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The Indus watershed is a highly populated region that contains parts of India, Pakistan,

China, and Afghanistan. Changes in precipitation patterns and rates of glacial melt

have significantly impacted the region in recent years, and climate change is projected

to result in further serious human and environmental consequences. To understand

the climate dynamics of the Indus watershed and surrounding regions, reanalysis and

satellite data from products such as APHRODITE-2, TRMM, ERA5, and MERRA-2 are

often used, yet these products are not always in agreement regarding critical variables

such as precipitation. Here we objectively evaluate the level of agreement between

precipitation from these four products. Because these data are on different spatial

scales, we propose a low-rank spatio-temporal dynamic linear model for precipitation

that integrates information from each of the above climate products. Specifically, we

model each data source as the combination of a modified shared process, a discrepancy

process, and Gaussian noise. We define the shared process at a high spatial resolution

that can be upscaled according to the resolution of the observed data. Our proposed

model’s shared process provides a cohesive picture of monthly precipitation in the Indus

watershed from 2000 to 2009, while the product-specific discrepancies provide insight

into how and where the products differ from one another.

Keywords: spatio-temporal correlation, dynamic linearmodel (DLM), HighMountain Asia (HMA), change of support

problem, data assimilation, climate model, climate change

1. INTRODUCTION

The Indus Watershed is a region that is particularly susceptible to the consequences of a changing
climate (e.g., Immerzeel et al., 2010; Khattak et al., 2011; Lutz et al., 2014; Bolch et al., 2017).
With approximately 300 million people living within the basin, and complex geopolitical issues
related to water resources and agricultural development (e.g., Lutz et al., 2016; Scott et al., 2019), a
scientifically grounded understanding of past, present, and future patterns in climate for the region
will be critical for policy makers to be able to make sound decisions regarding the region.

One of the variables fundamental to many of the most pressing scientific questions for the
climate of the Indus Watershed is precipitation. Due to the complexity of the physical processes
governing precipitation, it is also a fairly difficult variable to effectively measure and model
accurately in remote parts of the world, and especially in complex terrain (e.g., IPCC, 2013; Ralph
et al., 2013; Immerzeel et al., 2015; Dahri et al., 2016). Reanalysis products use a combination of
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modeling and observations in order to leverage the strengths
of both. Reanalysis products assimilate observations of variables
(such as precipitation, temperature, wind, etc.) into complex
physical or statistical models which can produce estimates for
dozens of important variables at high resolutions in both space
and time (Bengtsson et al., 2004). Due to the complexity of
these models and the differences in the amount and type
of source data, climate reanalyses are frequently not in total
agreement, and these differences become even more pronounced
for complex variables such as precipitation. This is particularly
true in the Upper Indus Watershed, where complex topography
and minimal observational data presents unique challenges
in quantifying precipitation (Palazzi et al., 2013; Maussion
et al., 2014). To ameliorate some of these difficulties, ensemble
approaches are frequently used, which combine output from
several climate models, or variations of a single model, such that
a wider range of projections can be analyzed (e.g., Murphy et al.,
2007; Neeley et al., 2014; Wang et al., 2014).

Taking some inspiration from these climate ensemble
approaches this study used a spatio-temporal Bayesian statistical
model that provides a novel approach to understanding and
analyzing the differences and commonalities between four
commonly used precipitation products in the Indus watershed
region via the modeling of discrepancies and their associated
uncertainty. Precipitation output from these same four products
was also assimilated into a new monthly-resolved product for
precipitation for the years 2000–2009 which can be used in
future analyses. We realize this shared product at a 0.25 × 0.25◦

spatial resolution, while realizing each data source’s discrepancy
process at its native spatial resolution. The temporal domain
for this model of the decade spanning 2000–2009 was chosen
to provide us with a reasonable number of years with which to
compare currently available products and test the viability of the
method presented in this paper. A monthly temporal resolution
was selected in order to capture precipitation climatology
and seasonality for comparison to climate models. However,
the methods presented in this paper could be reasonably
applied to any spatial and temporal domain and resolution
provided sufficient computing resources and appropriate
input data.

It is also important to note that the research presented in
this paper focuses on a statistical model that combines existing
precipitation data into a new product that represents statistical
consensus among input data (along with the identification of
discrepancies) rather than a new climate model that incorporates
the physics and dynamics of climate systems into its output.
While an understanding of such physical processes is critical to
the study of climate, this paper is focused instead on statistically
analyzing the output of models and data products that were built
with consideration of those processes in mind.

In section 2 of this paper we introduce the data products used
in our analysis and discuss some of their important features. We
introduce and specify our statistical model in section 3. Model
results are included in section 4, and further discussion of those
results is contained in section 5. We conclude our paper in
section 6 with noteworthy observations from our analysis and
suggestions for how our work might be used in the future.

TABLE 1 | Summary of data products used in this analysis.

Spatial res. Temporal res. Product type

APHRODITE-2 0.25 × 0.25 Daily Interpolated rain gauge

TRMM 0.25 × 0.25 Daily Satellite

ERA5 0.25 × 0.25 Hourly Reanalysis

MERRA-2 0.5 × 0.625 Monthly Reanalysis

Note that the given resolutions are the resolutions for the product versions we downloaded

for use in this analysis. The majority of these products are available at multiple spatial and

temporal resolutions.

2. DATA

We selected four datasets for this analysis: the Asian
Precipitation—Highly-Resolved Observational Data Integration
Toward Evaluation of Extreme Events (APHRODITE-2) product
(Yatagai et al., 2012), the Tropical Rainfall Measuring Mission
(TRMM) satellite product (Goddard Earth Sciences Data
Information Services Center, 2016), the most recent ECMWF
reanalysis product (ERA5) (Copernicus Climate Change Service
(C3S), 2017), and the Modern-Era Retrospective analysis for
Research and Applications, Version 2 (MERRA-2) product
(Global Modeling and Assimilation Office (GMAO), 2015).
These datasets span the range of dominantly observationally-
based to dominantly physical-model-based, but with all
including some amount of modeling and observational data.
Basic summaries of these products can be found in Table 1.

The APHRODITE-2 precipitation product uses daily rain
gauge readings across Asia and statistically interpolates between
them to produce spatially gridded precipitation estimates.
TRMM is NASA’s precipitation product produced via combining
precipitation estimates from multiple satellites as well as some
limited precipitation gauge data. Thus TRMM is dominantely
based on remote observations, while Aphrodite is solely based on
in-situ observations. ERA5 is ECMWF’s most recent reanalysis
product. ECMWFuses the IFS numerical forecast model and data
assimilation system to produce gridded climate data, including
precipitation. The input data was largely derived from satellite-
based observations, but also includes some in situmeasurements
from radiosondes, ocean buoys, and land stations. MERRA-2 is
NASA’s reanalysis product. It is similar to ERA5 in that it is
based on a numerical weather forecast model that assimilates
data. However, it uses a different model (GEOS), assimilation
system, and input data. For input data, NASA uses satellite-based
observations. The version of MERRA-2 we are using has had its
precipitation estimates corrected using ground observations.

2.1. Exploratory Data Analysis
Each of these precipitation products has idiosyncrasies in their
estimates of precipitation that are derivatives of how they
were constructed. However, each is based on observations
and/or physical properties, and therefore represents a “plausible”
representation of the system, albeit with varying degrees of
uncertainty.While one cannot knowwhat the “truth” is regarding
precipitation for the Indus watershed by analyzing these four data
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FIGURE 1 | Average monthly anomaly (deviation from mean of all products) in precipitation (in mm) for Indus Watershed region for APHRODITE-2, ERA5, MERRA-2,

and TRMM. Month 1 corresponds to January 2000.

products, we assess how they compare to one another: where
they seem to be in greatest agreement, and where their estimates
diverge more sharply from one another. Below is a summary
assessment of average precipitation for the region bounded by
63.5-84 E and 27-40 N as estimated by each product.

As can be seen in Figure 1, ERA-5 consistently estimates
greater amounts of precipitation than the other products,
while MERRA-2 appears to have a dry tendency, meaning
that it estimates smaller amounts of precipitation relative
to consensus.

While less dramatic, there are slight differences in the general
trend in precipitation among these products. TRMM and ERA5
seem to have downward trends in precipitation relative to the
group average, while MERRA-2 and APHRODITE-2 seem to be
increasing in precipitation over time relative to the mean.

All of the above is illustrative of the fact that there are
noteworthy differences between the data products commonly
used to assess precipitation statistics and dynamics, and used
as input to hydrological and glaciological models. These
differences could have the potential to significantly impact
climate assessments, uncertainty quantification, and cultural
impact statements, and thus it is important to seriously consider
the anomalies and noteworthy features of a model-derived data
set prior to its further use.

In order to facilitate this, we provide a statistically sound,
model based framework with which to model the discrepancies
between these data products while taking into account the
spatial and temporal dependence intrinsic to this type of data.
Simultaneously, we provide a new data product that can act as
a “consensus product,” probabilistically borrowing strength and
spatial structure from each of APHRODITE-2, ERA5, MERRA-2,
and TRMM.

2.2. Areal Data and the Change of Support
Problem
As an additional note, there are two aspects of the data we
considered prior to modeling: namely, that we were working with
areal data, and that the data products we used have differing
spatial support.

The output of the four products for precipitation
(APHRODITE-2, TRMM, ERA5, and MERRA-2) is areal
data. Areal data, unlike point data, are indexed for an entire
spatial region, rather than at a specific observation point.
Areal data are common in realms such as public health and
government, where data might be recorded at a city, county,
or state level (Waller and Gotway, 2004; Schabenberger and
Gotway, 2005). While one can calculate the distance between
two locations which are indexed by latitude and longitude for
example, it is a more complicated question to characterize
the distance between two adjacent counties, especially if those
counties are irregularly shaped. This is important given that
spatial correlation is generally modeled as a function of distance
between locations (Cressie, 1993; Schabenberger and Gotway,
2005).

While each value of an estimated variable in a gridded
climate product is indexed with specific latitude and longitude
coordinates, the value is actually given for the entire rectangular
region (rectangular with respect to the coordinate grid and
ignoring the Earth’s sphericity) centered about the provided
coordinates. The region’s geographical size is determined by the
product’s resolution. This means that each areal observation
within the MERRA-2 product, which has a resolution of 0.5 ×

0.625, covers a geographical region that is 5 times the size of the
regions modeled by the other three products used in this analysis,
which have 0.25× 0.25◦ resolutions.
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The second aspect of this data we considered in our model is
that each product is realized on a different grid of locations and at
varying resolution. This leads us to what is sometimes referred to
as the “change of support problem” (Waller and Gotway, 2004).
We wish to use all four climate products jointly in order to make
inferences at a scale and collection of areal regions that are not
shared by all products. There are different potential solutions
to this problem, but our approach was to model the process
of interest (in this case the shared precipitation process) at a
highly-resolved scale and then aggregate it according to the native
resolution of each data product.

3. A JOINT MODEL FOR PRECIPITATION
DATA PRODUCTS

3.1. Model Specification
Let Yjt(Aji) ≥ 0 represent the observed precipitation associated
with data product j on areal unit Aji and month t ∈ T =

{1, . . . , 120} where i = 1, . . . , nj and j ∈ {APHRODITE-2, ERA5,
MERRA-2, TRMM}. For each data product, Yjt(Aji) = 0 for
much of the spatio-temporal domain. Hence, here we take
Yjt(Aji) = max(0, Ljt(Aji)) where Ljt(Aji) ∈ (−∞,∞) is a latent
variable corresponding to the observed precipitation if Ljt(Aji) >
0 and Ljt(Aji) < 0 for Yjt(Aji) = 0 which we will impute from
the data (see section 3.2 for details).

To induce a model for Yjt(Aji), we define a model for Ljt(Aji)

Ljt(Aji) = x′jt(Aji)β t + h′j(Aji)Zt + δjt(Aji)+ ǫjt(Aji) (1)

where x′jt(Aji) is a P = 2 vector of covariates (here, an intercept

and elevation), Zt = (Zt(AZ1), . . . , Zt(AZnZ ))
′ is a shared spatio-

temporal precipitation surface on areal unitsAZ1, . . . ,AZnZ with
nZ corresponding to the number of spatial areal units associated
with the shared process, hj(Aji) is a spatial mapping from
the latent precipitation surface Zt to the spatial scale of data
product j (more details below), δjt(Aji) is a discrepancy surface
capturing the difference between data product j and the shared
precipitation surface for all t, andAji and ǫjt(Aji) corresponds to
spatially and temporally unstructured normally distributed noise.

Asmentioned in the introduction and inherent in the notation
above, each spatial data product is defined on different set
of areal units at varying spatial resolutions. To realign the
grid associated with the shared precipitation process to the
native resolution of the jth data product, we define hj(Aji) =

(hj1(Aji), . . . , hjnZ (Aji))
′ where

hji(A) =
|A

⋂

AZi|

|AZi|
(2)

such that hji(Ajk) represents the percent overlap between areal
unitAjk andAZi for i = 1, . . . , nZ and k = 1, . . . , nj.We note that
the operator |AZi| refers to the 2-dimensional area of AZi. For
simplicity’s sake, we ignore the earth’s sphericity when calculating
area and assume an orthogonal spatial grid, an assumption that
we believe is reasonable at the latitudes for which this model is
being used. Therefore, hji(Ajk) ∈ [0, 1] such that if hji(Ajk) = 1
then AZi is completely contained within Aji, if hji(Ajk) ∈ (0, 1)

thenAZi is partially contained withinAji and if hji(Ajk) = 0 then
AZi does not overlap withAji.

In this application we have nZ = 4,346, resulting in
approximately 521,000 correlated values of the shared
surface Zt(AZi) and over 1.6 million unknown and correlated
discrepancy parameters δjt(A). Much of the statistical literature
for modeling such spatio-temporal data relies upon the use of
Gaussian processes due to their high level of flexibility and the
availability of a wide variety of covariance structures, to the point
of near-ubiquity within the field (e.g., Matheron, 1963; Journel
and Huijbregts, 1978; Cressie, 1993; Stein, 1999; Cornford et al.,
2005; Banerjee et al., 2008). However, Gaussian process models
frequently become computationally prohibitive for large data
sets due to the necessity of performing large matrix inversions
(the computational burden of fitting these models scales by a
factor of n3, while the memory burden scales by n2 making it
impractical for data sets of size N > 5,000 on most machines).
Hence, a primary challenge associated with this research is
developing a computationally tractable way of fitting model (1).

While there are various computationally tractable methods
to model spatial data through the approximation of a Gaussian
process model (e.g., Higdon, 2002; Datta et al., 2016; Heaton
et al., 2018), we opted to use the low-rank representation
proposed byHughes andHaran (2013), due to the property that it
is specifically designed for use with areal data (i.e., data observed
on a lattice). Specifically, let A = {aij} be an n × n adjacency
matrix where aij = 1 if areal units i and j share a border. Further,
define X as a n× P matrix of observed covariates from Equation
(1). Hughes andHaran show that the eigenvectors associated with
positive eigenvalues of the Moran operator P⊥AP⊥ correspond
to positive spatial dependence where P⊥ = In − X(X′X)−1X′

is the projection onto the orthogonal complement of X (Hughes
and Haran, 2013). As such, we define M as the n × K matrix
of eigenvectors of P⊥AP⊥ associated with positive eigenvalues
such that M corresponds to basis functions capturing positive
spatial correlation.

In this analysis, we chose to use a number of eigenvectors that
accounts for at least 60% of the structural variability in P⊥AP⊥,
which is calculated by cummulatively summing the non-negative
eigenvalues of the Moran operator and identifying a cutoff. This
results in using K = 685 eigenvectors for the shared surface,
APHRODITE-2, and TRMM (which are realized on the same
set of spatial locations), 663 for ERA5, and 188 for MERRA-2.
Note that our choice of 60 percent as a threshold for determining
the number of eigenvectors to be used as basis functions refers
exclusively to the percent variability within the Moran operator
being accounted for, and does not imply that only 60% of the
spatial structure of the precipitation process in the region is
being captured. The threshold used in this analysis exceeds the
threshold of approximately 25% suggested by Hughes and Haran
as being sufficient for most analyses, ensuring that both small-
and large-scale spatial trends are being accounted for in our
model (Hughes and Haran, 2013). To illustrate this approach for
the Indus watershed, Figure 2 contains plots of several of these
eigenvectors (basis functions), each of which captures different
frequencies of the spatial harmonic structure. Some of these basis
functions represent larger scale trends within our spatial domain,
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FIGURE 2 | Spatial eigenvectors from decomposed Moran operator.

while others capture finer details. Each function is multiplied
by a random variable, and when summed together forms a
surface that serves as a spatial random effect in our model,
thereby capturing correlation between proximate locations in
our domain.

Using the above basis function expansion, we set Zt = MZθ ,
δjt = Xjηjt +Mjψ jt such that

Ljt = Xjβt +HjMZθ t + Xjηjt +Mjψ jt + ǫjt (3)

where Xj is the design matrix for the jth data product, β t is the
shared effect of the covariates on precipitation, Hj is the nj × nZ
realignment matrix (see above), MZ is the Moran eigenvector
basis with associated coefficients θ t for the shared precipitation
surface Zt defined on areal units AZ1, . . . ,AZnZ , ηjt represents
the discrepancy between the effect of the covariates (Xjt) on
data product j and the shared effect β t , and Mj is the Moran
eigenvector basis on areal units Aj1, . . . ,Ajnj with associated
coefficients ψ jt correspond to spatially structured discrepancy
between data product j and the shared surface. A more intuitive
construction of the model can be seen by defining β⋆jt = β t + ηjt

and θ⋆jt = (θ ′t ,ψ
′
jt)

′ rendering Equation (3) to be equivalently
written as

Ljt = Xjβ
⋆
jt +

[

HjMZ ,Mj

]

θ⋆jt + ǫjt (4)

such that (4) shows that the spatial precipitation can be similarly
viewed as a fixed effect, a basis function expansion of a spatial
random effect and uncorrelated white noise.

To this point, we have considered only the spatial and not the
temporal dimension of building a model for precipitation over
time. In regards to temporal correlation, we employ a spatial
dynamic linear model (DLM) (Petris et al., 2009) for the latent
shared precipitation surface such that

β t ∼ N

(

β t−1, σ
2
βt
I
)

θ t ∼ N
(

θ t−1, σ
2
θt
I
)

(5)

with β0 ∼ N (0, σ 2
β0
I) and θ0 ∼ N (0, σ 2

θ0
I). (We initialized

timestate t = 0 using data from December 1999). In this
way, we capture month-to-month correlation among the shared
precipitation surface while maintaining sufficient flexibility to
capture the variability seen in the data. The parameters σ 2

βt
and

σ 2
θt
evolve in time and capture in part the extent of the temporal

correlation between months. We also note that when we refer
to our statistical model as being “dynamic”, it is in reference
to our use of a statistical DLM, rather than implying that we
have incorporated information from the field of climate dynamics
directly into our model.

Notably, we chose to implement the DLM structure only
for the shared process. Thus, we do not explicitly enforce
temporal dependence in the discrepancy surfaces. However,
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because the discrepancy processes define deviations from the
shared process, the two processes are correlated in the posterior
dictated by the amount of temporal smoothness present in
the data. Further, in initial stages of this research, we opted
for a DLM in the discrepancies as well but found that such
a model appeared to be computationally intractable. After
assuming temporal independence in the discrepancy surfaces,
the model showed considerably improved identifiability and
posterior mixing, solidifying our choice to implement a DLM
exclusively in the shared process.

Equations (3) and (5) provide a model that allowed
us to estimate a spatially and temporally correlated shared
precipitation process as well as spatially and temporally
correlated estimates for product-specific discrepancy processes
resolved monthly and at the native resolution of each product.
More concretely, XZβt + MZθ t (where XZ is the design
matrix of the shared product), corresponds to the shared
precipitation process at time t, while Xjηjt +Mjψ jt corresponds
to the discrepancy process of data product j at time t. The
random variables governing the shared process, β t and θ t are
identified using each of our data products, while the discrepancy
parameters, ηjt and ψ jt , are unique to each product and
conditionally independent of each other ηj′t and ψ j′t for j 6=

j′. Our temporal domain and resolution for these products is
monthly for the years 2000–2009 and we assume AZ1, . . . ,AZnZ

represent a 0.25× 0.25 latitude longitude grid.

3.2. Bayesian Estimation and Model Fitting
In order to estimate all model parameters, we choose to
implement Bayesian model fitting via Markov chain Monte
Carlo, a class of algorithm with considerable literature regarding
its theory and implementation (e.g., Casella and George, 1992;
Gamerman and Lopes, 2006). In light of the abundance of data
at our disposal, we opted to use largely uninformative priors
such that our data can be the primary source for our posterior
distributions, providing us with arguably more objective results.
Specifically, the prior distributions we used are

ηjt
iid
∼ N

(

0, σ 2
ηjt
I
)

ψ jt
iid
∼ N

(

0, σ 2
ψjt

I
)

ǫjt
iid
∼ N

(

0, σ 2
jtI

)

σ 2
βt
, σ 2
θt
, σ 2
ηjt
, σ 2
ψjt

, σ 2
jt

iid
∼ IG (2, 1)

(6)

IG (2, 1) refers to an inverse-gamma distribution with shape
= 2 and rate = 1. This is a diffuse prior that provides
minimal outside information regarding our model’s variance
terms. Additionally, the zero mean in the prior distributions of
our other model parameters provides little prior information,
allowing the data to be the primary influence on our posterior
distributions. The independence assumption forψ jt departs from
that recommended by Hughes and Haran. However, given that
the basis functions inM are eigenvectors which, by construction,
are independent, the independence assumption is justified.

One fact about usingMoran bases to capture spatial variability
is that each column of M sums to zero (see Figure 2) such
that the total volume of precipitation must be accounted for
elsewhere. To ensure identifiability, we fix ηTRMM = 0 which
anchors the total volume of precipitation in our shared process
to the TRMM data product, while still allowing each of the
surfaces in our model to have a unique spatial structure. We
chose TRMM to anchor our model because it is observation-
based with dense spatial and temporal coverage. In addition,
TRMM tends to track most closely with the mean of the
four products in terms of total precipitation (see Figure 1).
Although APHRODITE-2 is another primarily observation-
based product, the observations are limited to unequally-
distributed point sources (Yatagai et al., 2012).

The combination of normally distributed model parameters
with inverse-gamma distributed variances means that—given
L—all model parameters have closed form full conditional
distributions and thus can be sampled from directly using
a Gibbs sampler, a consideration that further informed our
choice of model likelihood and priors. Further, as part of this
sampler, notice that the latent variable Ljt(Aji) = Yjt(Aji) when
Yjt(Aji) > 0. However, the complete conditional distribution
for Ljt(Aji) given Yjt(Aji) = 0 and all other model parameters
areN−(Xjβ t +HjMZθ t +Xjηjt +Mjψ jt , σ

2
jt ) whereN

−(m, v) is

the Gaussian distribution with mean m and variance v truncated
to (−∞, 0).

In the interest of brevity and focus, we omit the detailed
notation for our full conditional distributions here, but
the computational implementation of the Gibbs sampler
for our admittedly complex Bayesian linear model is fairly
standard within the Bayesian modeling literature (see for
example Gelman et al., 2013). Within our Gibbs sampler, we
alternate between sampling from the shared process, which
incorporates information from all four data sources, and the
four discrepancy processes, each of which is conditionally
independent of one another. In terms of computation, due to
the independence assumption across data products, the data
product specific parameters ηjt and ψ jt can be updated in
parallel from their complete conditional distribution to improve
computational efficiency.

Due to the fact that our model is in effect identifying 600
unique but interconnected surfaces (one shared surface and four
discrepancies for each of 120 time states), fitting this model is
computationally expensive, although the computational burden
is relatively modest in comparison to the computing-intensive
climate models used to produce the data utilized in this analysis.
We fit this model using the software R on a Dell PowerEdge
R740 server with 2 x Intel(R) Xeon(R) Gold 6132 CPU @
2.60GHz and 128GB of RAM. With the previously specified
number of spatial eigenvectors used per surface, it required
approximately 17 days to obtain 55,000 posterior draws, which
were thinned by a factor of 50 due to memory limitations.
In spite of high autocorrelation due to the close relationship
between the shared surface and the discrepancies, our model
parameters appear to have successfully converged based on an
analysis of their trace plots and other commonly applied Bayesian
convergence heuristics.
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FIGURE 3 | The precipitation products for August 2000 (in mm).

FIGURE 4 | Shared precipitation surface (in mm) for August 2000 on left. Corresponding uncertainty surface on right. Uncertainty characterized using posterior mean

standard deviation (in mm).

4. RESULTS

In this section, we look at several figures containing data and
model output. The majority of these figures will be for the month
of August 2000, which is chosen to be illustrative of the results for
a single month. For Figures 3–6 we have equivalent plots for all
120 months from January 2000 to December 2009.

Figure 3 contains plots of the data used to inform the model

for the month of August 2000. Note that while each product
depicts high precipitation along the southern ridge of the Tibetan

Plateau, each product has different precipitation patterns both

in terms of magnitude and in how precipitation is spatially
distributed throughout the region.

Figure 4 contains a plot of the shared product as modeled
using the August 2000 data from Figure 3, which was obtained
by calculating the mean of the posterior distribution of
max(0,XZβ t + MZθ t). Also shown in Figure 4 is a plot of

the uncertainty surface associated with the shared product,
as obtained by taking its posterior standard deviation. It is
important to note however, that the uncertainty depicted in
Figure 4 is only one of several uncertainty components in
our model (additional uncertainty components are depicted in
Figure 6). Recall Equation (1) where we model our data as
the combination of a shared process, a discrepancy process,
and Gaussian noise. Each of those three elements has an
associated uncertainty, but due to the manner in which they are
interconnected, it is difficult to simply and accurately characterize
the uncertainty associated with the shared process without taking
into account the uncertainty associated the discrepancies as well.
Due to the discrepancies being realized at the native resolutions
of the original data products, unlike the shared product, it is
additionally challenging to synthesize the uncertainty present in
each data product with a single plot. Also of note, because the
Bayesian approach utilized here provides us with full posterior
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FIGURE 5 | Discrepancy surfaces for August 2000 (in mm). Red regions indicate areas where the product modeled higher precipitation than shared surface, while

blue regions indicate lower precipitation relative to shared surface.

FIGURE 6 | Uncertainty associated with noiseless data approximation for August 2000 (in mm).

distributions, there are any number of ways uncertainty could be
represented, including standard deviation (used here), variance,
or more potentially rich but intensive statistics such as quantiles.

When we examine the uncertainty shown in Figure 4, we
note a greater degree of uniformity across the spatial domain of
our model than one might otherwise expect. This is potentially

a byproduct of the uniformity of our gridded data and our
modeling decision to use a rank-reducing Gaussian process
approximation and stationary nugget term in order to improve
computational burden, at the cost of some specificity in the
estimation of uncertainty. We also note some minor striping
in the uncertainty plot, which is a byproduct of the harmonic
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FIGURE 7 | Ten-year averaged shared product (in mm) for winter months (December/January/February) on left. Ten-year averaged shared product (in mm) for

summer months (June/July/August) on right. Note that the two plots contained in this figure use different scales.

spatial eigenvectors used in our Gaussian process approximation.
However, the uncertainty associated with the shared process as
presently estimated is still valuable in terms of understanding
the basic magnitude of uncertainty present, especially when
evaluated in conjunction with the other uncertainty components
in our model.

Figure 5 contains the four discrepancies for the
APHRODITE-2, ERA5, MERRA-2, and TRMM products
for August 2000. These discrepancy plots provide us insight into
how these products differed from one another for this month. As
can be seen from the MERRA-2 discrepancy in Figure 5, there
is a band of low precipitation (blue) which runs through Nepal
and into India. Thus, MERRA-2 had notably lower precipitation
in that region relative to the other products in that month.
Likewise, from Figure 5 one can discern that ERA5 is unique in
the amount of precipitation it has across the Tibetan Plateau (at
roughly 34◦ latitude, 82◦ longitude), a region for which the other
three products have discrepancies close to or slightly below 0.
TRMM also has somewhat higher precipitation estimates in the
southeast corner of the region relative to the shared process.

An advantage of the Bayesian modeling approach is the
flexibility and ease of quantifying uncertainty for different
elements of our model. Figure 6 depicts the uncertainty
associated with the positively-censored summation of our
shared and discrepancy processes, which could be thought of
as a noiseless approximation of our data. Similarly to our
observations regarding the uncertainty plot in Figure 4, we
note that the harmonic patterns observable in these plots are a
byproduct of our method for Gaussian process approximation
which manifests itself in the uncertainties to a greater extent than
in the estimates of the mean.

As previously mentioned, we have similar plots to those
shown in Figures 4–6 of the shared surface, discrepancies, and
associated uncertainties for all 120 months from January 2000
to December 2009. While it is valuable to examine differences
between products for individual months, we are also interested
in evaluating the longer-term seasonal discrepancies between
products. Figure 7 contains the 10-year averaged shared product
for both winter months (December, January, and February) and
summer months (June, July, and August). It can be used to gain
a sense of the relative magnitude of the seasonal discrepancies,

which are contained in Figure 8 (winter) and Figure 9 (summer).
We analyze winter and summer given that there are distinct
meteorological phenomena governing precipitation during
these time periods, namely westerly disturbances during
winter months and Indian monsoons during the summer
(e.g., Shi, 2002).

In discussing our model’s output and the underlying data
products, we wish to highlight that any discussion of product
“wet,” or “dry tendency” refers to departures from the consensus
of data products as characterized by the model’s shared product.
Such a descriptor does not represent an objective measure
of model output as compared to observed data. Thus, any
conclusions drawn regarding a product’s relative tendency in this
paper should not be taken to mean that a product is necessarily
inaccurate in its estimate of precipitation; rather, that it differs
from the consensus of the products analyzed here.

In Figure 8, we find that one of the more notable winter
trends in the discrepancies is a negative, or dry tendency in
MERRA-2 along the high precipitation region running through
northern India and into Tajikistan. Likewise, ERA5 overestimates
precipitation in those same regions with an additional wet
tendency in Afghanistan and the Hindu Kush.

Figure 9, depicting the summer discrepancies, shows a
striking wet tendency in ERA5 across the Tibetan Plateau,
indicating that there is consistently different behavior within
that product across a fairly large region. Additionally, we see
that MERRA-2 underestimates precipitation in Nepal during
monsoon season, and to a lesser extent in Pakistan as well. We
also note that TRMM has a positive discrepancy in the southeast
corner of the region and a negative discrepancy in the northwest.
Lastly, one can observe from the APHRODITE-2 discrepancy
that the product appears to be estimating precipitation at slightly
higher elevations relative to the shared product, as evidenced by
the blue regions in Nepal and northern India, with red regions
directly to their north.

In analyzing our model discrepancies, we also assessed the
correlation between the magnitude of the discrepancies and
elevation. Unsurprisingly, we found a small positive correlation
between elevation and absolute discrepancy (r < 0.1), which we
would anticipate given the increased volatility of the precipitation
process at high elevation.
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FIGURE 8 | Averaged discrepancies (in mm) for the months of December, January, and February across 10 years.

FIGURE 9 | Averaged discrepancies (in mm) for the months of June, July, and August across 10 years.

The comparisons made in the previous paragraphs are
illustrative of the types of observations and conclusions made
possible via our modeled shared product and discrepancies.
Any number of questions related to the trends and differences
found in these products over this time period could be

explored and answered—including uncertainty quantification—
using the output of our model. Additionally, the framework
presented in this article can be extended of this model
to different time periods or the integration of additional
data sets.
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5. DISCUSSION

The shared product introduced in this article captures spatial
and temporal structure from each of the four data products due
to the manner in which each source of data is incorporated
into the overall model, making it a valuable reference point
by which to judge the similarities and dissimilarities of the
products used to inform it. Because of the incorporation of
spatial and temporal dependencies within our model, along
with the natural approach to assessing posterior uncertainty
that the Bayesian methodological framework supplies, we are
provided with model output that is considerably more nuanced
and inferentially rich than a weighted average or simple mean
at all locations. Based on our analysis of the discrepancies,
our model shows a general dry tendency in MERRA-2 relative
to the shared product, a finding which coincides with trends
identified in the exploratory data analysis of section 2 and was
illustrated in Figure 1. The discrepancies suggest that MERRA-2
tends to have consistently lower precipitation estimates than the
other products in high precipitation regions during both winter
and summer. Additionally, we find that ERA5 has consistently
higher estimates of precipitation in high precipitation regions,
and that there is an additional summer wet tendency due to an
overestimation of precipitation (relative to the other products)
across the Tibetan Plateau during monsoon season, a region
that the other three products typically characterize with fairly
minimal amounts of precipitation. As far as we are aware, these
observations regarding the relative dry and wet tendencies of
MERRA-2 and ERA5, respectively, are novel findings. TRMM
and APHRODITE-2 also display some idiosyncrasies that were
touched upon in the discussion of Figures 8, 9, but we find
the discrepancies for these products to be less differentiated
on average. In our discussion of Figure 1, we observed that
TRMM and APHRODITE-2 tended to have an average anomaly
closer to zero, and after completing our analysis, we found that
they also track more closely with the shared product, both in
terms of volume and distribution of precipitation. While these
product-specific findings were obtained solely through the use
of our statistical model, additional follow-up analysis could be
performed that is oriented toward the physical and numerical
facets of the climate reanalyses that produced the data used in our
model. Such an analysis would provide insight into the reasons
behind the individual products’ tendencies and idiosyncrasies.

An additional observation we make about our model, and the
shared surface in particular, is that it is a fairly smooth process
relative to the data used to inform it. This spatial smoothness is
to be expected to an extent, given that each of the four products
has unique local behavior that we would not expect to appear
with the same magnitude in the shared process. However, we
are also conscious of the manner in which low-rank Gaussian
process approximations (such as the approach of Hughes and
Haran used here) are often criticized for over-smoothing data
(Datta et al., 2016). In analyzing our model’s output, it is possible
that some of the local spatial structure present in the data is
being pushed into the measurement error term, and that as part
of this smoothing, some of the regions with high precipitation
are seeing mass “pushed” into lower precipitation regions of our
spatial domain.

This may raise questions about the overall utility of our shared
product for use in other analyses. We are of the opinion that this
product is most useful for synoptic scale studies of precipitation
variability and trends. For models that require precipitation
data on a local and highly refined scale, it is likely that the
product produced in our analysis will not be suitable due to its
smoothness. Instead, one of the existing precipitation products
should be chosen with consideration for its idiosyncrasies as
discussed in this article.

In spite of our approach’s potential disadvantages as discussed
above, a valuable element of the shared product is that it provides
an intuitive comparison point for our modeled discrepancies.
Due to the shared product’s central behavior among the
products used in our analysis, comparison between products
and basic interpretation of discrepancies is made simpler. The
uncertainties we estimate as part of this model also provide
us with a valuable way to discern if observed differences
between products (particularly within their discrepancies) are
statistically meaningful.

The methods used here can easily facilitate the incorporation
of additional data sources. At the beginning of section 3
of this paper we specify that j ∈ {APHRODITE-2, ERA5,
MERRA-2, TRMM}. However, our method could be applied
to any collection of data sources on any collection of spatial
domains. One would merely need to fit Equation (3) for each j
using the same sampling scheme applied in this paper. It is also
worth noting that our methods—here applied to precipitation in
the Indus watershed in order to address our motivating research
questions—would be equally valid when applied to any spatial
region and most spatially dependant variables. Additionally,
the methods presented in this paper could be straightforwardly
extended into an analysis of multivariate climate products (e.g.,
precipitation and temperature) through the application of a
multivariate linear model (Genton and Kleiber, 2015).

6. CONCLUSIONS

Given the challenges related to modeling and measuring
precipitation in the Indus watershed it is difficult to know
the “truth” about precipitation in the region. Thus, when
some products are referred to as “over-” or “under-estimating”
precipitation, this is meant relative to the consensus of the
products used in this analysis. It is entirely plausible that
a product which appears to be an outlier when estimating
precipitation for a particular region is in fact the most accurate
of them all, a possibility which should not be discounted.

That said, in our analysis we found that MERRA-2 tended to
have a dry tendency, while ERA5 tended to have a wet tendency.
These tendencies are present in both winter and summer and
are most notable in the regions with high precipitation. A
notable idiosyncrasy of ERA5 was its consistent propensity to
overestimate precipitation across the Tibetan plateau during
Monsoon season.

Our analysis also produced a shared product for precipitation
that assimilated spatial and temporal structure from
APHRODITE-2, TRMM, ERA5, and MERRA-2. This product
will be available for download and usage at NSIDC, along with
all discrepancy surfaces and uncertainty estimates discussed in
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this article. Given the product’s relative smoothness, it will likely
be most useful for larger-scale studies of precipitation variability
and trends. This product is also valuable as a reference point for
understanding the discrepancies in our model.

The methodology presented in this article can be extended
to incorporate additional data sets, and should scale reasonably
well for other spatio-temporal resolutions and domains. While
precipitation was the focus of our analysis, a similar model could
be applied to other climate variables such as temperature.

Our model provides a cohesive statistical framework for
understanding the shared structure of spatially and temporally
varying data products, while simultaneously providing us with
discrepancy surfaces and uncertainty estimates that allow us to
understand how those products differ from one another and
the consensus.
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