnitude Mmax at a fault. There are various,
partially contradicting, opinions in the literature, where one
is resolved by assessing the historic seismicity for a region
(e.g., McCaffrey, 2008; Rong et al., 2014). On the other side,
a parametric approach was used on the basis of physical
characteristics (e.g., length, convergence rate, sediment thickness,
etc.) of subduction zones or subduction zone segments which are
correlated to identify physical threshold parameters beneficial for
generation of megathrust earthquakes (e.g., Heuret et al., 2011;
Schellart and Rawlinson, 2013).

In the light of developing a subduction zone parameter
database, various studies have already previously assessed specific
parameters, some of them on a global scale (e.g., Heuret et al.,
2012; Schellart and Rawlinson, 2013) and many others on a
local level (e.g., Suárez and Albini, 2009; Becker and Meier,
2010; Hayes and Furlong, 2010). For the development of a global
database of subduction zone characteristics, it was important to
also consider the early findings of Ruff and Kanamori (1980)
or Peterson and Seno (1984), correlating maximum magnitudes
with subduction speed and plate age, which had to be revised after
the megathrust earthquakes in the 2000s (Stein and Okal, 2007).

One of the earliest parameter catalogs for subduction zones
was published by Jarrard (1986) with 26 parameters identified
for 39 subduction zones lining out several empirical relations
which may control subduction processes. Lallemand et al.
(2005) presented a study focusing on the relationships of such
parameters to assess the influence of slab geometry on upper
plate behavior including quantification of the down-going slab
geometry. A very relevant study, in wake of the 2004 Indian
Ocean tsunami, is of McCaffrey (2008) who indicated that any
large subduction zone is sooner or later capable of producing
Mw ≥ 9.0 earthquakes as long as the observation period is
long enough.

Heuret et al. (2011, 2012) followed the lines of Lallemand
et al. (2005), but with a focus on the seismic activity of
subduction zones. They found various parameter relationships,
including that the width of the Wadati-Benioff zone did not
correlate with Mmax. Thus, the available area for seismic genesis
did primarily not control the generation of large earthquakes
historically. Scholz and Campos (2012) introduced a study
about seismic coupling for various subduction zones along the
Pacific. Schellart and Rawlinson (2013) analyzed 24 physical
parameters of subduction zones considering 241 subduction zone
segments. For each parameter, the range in which Mw ≥ 8.5
earthquakes occurred was identified. 6 parameters were shown
as key drivers to generate large megathrust earthquakes. They are
back-arc opening rate, trench migration speed, dip, subduction
partitioning and 2 geometric curvature parameters. Based on
those, a ranking was applied, which is increasing if the parameters
of a subduction segment fall into the respective range, but
extending it forMw ≥ 8.0 earthquakes.

Rong et al. (2014) employed tapered Gutenberg-Richter
models and seismicmoment release rates to determinemaximum
earthquake magnitudes for various subduction zones based on

Flinn-Engdahl regions (Flinn et al., 1974). Bletery et al. (2016)
corroborated the hypothesis that subduction faults with low
dip angle are more prone to very large earthquakes. They
observed an even better correlation with the dip-angle gradient,
the smaller the dip-angle gradient (i.e., the most planar) the
largest the historical earthquakes. Their interpretation is that
geometrical heterogeneities tend to stop rupture propagation,
limiting the potential extent of earthquakes and therefore
their magnitude. Van Rijsingen et al. (2018) describe a
correlation of strong megathrust earthquakes and large features
of subduction interface roughness. Thus, in contrast to more
general conclusions (e.g., McCaffrey, 2008), a minimum set of
boundary conditions may be required for large-scale rupture of
Mw ≥ 9 earthquakes to be physically possible.

The question arises, summarizing the findings above,
under what conditions large tsunami-genic and thus shallow
interface earthquakes are possible along subduction megathrusts.
Following-up on those studies, a rigorous combination of
statistical analysis of earthquake activity combined with a
parametric assessment of subduction zones can be considered a
novelty and shown in this study. The advantage is given by the
option that both methodologies can cross-validate each other. In
case a subduction zone shows major potential both on the side
of earthquake statistics and based on tectonic parameters, it is
expected that it will produce major earthquakes and vice-versa.
In case the results are more contradicting, a detailed discussion is
necessary. Thus, regions with historic evidence help to identify
potentials in other areas where big earthquakes haven’t been
observed before.

The concept applied in this study can be described as “trading
space with time." It assumes that two regions which are similar
in their physical characteristics show a similar behavior e.g., in
seismicity. Thus, if the data record is incomplete for one of
both, combining their records is a viable option to better assess
their seismic characteristics. This concept follows the principle
of ergodicity (Walters, 2000). It can be described in two ways;
either considering a long temporal history or a large (spatial)
ensemble. Ergodicity holds in case the average outcome of the
system behavior over time is the same as the average outcome of
the ensemble. Thus, it is possible to describe a system through an
ensemble of same or similar entities instead of demanding a very
long time history. It is especially helpful for earthquake statistics
where long time histories are necessary, but not available. This
concept has already been applied e.g., by Nanjo et al. (2011),
Bungum et al. (2005) or Kagan and Jackson (1994). Here, it
is used to assess the similarity and seismic-tectonic earthquake
potentials of different subduction zones. No subduction zone is
like another. However, they still share distinct similarities like
plate age, geometry, volcanism, etc. But some subduction zones
are more similar than others. Thus, it is necessary to quantify
their similarity, assuming that it is a proxy for the seismo-genic
potential, on the basis of an extensive parametric assessment.

This study can be split into 3 main components. As a
basis, the first part introduces an extensive subduction zone-
related parameter database including a basic correlation analysis
between these parameters and historically observedMmax values.
Afterwards, the potential maximum magnitudes are assessed
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TABLE 1 | A summarizing overview of all data sources considered for the

assessment of subduction zone parameters.

Data/Model Type References

Geometry Raster Slab 1.0 Bird, 2003; Hayes et al., 2012

Strain Rate Model (SRM) Raster GSRM Kreemer et al., 2014

Euler Poles Tables Bird, 2003; DeMets et al., 2010;

Harrison, 2016

Digital Elevation Models (DEM) Raster GEBCO, 1977; Jarvis et al., 2008

Crustal Age Raster Müller et al., 2008

Crustal Morphology Raster Crust 1.0 Laske et al., 2013

Centroid Moment Tensors List Dziewonski et al., 1981

Volcano Database List Venzke, 2013

Geoid Raster EGM2008 Pavlis et al., 2012

Magnetic Anomalies Raster EMAG2 Maus et al., 2009

using a variety of statistical and machine learning procedures.
Here, the principle of “trading time with space" is followed. The
results are combined using a logic tree approach to provide a
range of potentialMmax estimates. Afterwards, earthquake return
periods are calculated using plate tectonic modeling and historic
earthquake statistics on the basis of a tapered Gutenberg-Richter
distribution. These results have been compiled by computing
the related parameter uncertainties using a bootstrapping
methodology. It allowed to quantify not only a mean estimate
of earthquake return periods, but also their uncertainties. The
results have been reviewed in regards of plausibility (e.g., in
regards of the historic record or paleo-seismologic findings) and
consistency with previous studies.

2. DATA

2.1. Overview
To analyse subduction zones as source regions of large
earthquakes, an extensive data collection was undertaken. The
results have been combined in a global parameter database on
subduction zones which covers information on for example
geometry, seismicity, morphology. Geometric parameters have
been derived from plate tectonic modeling which also provides
estimates for plate convergence rates. Digital elevation data,
crustal strain rate data and geodetic observations have been
compiled at, along and around subduction zone interfaces. As
it will be described below, 76 subduction zone segments have
been defined. Used data sources are listed in Table 1. First,
a description of the used earthquakes catalogs is provided
which have been employed e.g., to estimate the down-going
slab geometry and earthquake magnitude return periods.
Afterwards, the database and its parameters is described in
detail. The complete parameter database can be found in the
Supplementary Material of this manuscript.

2.2. Earthquake Catalogs
An extensive collection of earthquake catalogs on a global scale
was undertaken. As a basis, the ISC-GEM catalog (Storchak et al.,

2013) for the instrumental period (1900–2016) and the GEM-
GHEC (Albini et al., 2014) for the historic period (pre–1900)
were used. Both catalogs have been extended by various local
and regional earthquake catalogs (e.g., Dziewonski et al., 1981;
Shebalin and Leydecker, 1997; Halchuk et al., 2015; GNS, 2016;
Rovida et al., 2016) for which magnitudes have been converted
to moment magnitudes. The minimum magnitude of Mw ≥ 3.5
has been adjusted depending on spatio-temporal completeness
using the Temporal Course of Earthquake Frequency (TCEF)
method [see Gasperini and Ferrari (2000) and Nasir et al. (2013)].
The TCEFmethod describes the temporal earthquake record and
identifies the year of completeness by considering the temporal
evolution of earthquake records. The combination of all catalogs
took place avoiding duplicates based on an automatic algorithm
considering detection uncertainties and a weighting procedure
with respect to catalog quality and completeness. In addition,
earthquakes of Mw ≥ 7.0 have been all reassessed manually
and compared to recent studies to assemble an as-complete-as-
possible collection of the latest knowledge on historic megathrust
earthquakes including the literature-related uncertainties.

Event attribution to each subduction zone was simplified
by considering all events which occurred within the envelope
the down-going slab and with a depth difference between the
earthquake hypocenter and the down-going slab geometry not
larger than 20 km. Thus, it is ensured that only events along the
subducting slab were considered and shallow crustal events in the
overriding plate have been discarded. This ensemble catalog was
used for theMmax and return period assessment.

Within the following sections, it is necessary to keep 2
definitions ofMmax separate. The first one,Mh, describes the so-
far recorded, either by written history or paleoseismology, largest
magnitude at a subduction segment. However, when this study
refers to Mmax, the absolute expected maximum magnitude for
a subduction segment is meant. Any further terminology-related
variations ofMmax are described when necessary.

2.3. Data Description
The development of subduction zone source geometries
corresponds to a 3D representation of the plate interface
following the down-going slab into the earth’s mantle. Such
geometries have been built in the past, mostly inferred from
tomography and seismological data as done by Hayes et al.
(2012, 2018). Here, a new set of subduction zone geometries
has been assembled in two steps: First, the location of
subduction onset was determined using the plate boundary
model of Bird (2003). Secondly, the subduction geometry
consists of almost a total of 2000 down-dip profiles based on
earthquake hypocenters for all zones. Subduction zones have
been split into discrete along-strike segments defined e.g., by
plate boundaries (either in the overriding or the subducting
plate) or based on major changes in along-strike directions,
e.g., between Sumatra and Java or Mariana and Izu-Bonin plate
segments (Lallemand, 2016).

As shown in Table 2, a total of 50 parameters have been
compiled. The selection of these parameters was based on both
global availability or discretization and the assumption that any
of them is directly or indirectly related to the subduction process.
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TABLE 2 | Overview of all parameters assessed within the subduction zone parameter database.

Parameter Symbol Category Data-source Datatype

Collision-Type General Plate Model Unique Value

Orogen General DEM True/False

Volcanism General Volcano Databse True/False

Ridge-Push General Plate Model True/False

Fore-Arc Sliver General Plate Model True/False

Trench General DEM True/False

Pre-Trench-Depth General DEM Unique Value

Trench Depth General DEM Unique Value

Trench Depression DTD General DEM Unique Value

Seafloor Roughness General DEM Unique Value

SeaMount Subduction General DEM True/False

Interface Length LI General Plate Model Unique Value

System Length LS General Plate Model Unique Value

Shallow Depth Dip δs Geometry EQ.Cat. Normal Distr.

Intermediate Depth Dip δi Geometry EQ.Cat. Normal Distr.

Deep Depth Dip δd Geometry EQ.Cat. Normal Distr.

50km-Profile Geometry EQ.Cat. Normal Distr.

150km-Profile Geometry EQ.Cat. Normal Distr.

Median Seismic Depth Geometry EQ.Cat. Normal Distr.

Max. Seismic Depth Geometry EQ.Cat. Normal Distr.

Max. Tectonic Depth DT Geometry Literature Normal Distr.

Rake γ Geometry Plate Model Normal Distr.

Interface Azimuth α Geometry Plate Model Normal Distr.

Inner Interface Angle Geometry Plate Model Normal Distr.

Interface Sinuosity S Geometry Plate Model Unique Value

Volcano-Trench Distance dV Geometry Volcano Database Normal Distr.

Ridge-Trench Distance dR Geometry Plate Model Normal Distr.

Plate Age Tectonics Crustal Age Normal Distr.

Crustal Thickness Tectonics Crustal Morphology Normal Distr.

Moho Depth Tectonics Crustal Morphology Normal Distr.

Crustal Thickness 100km from Interface Tectonics Crustal Morphology Normal Distr.

Moho Depth 100km from Interface Tectonics Crustal Morphology Normal Distr.

Sediment Thickness 100km from Interface Tectonics Crustal Morphology Normal Distr.

OP Deformation Rate νOPD⊥ Speed SRM Normal Distr.

OP Normal Velocity νOP⊥ Speed Plate Model Normal Distr.

OP Parallel Velocity νSP‖ Speed Plate Model Normal Distr.

SP normal velocity νSP⊥ Speed Plate Model Normal Distr.

SP Parallel Velocity νSP‖ Speed Plate Model Normal Distr.

TS normal velocity νS‖ Speed Plate Model Normal Distr.

TS Parallel Velocity νS⊥ Speed Plate Model Normal Distr.

Plate Convergence Rate νC⊥ Speed Plate Model Normal Distr.

Trench-Normal Migration νT⊥ Speed Plate Model Normal Distr.

Plate Partitioning rν Speed Plate Model Normal Distr.

Total Subduction Rate νS Speed Plate Model Normal Distr.

Mmax Historic Mh Seismicity EQ.Cat. Unique Value

a-Value a Seismicity EQ.Cat. Normal Distr.

b-Value b Seismicity EQ.Cat. Normal Distr.

Geoid Mean External Geoid Normal Distr.

Geoid Gradient External Geoid Normal Distr.

Magnetic Anomaly External EMAG2 Normal Distr.

Some parameters maybe accompanied not only by mean and standard deviation, but also with maximum andminimum values. OP/SP, overriding / subducting plate; TS, total subduction.

Frontiers in Earth Science | www.frontiersin.org 4 June 2019 | Volume 7 | Article 136

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Schäfer and Wenzel Global Megathrust Earthquake Hazard

In some cases, parameters are just binary. For example, a
subduction zone can be associated with an active orogenic
process or not. Other parameters can be uniquely defined
like the length of the subduction interface. However, the
majority of parameters is not unique. They either vary
depending on the used data source or generally along the
subduction interface. Those have been defined providing mean,
maximum, minimum and the variance. This variability has been
summarized in a collection of box plots for most parameters
in Figure 1.

All parameters can be grouped into 6 classes: Subduction
Geometry comprises a set of parameters derived from the plate
interface geometry including the interface azimuth, rake was
derived from the subduction direction which is relevant for
regions with oblique subduction and interface sinuosity as a
description for the subduction interface curvature. Tectonic and
Geologic Parameters contain all characteristics associated with
geological and tectonic processes. They have been sampled
at the interface and 100 km beyond it on the overriding
plate. This category includes parameters like plate age, crustal
thickness and others. The Subduction Movement category uses
mostly data derived from the plate boundary model associated
with the various Euler poles and were computed using the
equations of Schellart and Rawlinson (2013). It comprises
velocity information about the down-going and overriding
plates and various derivatives including the very important
subduction velocity describing the absolute plate convergence
rate. Most of them were compiled in trench-normal and trench-
perpendicular direction. Seismicity parameters were derived
from the observed seismic history including maximum historic
magnitudes and computed Gutenberg-Richter values using the
global catalog introduced above. External Parameterswere drawn
from additional datasets including the amplitude of the geoid
and the magnetic anomaly, assessing also the geoid gradient as
the difference between the absolute maximum and minimum
within 300 km of the plate interface. Finally, General Parameters
describe a selection which can not be associated with any other
broader category, it contains all binary and discrete data on
a subduction zone, like the presence of a trench, the interface
length or volcanism and all elevation related information.

The compilation of tectonic plates uses various estimates for
plate movement based on Euler poles. Here, global studies like
(Bird, 2003; DeMets et al., 2010; Argus et al., 2011; Kreemer
et al., 2014) were compiled and combined. In addition, these
results have been compared to the discrete plate motion block
models on a regional basis e.g., from Symithe et al. (2015) and
Benford et al. (2012) for the Caribbean or Rangin et al. (1999) for
South-East Asia around the Philippines. All plates obtained from
the global studies are defined in the Pacific standard reference
frame. Whenever the studies provide different estimates for a
plate’s Euler pole, each possible combination is considered to
provide a range of convergence rates and movement direction.
For example, the dataset provides 3 different poles for the South
American plate as well as for the Nazca plate, which results into 9
different combinations of plate motion.

Most parameters can be derived very straight forwardly.
Regarding the interface geometry, the average Azimuth of

the plate interface has been estimated while the amplitude of
interface curvature was estimated by the interface sinuosity S,
which can be calculated by:

S =

∑N
i=1 Li

L0
(1)

where Li is the length of each interface segment, N is the total
number of segments and L0 being the direct distance between
the two ends of the interface. The sinuosity S is always > 1
and applying the definitions on river curvatures of Mueller
(1968), the interface can be considered almost straight for S <

1.05 and winding for 1.05 ≤ S < 1.25, twisty for 1.25 ≤

S < 1.5 and for S ≥ 1.5 the interface can be considered
as meandering. In addition, the average inner interface angle
between 2 subduction zone polyline segments was also resolved.
Seafloor roughness was considered qualitatively be checking the
existance of seamounts along the subduction path. Recently
Lallemand et al. (2018) introduced a quantitative methodology
based on spectral assessment of sea floor features which can be
applied for future iterations of this study.
Schellart and Rawlinson (2013) already modeled various plate
movement parameters in detail. Thus, the following plate velocity
compilation was built on their description. As a basis, a
collection of Euler poles was used as described above, covering
also variabilities between different plate tectonic models. The
definitions of plate-normal and plate-parallel were based on
the subduction interface geometry. Considering plate-movement
positive in direction of the overriding plate as plate-normal
and movement along the interface as plate-parallel. In total, 7
parameters can be derived, 3 of them are defined in trench-
normal and -parallel directions with their respective potential
mean and standard deviation taking into account along-interface
and intra-model variations:

• νOPD⊥ is the overriding plate deformation rate, and directly
derived from global strain rate data of Kreemer et al. (2014).
Here, the first 300 km plate-inwards from the interface are
taken into account.

• νSP⊥ & νSP‖ define the subduction plate trench-normal
velocity and subduction plate trench-parallel velocity.

• νOP⊥ & νOP‖ define the overriding Plate trench-normal
velocity and overriding plate trench-parallel velocity.

• νT⊥ is the trench-normal migration velocity. It describes the
subduction hinge migration or rollback velocity.

• νS⊥ & νS‖ is the total subduction trench-normal velocity and
total subduction trench-parallel velocity.

• νC⊥ is the trench-normal plate convergence rate.
• rν⊥ is the trench-normal subduction partitioning ratio

defining the proportion of movement accomodated by
trenchward motion of the subducting plate.

While νOP, νSP and νOPD derived directly from plate movement
and geodetic data, all other parameters are derivatives of those
with the following set of equations:

νT = νOP + νOPD (2)
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FIGURE 1 | Summary of most subduction zone parameters showing their respective box plot statistics.

νS = νT + νSP (3)

νC = νSP + νOP (4)

rν =
νSP

νS
(5)

In contrast to Schellart and Rawlinson (2013), νA was not
considered, which is defined as being the overriding plate
accretion and erosion rate for which only for a small number of
subduction zones data is available. In addition, νA is significantly

smaller (< 20%) than both νSP and νOP for most subduction
zones (Clift and Vannucchi, 2004). For the calculation of seismic
moment accumulation νC is used since νOPD can be prone
to short-term variations and some tectonic implications are
still unclear.

3. METHODS

3.1. Machine Learning
The area of machine learning provides a wide range of methods
for statistical data prediction (Pedregosa et al., 2011a). It
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follows the assumption that, based on a set of observations
X1 with known outcome Y1, the unknown results Y2 can be
predicted by observations X2, if both observations are part of
the same process and X1 and X2 contain the same types of
parameters. In this study, variousmachine learningmethods have
been applied. They were provided within the software package
scikit-learn Pedregosa et al. (2011b). Within the terminology
of machine learning, predicting Mmax can be described as a
supervised learning approach. A few other studies also recently
applied machine learning in earthquake science, for example for
earthquake prediction (Bergen et al., 2019; Corbi et al., 2019).

3.1.1. Classification
First, to identify classes of subduction zones of common
characteristics Lloyd’s algorithm for k-means clustering was
used (Lloyd, 1982). It is a general-purpose clustering method
which can be applied with an arbitrary number of dimensions
for a specific number of demanded clusters. Given a set of
n observations with parameters x and a target of k clusters,
the algorithm aims to minimize the within-cluster distances of
squares for each cluster ki with its centroidµi among all provided
parameters, which have been normalized between 0 and 1 to
keep them equally weighted. Same holds for binary parameters
which were already defined this way. But, the assumption of
equal weights may not necessarily be correct, some parameters
may be more important than others. Thus, parameter weights
have been sampled randomly using a Monte Carlo approach.
Some are, as described above, correlated implicitly increasing the
weighting of their underlying characteristics. Thus, the random
weights were additionally adjusted by the inverse of their linear
correlation coefficients.

The number of classes n is initially unknown, too. To
identify subduction zone classes of common characteristics and
potentially similar seismic behavior, at least 4 classes were used
as a minimum level of differentiation. A maximum of 20 classes
ensured that the average class size was not smaller than 4
maintaining a minimum amount of information preserved in
each class. The best estimate for n is initially unknown. Thus,
To provide an additional metric for identifying subduction zone
similarity, the classification likelihood was also assessed. This
not only covered varying parameter samples and weights, but
also the varying number of classes from 4 to 20. The probability
that two subduction zones occur in the same class was hereby
considered a key metric, which was then called the mating rate
rm. It describes the ratio between number of observations with
two subduction zones in the same class. Parameter values were
sampled, if applicable, from their respective standard deviation p
times. Similarly, the weights are also sampled for each parameter
randomly for another l times. Thus, the classification of n classes
was based on l × p simulations. Within this study, to sufficiently
cover all variations, l = 1, 000 and p = 1, 000 was applied.

The classification aimed to retrieve two main metrics. First,
the general similarity is assessed. The mating rate rm is used to
identify the most similar subduction zones assuming that also
Mmax should be very similar. In addition, the classes were rated
based on their averageMh. Classes were sorted from the smallest
mean Mh to the highest considering all sampling uncertainties.

This procedure helped to identify classes of dominently strong
megathrust activity and those with only limited historic records.

3.1.2. Supervised Learning
On the other hand, machine learning methods have been
applied to identify multi-variate correlations among subduction
parameters to estimate Mmax. This is especially helpful when
assuming that some of those correlations are either in scale or
complexity beyond any low-dimensional regression (involving
more than 1–2 different parameters) and thus almost impossible
to be assessed by bare eye. For this task, a set of common
machine learning methods have been applied. Not only, the
above described k-nearest neighbor method (KNN) was applied.
But also decision trees, random forests, gradient boosting
methods and support vector machines were used: Decision
trees are straight forward attribute-based probability systems of
conditional statements. However, especially in complex or not
well quantified systems, decision trees are not unique. Thus,
random forests (RF) represent an ensemble of decision trees
which randomize parameter sampling when building individual
trees. The result of a RF represents the mean among all
decision trees in the forest. In contrast, gradient boosting (GB)
algorithms compute decision trees on the basis of a statistical
loss function. Thus, instead of computing an ensemble system, a
single tree is sequentially improved over many iterations to get
a best-estimate. Finally, support-vector-machines (SVM) were
used. They discretize the whole parameter space in regions
which represent a common result split by trained multi-
dimensional hyperplanes.

Those methods have been applied to estimate Mmax. Here,
a bootstrapping methodology was used splitting the subduction
zone data into a group of test and training data. For the training
data (always randomly sampled from 25–75% of all zones), it was
assumed that Mh = Mmax being the target values and that Mh is
unknown for the remaining zones. This procedure was repeated
10,000 times to cover uncertainties in the selection of test and
training data.

3.2. Mmax Logic Tree
An ensemble approach was utilized for the final assessment
of potential Mmax at subduction zones. It comprises the
above introduced classification and correlation methods and
summarizes the respective results within weighted ensemble-
Mmax estimates, which are all at least equal or larger than Mh.
Method-specific estimates for Mmax are later-on called ¯Mmax. In
total, 4 different equally-weighted methods or method groups
were part of the ensemble using:

• Magnitude-dependent relation equations with respect to
available rupture area resolved from literature.

• Magnitude-dependent linear and quadratic correlation
equations.

• Machine learningMmax estimation using the subduction zone
parameter database.

• Subduction zone classification and parameter range results as
introduced in the sections above.
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The respective results have been compared and combined to
provide a preferred Mmax estimate for all subduction zones.
The structure is outlined in Figure 2 showing 3 paths to obtain
the resulting metrics which are a preferred, average expected
magnitudeMpref and lower and upper estimatesM1 andM2.

First, the historic Mmax provides a minimum threshold for
future events. Secondly, the results of the differentMmax analysis
methods provide method-specific M̄max, M̄1, and M̄2, which
add into the final logic tree. The calculation of correlation
results is straight forward where not only the mean estimates
were considered, which provide an estimate for M̄max, but also
method-specific M̄1 and M̄2 when taking±σ into account.

This also includes the uncertainties of geometry-related
literature equation for which the respective subduction zone
interface length was used. For the computation of M̄max using
machine learning, decision trees, nearest neighbor and gradient
boosting methods were used. Lastly, the subduction zone
classification rating and the parameter range results only provide
normalized hazard ratings hr between 0 and 1. In this case, M̄max

was computed considering these values as the linear distance
between M̄1 and M̄2 resolved from the correlation and machine
learning results using the following equation.

M̄max = M̄1 + hr(M̄2 − M̄1) (6)

TABLE 3 | Overview of the assessed subduction zone parameter ranges for the

historic Mmax .

Parameter Min Max Range

Mean

Total

Mean

In-Range

Ratio

Interface Length 817.0 2431.0 1240.5 874.8 46.1%

System Length 2364.0 6563.0 4717.4 2481.0 39.5%

Trench Depth 2000.0 8000.0 6121.4 4028.1 85.7%

Volcanic Arc-Trench Distance 150.0 350.0 272.0 142.6 81.6%

Ridge-Trench-Distance 480.0 4200.0 2480.0 980.0 62.5%

Sinuosity 1.006 1.108 1.035 1.067 80.3%

Azimuth –69.5 59.5 4.6 –2.6 93.4%

Inner Angle 169.9 178.0 174.1 162.3 44.7%

Crustal Age 7.9 123.0 55.6 65.6 73.8%

Crustal Thickness 9.3 18.0 11.9 13.9 60.5%

Sediment Thickness 0.4 2.2 1.1 1.3 60.5%

Shallow Dip (0–50km) 15.9 29.9 21.7 28.9 51.3%

Moderate Dip (50–150 km) 20.4 52.6 33.2 39.8 54.1%

Deep Dip (150 km) 33.6 66.6 50.0 18.3 75.0%

Maximum Seismic Depth 150.0 325.0 231.7 172.7 50.0%

Geoid Mean –25.9 34.0 1.2 18.7 51.3%

Magnetics Mean –6.4 34.5 12.2 7.4 56.6%

Plate Convergence Rate 37.8 93.0 61.8 42.8 43.4%

Plate Partitioning –1.7 0.6 –1.1 –0.5 61.8%

Total Subduction Rate 45.4 86.6 67.1 54.1 31.6%

a 3.2 6.0 5.1 4.5 67.1%

b 0.7 1.0 0.9 0.9 60.3%

In-range ratio describes the proportion of all assessed subduction zones which were found

within the indicated range for Mmax ≥ 8:5.

Another options to compute Mmax could be to derive it directly
from the respective seismicity as described by Kijko (2004).
However, Zöller and Holschneider (2015) show that the historic
seismicity can not necessarily describeMmax and since this study
focusses non-seismicity related methodologies to derive it, a
purely seismicity-based approach was not considered.

Geometry-related Mmax have been computed using various
studies which already examined the relation between earthquake
size in terms of its rupture length or area and its magnitude. Thus,
assuming a full-rupture scenario, the equations of Goda et al.
(2016), Wells and Coppersmith (1994), Papazachos et al. (2004),
Murotani et al. (2013), Skarlatoudis et al. (2016) and Thingbaijam
et al. (2017) were used to provide another estimate for Mmax

based on the subduction zone interface length.
When building the ensemble of all methods, 4 equally

weighted subgroups can be identified. Secondly, 4 machine
learning methods provide combined, equally weighted estimates
M̄max, M̄1, and M̄2. The same metrics had been derived from 6
geometry-related relationships taken from the publications listed
above. Similarly, the correlation equations introduced before
provide another set of M̄max, M̄1, and M̄2 just like the results
of the similarity assessment which build on the uncertainties of
the other methodologies. The final results were computed using
the average of providing the preferred magnitude Mpref , and
the second highest M1 and lowest values M2 for Mmax over all
provided results of all three groups. In Table 3, the 4 subgroups
have been summarized with respect to their median estimates by
the columns for Cl, Classification; Co, Correlation; Ml, Machine
Learning; Ge, Geometry.

3.3. Tapered Gutenberg-Richter
Quantification of earthquake return periods was based on the
tapered Gutenberg-Richter method as used by e.g., Kagan (2002)
or Rong et al. (2014) making use of seismic moment rates
and data completeness introducing corner magnitude Mc and
magnitude threshold M. In addition, it is defined using β = 2

3b,
where b is the standard Gutenberg-Richter b-value (Gutenberg
and Richter, 1956). The method computes an seismic moment
release rate instead of a distinct earthquake magnitude rate. The
whole expression is defined by:

λ(M) =
Mt

M

β

exp(
Mt −M

Mc
) for Mt ≤ M ≤ ∞ (7)

with Mc =
χṀs(1− β)

αtMtŴ(2− β)

1
1−β

(8)

With earthquake occurrence rate λ, seismic moment rate Ṁs and
the threshold magnitude’s average annual rate of occurrence αt .
The resulting earthquake moment release rates were converted
into their respective moment magnitude return periods. Scholz
and Campos (2012) already provide estimates on the seismic
coupling factor χ . Despite the high quality of this research, the
underlying paleoseismic data may be incomplete and seismic
coupling may change over time. Thus, since χ is prone to major
uncertainties, to avoid underestimation of the resulting return
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FIGURE 2 | Flow chart of the ensemble approach to determine Mmax .

periods and since some subduction zones were not included
in their original assessment, here, a flat value of χ = 1 was
assumed. In future studies variations of χ should be taken
into account to better investigate potential uncertainties and
their implications e.g., in regards of a major reduction of large
magnitude occurrence rates. The maximum possible magnitude
for each subduction zone, independent of the tapering effect,
was based on the assessment above. To take into account the
epistemic variability, uncertainties of a and b values due to
bootstrapping have been considered. Similarly, seismic moment
accumulation rates and their uncertainties as they have been
derived from variations in Euler pole selections (e.g., Bird, 2003;
Kreemer et al., 2014; Harrison, 2016).

a and b values were computed using linear regression under
consideration of the catalog completeness within the respective
subduction zone region.Magnitudes and completeness have been
binned with a stepping of △M = 0.1. Bootstrapping was
applied in two ways. First, in regards of only considering 75%
of the available earthquake data (while a is always normalized
using the base-rate of all earthquakes). Secondly, regarding
the magnitude binning of only using 75% of the bins in case
at least 4 were available. This procedure ensured uncertainty
quantification but also maintained a minimum amount of
information to compute a and b values. The resulting set of
values, including their potential uncertainty, was further used to
compute tapered Gutenberg-Richter distributions with respect to
the inherent uncertainties.

4. RESULTS

The results section first focuses on linear and constant
correlations of subduction zone parameters with Mh and
covering the classification of subduction zones to identify
subduction zone groups of common characteristics and
respective implications. Afterwards, results of the ensemble

approach to estimate Mmax are shown. Finally, the tapered
Gutenberg-Richter results are presented to provide estimates
on the return periods of large earthquakes of Mw ≥ 8.0 for the
assessed subduction zones.

4.1. Statistical Assessment
4.1.1. Mmax Correlation
A correlation assessment was taken out to identify cross-
parametric relationships withMh which is the largest historically
observed magnitude. Thus, Mmax may be still underestimated in
many places where the strongest possible event has not yet been
observed. But, assuming that for a majority of subduction zones
withMmaxobs ≥ 8.5, earthquakes close toMmax already occurred,
parameter correlations can indicate which boundary conditions
are necessary to enable such large megathrust earthquakes.

As a first step, discrete ranges for each parameter in which
earthquakes of Mw ≥ 8.5 have occurred were investigated
similar to the study of Schellart and Rawlinson (2013). Here,
the minimum and maximum value of each parameter space was
determined in which such earthquakes have occurred historically.
The statistical relevance was described by the in-range ratio
which summarizes the number of all subduction zones which
were found in the indicated range. A large in-range ratio means
that its criteria is satisfied for almost all zones and thus irrelevant.
However, a small ratio covers a clearly defined parameter space
which allowed the occurrence of large earthquakes historically.
For several parameters, discrete ranges indicate characteristics
beneficial to cause large megathrust earthquakes. For example,
less than 50% of all subduction zones can be found within the
range where Mw ≥ 8.5 occurred historically in regards of their
system or interface length. Similarly, it can be seen that straight
subduction zones were also more prone to produce those events.
Very big earthquakes only occurred at subduction zones with
small to moderate shallow dipping angles between 16◦ and 30◦,

Frontiers in Earth Science | www.frontiersin.org 9 June 2019 | Volume 7 | Article 136

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Schäfer and Wenzel Global Megathrust Earthquake Hazard

TABLE 4 | Collection of resulting Mmax estimates of all logic tree components for subduction zones with Mpref ≥ 8.0.

Subduction Interface Mh Year Cl. Ml. Co. Ge. Mpref M1 M2 M+

Explorer 7.5 1946 8.2 8.5 7.9 8.4 8.3 7.8 8.6 0.8

Cascadia 9.0 1700 9.1 8.5 8.5 9.2 9.1 9.0 9.3 0.1

Gorda 7.3 1980 8.4 8.6 8.0 8.6 8.4 7.9 8.7 1.1

Rivera 8.2 1818 8.2 8.2 7.8 8.5 8.2 8.2 8.5 0.0

Mexico 8.6 1787 9.1 8.8 8.6 9.1 9.0 8.6 9.2 0.4

Central America 8.1 1862 8.8 8.4 8.1 9.0 8.8 8.1 9.0 0.7

Cocos 7.6 2012 8.5 8.2 7.9 8.8 8.7 7.9 8.8 1.1

Lesser Antilles 8.3 1843 8.9 8.3 8.2 9.3 8.8 8.3 9.1 0.5

Puerto Rico 7.7 1943 8.4 7.7 7.8 8.9 8.1 7.7 8.7 0.4

Hispaniola 7.8 1946 7.9 7.9 7.6 8.5 8.1 7.8 8.4 0.3

Colombia 8.8 1906 9.3 8.9 8.9 9.3 9.2 8.8 9.4 0.4

Peru 8.8 1746 9.4 8.6 8.9 9.3 9.3 8.8 9.4 0.5

North Chile 9.0 1868 9.2 8.9 8.8 9.0 9.1 9.0 9.3 0.1

Chile 9.5 1960 9.7 8.9 9.2 9.6 9.6 9.5 9.8 0.1

Fireland 7.7 1949 8.3 8.5 8.1 8.6 8.3 7.9 8.8 0.6

Sandwich 8.1 1929 8.3 8.1 8.1 8.5 8.2 8.1 8.6 0.1

Calabrian 7.4 1693 8.0 8.0 7.6 8.5 8.0 7.5 8.4 0.6

Hellenic Arc 8.5 365 8.7 8.3 8.2 9.0 8.6 8.5 9.0 0.1

Makran 8.1 1945 8.3 7.7 7.6 9.0 8.5 8.1 8.7 0.4

Andaman 9.1 2004 9.3 8.6 8.8 9.3 9.2 9.1 9.4 0.1

Sumatra 9.0 1833 9.4 8.9 8.8 9.4 9.3 9.0 9.4 0.3

Java 8.5 1780 9.4 9.1 8.9 9.5 9.3 8.8 9.6 0.8

Timor 8.1 1963 9.0 9.0 8.6 9.3 8.8 8.5 9.3 0.7

Seram 8.8 1629 8.9 8.5 8.6 9.0 9.0 8.8 9.1 0.2

Sulawesi 7.6 1990 8.2 7.8 7.5 8.7 8.3 7.6 8.5 0.7

Halmahera 7.5 1986 8.2 8.1 7.4 8.8 8.3 7.5 8.7 0.8

Sangihe 8.0 1889 8.3 8.0 7.7 8.8 8.3 8.0 8.7 0.3

Philippine Nth 8.0 1924 8.5 8.1 8.0 8.9 8.5 8.0 8.8 0.5

Philippine Sth 7.6 1969 8.1 7.7 7.6 8.5 8.3 7.6 8.4 0.7

Manila 7.6 1942 8.5 8.3 8.0 8.9 8.6 7.9 8.8 1.0

Ryukyu 7.6 1938 8.8 8.1 8.2 9.2 8.8 8.1 9.1 1.2

Nankai 8.8 1707 8.9 8.4 8.3 9.1 9.0 8.8 9.1 0.2

Honshu 9.1 2011 9.1 8.4 8.6 9.1 9.1 9.1 9.2 0.0

Hokkaido 8.6 1963 8.8 8.2 8.4 8.9 9.0 8.6 9.0 0.4

Kuriles 8.6 1963 8.8 8.2 8.3 8.9 8.9 8.6 8.9 0.3

Kamchatka 9.0 1952 9.0 8.5 8.4 9.2 9.0 9.0 9.2 0.0

Aleutian West 8.7 1965 8.7 8.2 8.2 8.8 8.9 8.7 8.9 0.2

Aleutian East 9.2 1585 8.9 8.3 8.3 9.1 9.2 9.2 9.2 0.0

Alaska 9.3 1964 9.4 8.8 8.7 9.5 9.4 9.3 9.5 0.1

Tonga 8.1 2009 8.7 8.2 8.3 9.2 8.6 8.1 9.1 0.5

Kermadec 8.2 1917 8.8 8.2 8.3 9.2 8.6 8.2 9.1 0.4

Hikurangi 8.2 1855 8.8 8.3 8.2 9.1 8.6 8.2 9.0 0.4

Puysegur 8.0 1826 8.3 8.0 7.7 8.9 8.5 8.0 8.7 0.5

New Britain 8.1 1971 8.4 8.4 8.0 8.7 8.4 8.1 8.8 0.3

Solomon Islands 8.1 2007 8.4 8.2 8.0 8.9 8.3 8.1 8.8 0.2

Nth New Hebrides 8.0 2013 8.1 8.3 7.8 8.4 8.3 8.0 8.5 0.3

Vanuatu 8.1 1920 8.5 8.3 8.2 9.0 8.3 8.1 8.9 0.2

Mariana 7.8 1993 8.7 8.4 8.4 9.0 8.4 8.2 9.0 0.6

Izu-Bonin 7.9 1953 8.7 8.2 8.3 9.1 8.6 8.1 9.0 0.7

New Guinea West 8.2 1996 8.3 7.5 7.8 8.8 8.2 8.2 8.7 0.0

Algeria 7.3 1867 7.7 7.7 7.3 8.3 8.1 7.3 8.2 0.8

Horseshoe 7.8 1969 7.5 7.7 7.2 8.1 8.0 7.8 8.0 0.2

Wetar 7.5 2004 8.0 7.7 7.5 8.6 8.2 7.5 8.4 0.7

Flores 7.8 1992 7.7 7.9 7.3 8.3 8.2 7.8 8.2 0.4

With median estimates from Ml, Machine Learning; Cl, Classifications; Co, Correlations; Ge, Geometry. The largest known historic magnitude Mh is shown with its year of occurrence.
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as shown by e.g., Bletery et al. (2016). Various more ranges have
been identified and are shown in Table 4.

In addition, linear relationships between the various
parameters and Mh have been assessed. However, following the
premise of machine learning, higher order correlations have been
neglected assuming that more complex relationships between
Mh and subduction characteristics are beyond polynomial
statistics. To quantify correlation quality, the Pearson coefficient
R0 was used.

Regarding 1D correlations (Mh compared to 1 other
parameter), a total of 4 equations were found, and 13 for the 2D
case (Mh compared to two different parameters) with sufficient
quality (R0 ≥ 0.6). Of all assessed parameters, only 4 showed
sufficient correlation with Mh. All of them were directly derived
from the subduction interface’s geometry. The first two equations
the interface length LI and the system length LS, both in km,
where the latter describes the combined extent of e.g., the
complete South American subduction system. It was found, that
Mh correlates much better with LS (R0 = 0.71) than with the
LI (R0 = 0.594). It indicates that segmentation of a subduction
interfacemay not necessarily reduceMh. The other two equations
are related to the down-going slab. First, the distance between
the volcanic back-arc and the trench dV in km, which depends
on the dip between subduction onset and the point where the
mantle-slab interaction can cause volcanic activity at the surface
of the overriding plate. Thus, slab dip, in degree, of intermediate
depths (50-150km) δi is correlating similarly. Both support the
observation of e.g., Bletery et al. (2016) that smaller dipping
angles are beneficial for the generation of large earthquakes.

Mh = 4.9474 log10(LI + 1000) − 8.2524 ± 0.440 |R0| = 0.594 (9)

Mh = 3.3449 log10(LS + 1000) − 3.6727 ± 0.550 |R0| = 0.711 (10)

Mh = 0.006881dV + 6.9916 ± 0.372 |R0| = 0.692 (11)

Mh = −3.6020 sin(δi)+ 10.8861 ± 0.359 |R0| = 0.710 (12)

For 2D correlations, additional parameters include plate age,
geoid mean along the subduction interface, trench depth, trench
depression depth, deep slab dip (≥150 km) and the trench-
normal subduction velocity. 8 of these equations include either
LI or LS. This corresponds to the findings above that those
parameters already correlate well with Mh in the 1D case. For
most of these new equations, the correlation factor was increased
by up to 17%-points. LS combined with the intermediate dip δi
lead to one of the best correlated equations. The 2D parameter
correlation for plate age and subduction velocity of Ruff and
Kanamori (1980) did not provide sufficient quality (|R0| = 0.32).
However, plate age correlated better combined with δi. The best
correlations were found for a combination of δi and dV which
was also already introduced for 1D correlation and again, the
combination yielded a higher correlation quality of about 6%-
points. The resulting equations have been summarized in Table 5

on the basis of the following equation structure.

Mmaxobs = C0P1 + C1P2 + C2 ± σ (13)

Beyond linear combinations of these correlations, more complex
systems can be identified. However, finding those demands
a more complex rational and causal review, but are good
examples for hidden relationships. One example considered the
logarithmic quotient between δi and dV which is increasing the
correlation to |R0| = 0.72.

In conclusion, the parameter database revealed several well-
correlated relationships between subduction zone parameters
and Mh. Even though, those relations may be underestimating
since it can be expected that the historic Mmax is smaller
than the actual potential maximum magnitude. Nonetheless,
these correlations help to identify subduction zones where their
geometric or tectonic characteristics indicate a potential Mmax

much larger than what has been observed historically.

4.2. Subduction Zone Classification
With the subduction zone parameter database it is possible to
quantify and validate both the potential maximum magnitude
and, as later shown, return periods of large megathrust
earthquakes. The statistical return period assessment provides an
a priori approach to identify the hazard, but since it is a statistical
methodology, physical constraints are not necessarily well
represented. This holds true in regards ofMmax which needs to be
defined independently. The validation and optional adjustment
of the computed hazard is undertaken by classification using
k-means clustering within a Monte Carlo approach. The
procedure follows the principle of trading time with space. The
system links to the above introduced correlation assessment
and provides an alternative way to quantify the capability of
subduction zones to produce very strong earthquakes on a
comparative basis.

A total of 49 parameters were used (excluding Mh). Of those,
35 were sampled from their respective normal distribution. As,
k-means clustering demands a discrete number of classes as
input, the classification procedure has been applied 17 times for
n = [4, 20] classes. 2 metrics have been derived, hazard level
classification hr based on Mh and the similarity-based mating
rate rm. The hazard level describes a Mh-based ranking of the
individual subduction zone classes and the rm quantifies how
similar two subduction zones are.

Uncertainty plays an important role in the classification
of subduction zones. To combine all permutations of the
classification process regarding parameters, weighting,
combinations and number of classes, the results have been
normalized based on Mh of each group. The normalization
works independent of any permutation.

All classification results were combined into probability
curves showing the potential of being classified among the
highest or lowest rated subduction zone classes with respect
to Mh. These results are shown in Figure 3. In addition,
the hazard level probability can be summarized by its
average hazard level between 0 and 1. Here 1 denotes a
classification among subduction zones with the largest Mh

like Chile, while 0 is generally associated with subduction
zones of no or limited seismic activity like the Yap Trench.
It can be seen that this procedure clearly outlines the
classification uncertainty but also provides an average estimate
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about how subduction zones share characteristics to produce
very large earthquakes. This rating does not yet provide a
direct estimate for Mmax, but it can outline the qualitative
potential to produce large earthquakes compared to other
subduction zones.

The results of the subduction mating can be seen in Figure 4.
Here, the color indicates how similar two subduction zones
are, where red shows a strong similarity and blue identifies a
very weak one or none at all. Several yellow-red blocks along

the main diagonal show groups of subduction zones which are
generally very close in space for example in the center where the
subduction system from Ryukyu to Honshu and the Aleutians
shows a strong similarity.

4.3. Maximum Magnitude Assessment
The expected combined Mmax metrics resulting from the 4
different methods have been summarized, together with the
averageMmax of the individual methods, in Table 5 and Figure 5.

TABLE 5 | Overview 2D regression results and parameters to compute Mmax .

P1 P2 C0 C1 C2 σ |R0|

δd Geoidmean –0.0088 –0.012 8.976 0.351 0.628

DTD dV −9.4× 10−6 0.00054 7.197 0.311 0.711

DT dV −2.0× 10−6 0.0042 7.185 0.310 0.712

Age δi –0.0018 –0.0265 9.604 0.380 0.621

dV δi 2.5× 10−4 –0.0144 8.377 0.296 0.753

LS νS⊥ 1.9× 10−4 0.0021 7.372 0.402 0.711

LS dV 1.4× 10−4 0.0023 7.289 0.334 0.699

LS δi 1.5× 10−4 –0.0142 8.388 0.320 0.713

LS δd 1.8× 10−4 –0.0091 8.163 0.262 0.787

LI νS⊥ 7.7× 10−4 0.0038 7.092 0.457 0.631

LI δd 4.5× 10−4 –0.021 8.995 0.346 0.693

LI dV 4.5× 10−4 0.0035 6.968 0.391 0.605

LI LS 2.9× 10−4 1.8× 10−4 7.261 0.400 0.686

Parameters in the header as used in Equations 13.

FIGURE 3 | Overview of all subduction zones split into different geographic regions. The graph shows the hazard rating probability. An increase of the hazard rating

implies a stronger correlation with subduction zones of very large Mh.
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FIGURE 4 | Probability of subduction zone mating, where 1 (red): subduction zones always group within the same class and 0 (blue): subduction zones never same

the share class.

Here, M+ describes the increase of Mpref with respect to the
historic Mh. Currently, the absolute global maximum is capped
at 9.6 with respect to the 1960 Chile earthquakes. In case a larger
earthquake may occur some time in the future, this limit may
need to be reassessed.

The results indicate various subduction zones with a
significantly elevated Mpref with respect to its Mh. Of special
interest were regions where the magnitude difference was larger
than 0.5 or where Mpref ≥ 9.0. Most subduction zones reach
Mpref ≥ 8.5 and at least M2 ≥ 8.0 holds true for almost all
cases. Thus, some regions where the historic maximum is below
8.0 observe a significant increase larger than 0.5 or even more
than 1 point of magnitude. But, there are also several subduction
zones with Mpref ≥ 9.0 or M2 ≥ 9.0 where Mh was in some
cases even below 8.5. Those regions include Central America, the
Lesser Antilles, Java, the Tonga-Kermadec-Hikurangi system and
the Nankai Through.

For another subset of subduction zones, the increase is
negligible and in the range of +0.1 − 0.2. This is mostly true for
regions where Mw ≥ 9.0 earthquakes have been observed as in
Chile, Cascadia or around Japan. In most of these cases M2 =

Mpref can be found. Thus, much larger events are not expected

and that the calculationMmax is driven by the historicMmax as a
minimum threshold assuming that the history is already close to
the anticipatedMmax.

4.4. Return Period Assessment
The final component of this study was the assessment of
large megathrust earthquake return periods using a tapered
Gutenberg-Richter method. Here, the preferred estimates for
maximum magnitudes Mpref of the section above were applied
in conjunction with plate tectonic modeling as it was part of the
subduction zone parameter database to quantify seismic moment
accumulation rates for each subduction segment. The whole
systemwas built on a bootstrapping procedure to quantify related
uncertainties. As a last step, the resulting recurrence rates have
been reviewed in terms of their plausibility with respect to other
studies and previous results.

With Monte Carlo simulations, 10,000 permutations of 50
year long earthquake histories have been computed. The values in
Table 6 describe the largest expected earthquake Mexp regarding
various occurrence probabilities within those 50 years. Thus,
earthquakes of M ≥ Mexp should be expected with respect
to the different recurrence probabilities. On this basis, the 50,
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FIGURE 5 | Map of the preferred maximum magnitude estimates for all assessment subduction zones.

10, 2, and 1% occurrence probabilities have been described,
which represent about the return periods for 80, 475, 975,
2475, 4975, and 9975 years. These values have been computed
using a stochastic simulation of various return periods. For an
occurrence probability of just 1% within 50 years, Mexp

∼=

Mmax holds true for most locations. Mexp was used to better
show that using Mh from a short time period is many cases
insufficient to extrapolate Mmax. The study shows that Mexp

is increasing with longer time frames. For some subduction
zones the differences are relatively small when increasing the
time windows. For example in Chile, the expected maximum
magnitude does not increase further for periods longer than
1,000 years which indicates that the physical maximum may
be reached within this time window. However, if the seismic
activity is not very high, largeMexp events demand a much longer
return periods, either due to a lower a-value or a limited seismic
moment accumulation rate. Regions with large b-values tend to
produce their Mmax on a much longer time scale than regions
with small a-values.

For almost 40% of all assessed subduction zones, Mw ≥ 9.0
earthquakes are theoretically possible and three quarters of all
zones get close to Mw = 9 with a potential Mmax ≥ 8.5 when
considering the upper estimate forM2 from the previous section.

A few subduction zones may already reached the potential
Mmax like the Central Chile trench with its 1960 Mw = 9.5 −

9.6 earthquake or the Honshu Trench with its 2011 Mw =

9.1 Tohoku earthquake. Several other subduction zones may
still wait for their biggest potential earthquakes based on the
proposed results. But, their respective return periods are often in
the range of several thousands of years.

In summary, this methodology provides an extensive
assessment specifically focused on the return periods of
megathrust earthquakes and their respective potential maximum

magnitudes. These results correlate well with the historic record
where available, e.g., in Chile, Japan or the Mediterranean. But
it also highlights the potential for megathrust earthquakes in
regions where those haven’t been observed yet. This includes
parts of Central America, the Caribbean the Tonga-Kermadec
region and many more. The results are summarized in Table 6

and parts are also shown in Figure 6.

5. DISCUSSION

5.1. Comparison
Several other studies have already assessed potential maximum
magnitudes and their return periods. Some of these studies have
been listed previously. However, most important of those are
the results of Rong et al. (2014), McCaffrey (2008), of Berryman
et al. (2015) and Davies et al. (2017). Berryman et al. (2015) used
an earthquake catalog with Mw ≥ 5.5 to confine earthquake
return periods and assessed potential maximummagnitudes both
on the historic record and full rupture scenarios of individual
subduction segments. Their preferredMmax, to which is referred
to in this study, is the simple average between the two proposed
maximum magnitudes. Davies et al. (2017) considered a logic
tree approach to constrain Mmax. Their absolute maximum was
set to 9.6 and otherwise constrained again by the available
rupture-area. The background procedure and tectonic parameter
where hereby similar to what Berryman et al. (2015) used. To
compare the results, several representative subduction zones have
been selected and shown in Figure 7. As expected, all models
derived Mmax values larger than the historic maximum. For
some subduction zones, the results of all studies were very
similar, e.g., for Honshu, Chile or the Kurils. However, for most
other subduction zones, the results of McCaffrey (2008) are the
highest while Rong et al. (2014), Berryman et al. (2015) and
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TABLE 6 | Overview of historic maximum magnitudes Mh, Mmax , and Mexp estimates for various time frames in regards of 50-year probabilities and respective return

period (RP) results and for Mw = 8 and 9.

50 year probabilities for Mexp

Subduction interface Mh 50% 10% 2% 1% M8 RP M9 RP

Explorer 7.4 6.9± 0.1 7.7± 0.2 8.4± 0.1 8.4± 0.0 1083 (821–1433)

Cascadia 9.1 7.6± 0.1 8.7± 0.1 9.1± 0.0 9.1± 0.0 187 (167–209) 852 (737–988)

Gorda 7.3 7.3± 0.2 8.2± 0.2 8.4± 0.0 8.4± 0.0 368 (278–487)

Rivera 8.2 6.4± 0.1 7.1± 0.2 7.7± 0.3 8.0± 0.3 4488 (2796–6855)

Mexico 8.6 8.2± 0.1 8.9± 0.1 9.0± 0.0 9.0± 0.0 70 (65–76) 637 (567–714)

Central America 8.1 7.7± 0.1 8.3± 0.2 8.9± 0.1 8.9± 0.0 214 (168–271)

Cocos 7.8 7.9± 0.2 8.7± 0.1 8.7± 0.0 8.7± 0.0 122 (97–154)

Lesser Antilles 8.4 7.6± 0.3 8.4± 0.4 8.9± 0.1 8.9± 0.0 230 (140–381)

Puerto Rico 7.7 7.0± 0.4 7.8± 0.5 8.1± 0.1 8.1± 0.0 784 (364–2004)

Hispaniola 7.7 7.0± 0.3 7.8± 0.2 8.1± 0.0 8.1± 0.0 840 (582–1273)

Colombia 8.8 7.9± 0.2 8.7± 0.3 9.2± 0.1 9.2± 0.0 124 (87–181) 1044 (624–1844)

Peru 9.0 8.3± 0.1 9.0± 0.1 9.3± 0.0 9.3± 0.0 61 (56–67) 468 (414–526)

North Chile 8.7 8.1± 0.1 8.9± 0.1 9.1± 0.0 9.1± 0.0 76 (66–88) 607 (506–730)

Chile 9.5 8.7± 0.1 9.4± 0.1 9.6± 0.0 9.6± 0.0 26 (24–30) 195 (166–231)

Fireland 7.1 6.8± 0.1 7.6± 0.2 8.4± 0.1 8.4± 0.0 1084 (827–1436)

Sandwich 8.1 7.3± 0.1 7.8± 0.2 8.2± 0.0 8.2± 0.0 804 (579–1117)

Calabrian 7.4 6.5± 0.1 7.4± 0.2 8.0± 0.0 8.0± 0.0 1674 (1177–2448)

Hellenic Arc 8.5 7.3± 0.1 8.0± 0.1 8.6± 0.0 8.6± 0.0 514 (443–597)

Makran 8.1 6.9± 0.6 7.8± 0.8 8.5± 0.4 8.5± 0.2 774 (227–2599)

Andaman 9.0 8.0± 0.2 8.8± 0.3 9.2± 0.0 9.2± 0.0 101 (73–139) 841 (582–1322)

Sumatra 9.0 8.1± 0.1 8.8± 0.1 9.3± 0.0 9.3± 0.0 88 (78–99) 783 (663–926)

Java 8.5 7.6± 0.1 8.3± 0.1 8.9± 0.1 9.2± 0.1 248 (216–285) 3044 (2473–3745)

Timor 8.3 7.4± 0.2 8.1± 0.2 8.7± 0.3 8.9± 0.1 444 (306–644)

Seram 8.8 8.1± 0.2 8.8± 0.1 9.0± 0.0 9.0± 0.0 77 (60–100) 922 (689–1427)

Sulawesi 8.1 6.6± 0.3 7.5± 0.4 8.3± 0.3 8.4± 0.1 1350 (690–2624)

Halmahera 7.2 7.0± 0.1 7.7± 0.2 8.3± 0.2 8.4± 0.0 1236 (907–1694)

Sangihe 8.0 7.3± 0.1 8.1± 0.2 8.4± 0.0 8.4± 0.0 438 (326–588)

Philippine Nth 8.1 7.4± 0.1 8.1± 0.1 8.5± 0.0 8.5± 0.0 424 (343–527)

Philippine Sth 7.4 7.1± 0.2 7.8± 0.2 8.4± 0.1 8.4± 0.0 882 (590–1307)

Manila 7.6 7.4± 0.1 8.3± 0.2 8.6± 0.0 8.6± 0.0 282 (238–333)

Ryukyu 8.1 7.0± 0.1 7.6± 0.1 8.2± 0.1 8.5± 0.1 1529 (1254–1877)

Nankai 8.6 7.7± 0.1 8.7± 0.1 9.0± 0.0 9.0± 0.0 169 (158–181) 901 (813–997)

Honshu 9.1 7.8± 0.2 8.7± 0.2 9.1± 0.0 9.1± 0.0 136 (109–169) 995 (741–1374)

Hokkaido 8.6 7.7± 0.1 8.6± 0.2 9.0± 0.0 9.0± 0.0 183 (153–218) 1253 (1019–1541)

Kuriles 8.6 7.9± 0.1 8.6± 0.1 8.9± 0.0 8.9± 0.0 121 (107–138)

Kamchatka 9.0 8.5± 0.1 9.0± 0.0 9.0± 0.0 9.0± 0.0 39 (32–47) 410 (324–566)

Aleutian West 8.7 7.9± 0.1 8.6± 0.1 8.9± 0.0 8.9± 0.0 127 (111–147)

Aleutian East 9.2 8.1± 0.1 8.8± 0.1 9.2± 0.0 9.2± 0.0 85 (78–92) 852 (755–960)

Alaska 9.2 8.2± 0.1 8.9± 0.2 9.4± 0.0 9.4± 0.0 67 (57–81) 566 (435–754)

Tonga 8.1 8.4± 0.2 8.6± 0.0 8.6± 0.0 8.6± 0.0 47 (37–60)

Kermadec 7.9 7.8± 0.1 8.5± 0.2 8.6± 0.0 8.6± 0.0 153 (118–199)

Hikurangi 8.2 7.9± 0.2 8.6± 0.0 8.6± 0.0 8.6± 0.0 121 (95–156)

Puysegur 7.9 7.7± 0.1 8.3± 0.2 8.5± 0.0 8.5± 0.0 194 (167–238)

New Britain 8.1 8.2± 0.1 8.4± 0.0 8.4± 0.0 8.4± 0.0 62 (51–76)

Solomon Islands 8.0 7.9± 0.1 8.4± 0.0 8.4± 0.0 8.4± 0.0 121 (107–137)

Nth New Hebrides 8.1 7.8± 0.1 8.4± 0.0 8.4± 0.0 8.4± 0.0 150 (132–169)

Vanuatu 8.0 8.0± 0.2 8.4± 0.0 8.4± 0.0 8.4± 0.0 96 (74–124)

Mariana 7.5 7.7± 0.1 8.3± 0.1 8.4± 0.0 8.4± 0.0 237 (203–276)

Izu–Bonin 7.9 7.3± 0.1 8.0± 0.1 8.6± 0.1 8.6± 0.0 543 (427–687)

New Guinea West 8.2 8.1± 0.2 8.2± 0.0 8.2± 0.0 8.2± 0.0 89 (69–116)

Algeria 7.3 6.3± 0.2 7.2± 0.4 8.1± 0.2 8.1± 0.0 1910 (1272–3278)

Horseshoe 8.5 6.7± 0.1 7.5± 0.1 7.9± 0.1 8.0± 0.1 4936 (3016–7701)

Wetar 7.5 6.8± 0.1 7.5± 0.1 8.2± 0.1 8.2± 0.0 1592 (1335–1899)

Flores 7.5 7.0± 0.3 7.8± 0.5 8.2± 0.1 8.2± 0.0 797 (389–1731)

Only subduction zones for which return periods have been resolved with respect to sufficient historic earthquake data and seismic moment rates are shown. Subduction zones with

M2 < 8.0 are not shown.
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FIGURE 6 | Map of average expected return periods in years of earthquakes of Mw ≥ 8.0.

Davies et al. (2017) are often around the lower end of the Mmax

estimate. The results of this study are most of the time close to
the results of either McCaffrey (2008) or Davies et al. (2017).
However, in average the results of this study find themself as a
top-end mean estimate among all these proposed studies. The
results are conservative in a sense that e.g., currently not very
active subduction zones, or subduction zones with no observed
megathrust activity so-far, are still rated with a highMmax, not as
high as McCaffrey (2008) but also not as low as the other studies
may propose.

5.2. Limitations
Despite leading to results in accordance to previous studies, some
limitations have to be lined out. Applying machine learning
methods can be a valid alternative when assessing complex
systems, if sufficient data on those is available. However, for the
assessment of Mmax, supervised learning always demands for
assured knowledge for a subset of subduction zones assuming
Mh = Mmax. This assumption will lead to an overfitting
and underestimation of Mmax in some places. The procedure
doesn’t help when assessing the maximum magnitude of
anyway very active subduction zones like Chile which would be
underestimated, but appears useful for regions where the historic
record is limited. This pattern can be well seen in Table 5, where
machine learning estimates tend to be lower than from the other
methods. However, when comparing the individual methods,
support vector machines also extrapolate on the given data while
decision trees remain within the range of the provided training
data. Thus, support vector machines can be more suitable for
assessments where the target value showsmajor uncertainties. On
the other side, using a classification approach and its resulting
similarity metrics stabilized theMmax estimates leading to values
averaging around the other methods while geometry derived

values provided the upper threshold in most cases even when
not considering respective uncertainties. In total, the ensemble
approach can be considered a recommended procedure when
assessing uncertain seismic hazard metrics like Mmax especially
in regions where the historic record is limited and can reduce the
range of uncertainties.

6. CONCLUSION

This paper introduced an extensive analysis of subduction zone
interfaces and their characteristics in light of the potential
to produce large megathrust earthquakes. Beyond focussing
on estimating Mmax, various correlations and relationships
between Mmax and subduction zone parameters have been
identified. Of those, geometry-related parameters like interface
length and subduction dip lead to the highest correlation with
historic maximum magnitudes. Those results also underline
why using geometry-based correlation equations from various
other publications as part of the ensemble assessment of Mmax.
In addition, subduction zones had been analyzed to quantify
their similarity to extrapolate the knowledge of well assessed
subduction zones to those with limited data following the
principle of trading time with space.

In summary, a tapered Gutenberg-Richter method was used to
estimate return periods of megathrust earthquakes. This method
accommodated both Mmax estimates and seismic moment
accumulation rates including their respective uncertainties.
Gutenberg-Richter parameters a and b have been calculated using
a bootstrapping technique. All together, this procedure provided
mean estimates and respective uncertainties for magnitude-
dependent earthquake return periods.

The results highlight both well known subduction zones in
regards of great megathrust earthquakes, but also regions where
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FIGURE 7 | Comparison of some Mmax estimates based on this study for various return periods and literature results of Rong et al. (2014), McCaffrey (2008),

Berryman et al. (2015) and Davies et al. (2017). In addition, black lines indicate so-far observed historic records of maximum magnitudes.

no such events have been observed in recent history like in
Central America, the Lesser Antilles or the Philippines. These
results are also supported by a significant correlation with the
subduction zone parameter assessment. In addition, the results
regarding the expected potential maximum magnitude were
found to be in the range of previous studies.

When taking a closer look on some subduction zones, both
advancement and limitations of the methodology can be seen.
For example, the results for the Goringe and Horseshoe faults
have been discarded of being too low and only insufficiently
discretized with respect to the 1755 Lisbon earthquake. Same
holds for various fault systems in and around the Pacific (e.g.,
Hjort, Manus, Negros Trenches) where both data and historic
seismic record were insufficient to result in accountable metrics.
However, subduction zone segments with limited historic record,
but in the vicinity of other segments with more recent evidence
of strong seismic activity like in Central America have beenmuch
better estimated and uncertainties among all applied methods
remained limited.

In conclusion, both correlations and sensitivity checks
provided important insight into the statistical occurrence
patterns of large megathrust earthquakes regarding their
occurrence probabilities and the subduction zone parameter
assessment supported these findings. However, some results
show a not insignificant uncertainty or a very low occurrence
probability for major earthquakes. The selection of regions
the global study is focussing was carefully considering which
subduction zones to include and which not. For example some
of the not-well studied subduction zones around Papua New
Guinea and small ones like the Adriatic Thrust, the Manus and
Mussau Trenches and various more are seismically not very

active were not considered for further investigation. Nonetheless,
almost all sources are generally considered to be capable of
producing megathrust earthquake, but the probabilities differ
significantly and the maximum magnitude ranges from 7.5 from
9.6 depending on the region.

For future iterations of this study, the additional subduction-
related parameters can be included, but also a better

representation of the seismic coupling for all subduction
zones should be a key focus.
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