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Snow is an important component of the terrestrial freshwater budget in high mountain

Asia (HMA) and contributes to the runoff in Himalayan rivers through snowmelt. Despite

the importance of snow in HMA, considerable spatiotemporal uncertainty exists across

the different estimates of snow water equivalent for this region. In order to better

estimate snow water equivalent, radiative transfer models are often used in conjunction

with microwave brightness temperature measurements. In this study, the efficacy of

support vector machines (SVMs), a machine learning technique, to predict passive

microwave brightness temperature spectral difference (1Tb) as a function of geophysical

variables (snow water equivalent, snow depth, snow temperature, and snow density)

is explored through a sensitivity analysis. The use of machine learning (as opposed

to radiative transfer models) is a relatively new and novel approach for improving

snow water equivalent estimates. The Noah-MP land surface model within the NASA

Land Information System framework is used to simulate the hydrologic cycle over

HMA and model geophysical variables that are then used for SVM training. The SVMs

serve as a nonlinear map between the geophysical space (modeled in Noah-MP) and

the observation space (1Tb as measured by the radiometer). Advanced Microwave

Scanning Radiometer-Earth Observing System measured passive microwave brightness

temperatures over snow-covered locations in the HMA region are used as training

data during the SVM training phase. Sensitivity of well-trained SVMs to each Noah-MP

modeled state variable is assessed by computing normalized sensitivity coefficients.

Sensitivity analysis results generally conform with the known first-order physics. Input

states that increase volume scattering of microwave radiation, such as snow density and

snow water equivalent, exhibit a plurality of positive normalized sensitivity coefficients.

In general, snow temperature was the most sensitive input to the SVM predictions. The

sensitivity of each state is location and time dependent. The signs of normalized sensitivity
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coefficients that indicate physical irrationality are ascribed to significant cross-correlation

between Noah-MP simulated states and decreased SVM prediction capability at specific

locations due to insufficient training data. SVM prediction pitfalls do exist that serve to

highlight the limitations of this particular machine learning algorithm.

Keywords: sensitivity analysis, support vector machine, brightness temperature, land surface model, high

mountain Asia

1. INTRODUCTION AND BACKGROUND

Snow is a critical component of the hydrologic cycle within the
Earth’s system (Sturm et al., 2017). Despite its importance in
global life sustenance (Barnett et al., 2005; Lau et al., 2010),
considerable uncertainty still exists regarding the total amount
of snow and its spatial and temporal variability. Various studies
have attempted to address this issue on regional scales (Anderton
et al., 2003; Machguth et al., 2006; Grünewald et al., 2010),
yet the uncertainty in the spatial and temporal variability of
snow persists on continental and global scales, particularly
in complex terrain. This is mainly due to the unavailability
of continuous, ground-based hydrometeorological observations.
Remote sensing of snow can help bridge the information gap.

Depending on the snow property or attribute being studied,
remote sensing of snow has exploited various wavelengths of
the electromagnetic spectrum. Moderate Resolution Imaging
Spectroradiometer (MODIS) collects data within the infrared and
visible bands and has been used to derive snow cover extent
products (Hall et al., 2002; Painter et al., 2009). In addition to
the pixel-based approach of Painter et al. (2009) and Sirguey
et al. (2009) produced subpixel seasonal snow cover maps of
the Southern Alps of New Zealand using MODIS data via
correction of atmospheric and topographic effects. The sub-pixel
approaches provide increased information regarding the spatial
variability of snow, however, they require accurate ancillary data
and a robust algorithm for fine resolution to inhibit addition of
uncertainty to the snow estimates at such a fine spatial scale.
NASA’s Airborne Snow Observatory studies snow depth using
an imaging spectrometer and a scanning LIDAR (Painter et al.,
2016). Passive microwave (PMW) remote sensing of snow mass
utilizes the wavelength dependency of brightness temperature
in the microwave spectrum. Snow water equivalent (equivalent
mass of snow if converted to liquid water) estimation algorithms
utilize the preferential scattering of microwave radiation by
the snow pack at a higher frequency (18.7 or 36.5 GHz)
compared to a lower frequency (10.7 or 18.7 GHz) (Chang et al.,
1982; Che et al., 2008). Foster et al. (2005) and Kelly (2009)
utilized brightness temperature spectral difference (i.e., difference
between brightness temperature measured at two different
wavelengths) to retrieve information regarding the amount of
snow water equivalent (SWE) present in the snowpack.

Conversely, PMW brightness temperature can be estimated
as a function of snow and land surface properties. Theoretical
models such as the Dense Media Radiative Transfer theory
model (Tsang et al., 2000) and Strong Fluctuation theory
model (Stogryn, 1986) as well as semi-empirical models that
integrate theoretical principles with measurement data such as

the Helsinki University of Technology (HUT) snow emission
model (Pulliainen et al., 1999) or the Microwave Emission Model
of Layered Snowpacks (MEMLS) (Wiesmann and Mätzler, 1999)
apply this inversion to predict brightness temperature from snow
characteristics (e.g., SWE, snow depth, and snow grain size).
Recent work by Forman et al. (2014) and Forman and Reichle
(2015) explored machine learning applications for brightness
temperature prediction. PMW brightness temperatures (Tb)
were estimated at multiple frequencies and polarizations using
two different machine learning techniques—Artificial Neural
Networks (ANN) and Support Vector Machines (SVM). These
machine learning algorithms map the geophysical states (also
called geophysical variables) into the brightness temperature
spectral difference space.

Machine learning techniques, though effective, are not based
on physical processes, rather they employ statistical learning
theory principles to achieve an optimum solution. Xue and
Forman (2015) explored ANN- and SVM-based Tb predictions
in North America. As relevant studies suggest (Chang et al.,
1982, 1987; Foster et al., 1984), SWE is related to Tb spectral
difference. In this study, we analyze the relative influence of
various geophysical parameters, including SWE, in predicting
brightness temperature spectral difference using well-trained
support vector machines. This study aids in determining whether
the brightness temperature spectral difference (1Tb) predictions
obtained using machine learning adhere to the fundamental laws
of physics and also assess whether SVMs are able to adequately
represent the nonlinear relationship between the specified snow
properties (predictors) and 1Tb.

2. STUDY DOMAIN

In this study, we focused on the high mountain Asia (HMA)
region (Figure 1). Known as the Third pole, it has the highest
concentration of snow and glaciers outside the polar region
(ICIMOD, 2001). It spans over parts of eight countries—
Tajikistan, Afghanistan, Pakistan, India, China, Nepal, Bhutan,
and Bangladesh and five major river basins—Amu Darya,
Syr Darya, Indus, Ganges, and Brahmaputra. The population
residing in the corresponding river basins depends significantly
on the runoff generated (Xu et al., 2009;Wester et al., 2018) which
in turn is affected by the snow and ice melting patterns.

The snowmelt from the mountainous regions in HMA affects
the runoff in each of these rivers to varying degrees (Immerzeel
et al., 2010; Lutz et al., 2014). A recent study by Armstrong
et al. (2018) showed that for elevations above 2,000 m the total
runoff in Indus, Brahmaputra, Amu Darya, and Syr Darya is
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FIGURE 1 | Map of high mountain Asia (HMA) study domain. Elevation

obtained from SRTM30 data (Table 1). The light blue area represents the

Indian Ocean. The major river basin boundaries are outlined by the colors

shown in the legend. High elevation areas receive significant snowfall during

the winter season. Purple star shows the test location site discussed in section

5.2. The red and blue crosses mark the snow-on-land and snow-on-ice test

sites, respectively discussed in section 5.3.

more dependent on snow and ice melt (approximately 65%) as
compared to seasonal precipitation especially during the summer
months, while the total runoff in Ganges is more influenced
by the monsoonal precipitation as compared to snow and ice
melt (43%). The western part of HMA has an arid climate
and the seasonal snow and glacier ice melt serve as drought
buffers during the summer months (Hagg and Mayer, 2016). The
climate is increasingly humid and more significantly influenced
by the seasonal monsoonal precipitation as onemoves toward the
eastern regions of HMA (Thayyen and Gergan, 2010).

3. SUPPORT VECTOR MACHINE
FRAMEWORK

Machine learning is a technique in which systems acquire
the ability to learn automatically without being explicitly
programmed. Systems are programmed to optimize a
performance criterion using test data (Alpaydin, 2014).
Supervised learning is a form of machine learning with prevalent
usage in remote sensing. It consists of the attainment of a
generalization ability with a focused target, i.e., the algorithm is
trained to estimate an appropriate answer (or response variable)
for unlearned questions (Sugiyama, 2015) based on example
training data. The training data input and target are specified by
the user. The machine learning technique utilized in this study is
support vector machine (SVM) regression.

SVM is a supervised learning algorithm and has been
successfully applied in various hydrological and Earth Science
applications. Asefa et al. (2006) used SVM regression for stream
flow prediction in North America (Sevier River Basin) while
Anandhi et al. (2008) performed precipitation downscaling for
a river basin in India using an SVM-based approach. Pradhan
(2013) compared the predictive ability of various machine

learning techniques (decision trees, SVM, and neuro-fuzzy
models) in mapping landslide susceptibility. Forman and Reichle
(2015) and Xiao et al. (2018) have predicted 1Tb and snow
depth, respectively, using SVM regression. Of all the various
studies that have utilized SVMs, none have focused on the
analysis of the physical rationality of trained SVMs, i.e., analyzing
whether the SVMpredictions are in conformance with first-order
physics or not.

SVM regression is based on Vapnik-Chervonenkis theory
(Vapnik and Chervonenkis, 1974; Vapnik, 1982, 1995). The SVM
learning problem is based on the assumption that there is some
unknown and non-linear dependency between an input vector
xi and scaler output yi (Kulkarni and Harman, 2011). The
dependency information source is the training data set

{

(x1, y1),
(x2, y2), (x3, y3),...., (xl, yl)

}

⊂ X × R, where X denotes the input
pattern space and R specifies the (target) real number space to
which yi belongs while l is equal to the number of training data
pairs (Vapnik and Chervonenkis, 1974). Using this training data
set, the relationship between the input vector and the target scalar
is estimated. Further detail regarding SVM regression is provided
in the Appendix.

The SVM framework is divided into training and prediction
sub-phases. In the training phase, support vector machines
are trained using known inputs and known target data. In
the latter prediction phase, the trained SVMs are employed
for prediction purposes using input data not included during
training. Further detail regarding both sub-phases is provided in
sections 3.1 and 3.2.

3.1. Support Vector Machine Training Setup
SVM training consists of selecting support vectors from the
training data set and assigning corresponding weights to the
respective support vectors in order to predict a known target
given known input (Smola and Schölkopf, 2004). Detailed
description of SVM theory is provided in the Appendix. SVM
training in this study followed the general methodology described
in Forman and Reichle (2015), although this study used a
different land surface model applied to a different part of the
globe. In this study, SVM training data consisted of land surface
model estimates of snow (SWE, snow liquid water content,
snow density, and snow temperature; Table 2) used as input
and satellite-based PMW brightness temperature (i.e., spectral
difference) observations as training targets.

3.1.1. Noah-MP Land Surface Model (SVM Training

Input Data)
Noah-Multiparameterization (version 3.6) (Ek et al., 2003; Niu
et al., 2011; Yang et al., 2011) was run within NASA’s Land
Information System (LIS). LIS is a software framework that
assimilates satellite and ground-based observational data with
advanced land surface models and computing tools to estimate
land surface states and fluxes (Kumar et al., 2006). LIS manages
the computational challenges that are introduced by the large-
scale and fine-resolution of model outputs through scalable,
high-performance computing (Peters-Lidard et al., 2007). Noah-
MP simulated geophysical variables serve as the training input
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data for SVM training, and later as the prediction input using the
trained SVMs.

Table 1 synthesizes the Noah-MP scheme options selected for
this study. Boundary conditions for Noah-MP were obtained
from the Modern-Era Retrospective analysis for Research and
Applications–Version 2 (MERRA-2) meteorological forcings
(Gelaro et al., 2017). The Land Data Toolkit (LDT) (Arsenault
et al., 2018) was utilized for data preparation for input into LIS.
SRTM30 version 2.0 (Farr et al., 2007) was up-scaled to 0.25◦

grid size from 30 m as an arithmetic average using the LDT to
provide topography data for Noah-MP. Initial conditions were
adjusted using a spin-up time of 22 years starting in January 1980
and ending in September 2002. The 9-year study period extended
from September 2002 to September 2011. The simulation run
did not include glacier physics due to the lack of a glacier model
within the LIS (version 7.2) framework.

Four Noah-MP modeled geophysical variables were used
for SVM training and prediction (Table 2; Figure 2). Selection
criteria for the geophysical variables to be used as SVM
input included their first-order physical effect on brightness
temperature. Selected Noah-MP geophysical variables were then
rescaled (via simple unit conversion) to comparable dynamic
ranges such that the SVM can “learn” from each signal during
training. Table 2 presents the unit conversion factors for each
geophysical variable. This step was performed to remove any
undue influence of the order of magnitude of any individual
state based solely on the selection of units. For example, a SWE
signal with units of meters could be less heavily weighted during
training than the same signal with units of centimeters even
though the physical amount of SWE is identical. The selection
of units, in turn, has influence on the final selection of support
vectors and assignment of weights that result from the training
procedure, which necessitates some form of data preprocessing
(data conditioning) prior to the training phase. Here we use a
simple unit conversion to linearly rescale the input states into a
more consistent space for use during training.

Interactive Multisensor Snow and Ice Mapping System (IMS)
snow cover data (NIC, 2008) was used for quality control
purposes. Only those Noah-MP simulation data points were
included in the training data when the presence of snow was
corroborated by the IMS snow cover product. Also, a lower
limit of 1cm was fixed for SWE and all simulation instances
of SWE less than the threshold value were excluded from the
training data.

3.1.2. AMSR-E Brightness Temperature (SVM Training

Target Data)
SVM training targets consisted of spectral differences computed
from PMW brightness temperatures (Figure 2) collected by the
Advanced Microwave Scanning Radiometer for Earth Observing
Systems (AMSR-E). AMSR-E is a 12-channel, six-frequency,
passive-microwave radiometer. Only the 10.7, 18.7, and 36.5
GHz frequency channels were used here due to their relevance
and applicability to snow remote sensing (Chang et al., 1982;
Kelly, 2009). Table 3 lists the spectral differences utilized in
this analysis. Noah-MP modeled states were generated on
a 0.25 × 0.25◦ equidistant cylindrical grid. To maintain

TABLE 1 | Selection of physical parameterizations in LIS for use with Noah-MP.

Model parameterizations Selected input or

parameterization scheme

Elevation SRTM30-v2.0 Farr et al., 2007

Landcover MODIS (IGBPNCEP) (Default option)

Friedl et al., 2002

Slope, Albedo, and Greenness NCEP (default option)

Vegetation Dynamic vegetation

Canopy stomatal resistance Ball-Berry method

Runoff and groundwater Simple groundwater model, SIMGM

Niu et al., 2007

Supercooled liquid water and frozen

soil permeability

NY06 Niu and Yang, 2006

Surface-layer drag coefficient General Monin-Obukhov similarity

theory

Snow surface albedo Biosphere-Atmosphere Transfer

Scheme

Partitioning of rain and snowfall Jordan91 Jordan, 1991

Snow and soil temperature Semi-implicit option

Lower boundary of soil temperature Noah native option

Boundary conditions MERRA2 Gelaro et al., 2017

Alternate boundary conditions

(section 5.1.1)

CHIRPS2 (precipitation only) +

ECMWF (excluding precipitation)

Molteni et al., 1996; Funk et al., 2015

TABLE 2 | List of Noah-MP simulated geophysical variables used as input for

SVM training and prediction with corresponding units and conversion factors.

Geophysical variable Symbol Units Typical

range

Conversion

factor

Snow water equivalent SWE m 0.1–1 10

Snow density ρsnow kg/m3 125–400 0.01

Snow liquid water content SLWC mm 0–1 1

Top-layer snow temperature ST K 240–265 0.01

spatial consistency between Noah-MP output and AMSR-
E observations, the enhanced resolution AMSR-E brightness
temperature measurements (Long and Brodzik, 2016) were
upscaled to the 0.25× 0.25◦ equidistant cylindrical grid using an
arithmetic average.

3.1.3. Parameter Selection for Fortnightly SVMs
The LIBSVM library (Chang and Lin, 2011) provided by National
Taiwan University was used in the implementation of the SVM
algorithm. SVM implementation using LIBSVM requires three
parameters to be set manually: (1) C, (2) ε, and (3) γ (further
detail regarding each of the parameters is provided in the
Appendix). C is defined in this study as the range of the
training targets (yi). This selection is based on the methods of
Mattera and Haykin (1999) where C = max

{

y
}

− min
{

y
}

.
Selection of ε and γ was done using a two phase cross-validation
method (Forman and Reichle, 2015). This involved formation
of two subsets, A and B, from the total nine-year training data.
Subset-A data was used to train a test SVM. The subset-A data
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FIGURE 2 | Schematic of the SVM prediction framework (see Table 3 for details about 1Tb).

TABLE 3 | List of brightness temperature (Tb) spectral difference training targets

used during SVM training.

Symbol Description Unit

1Tb10.7–18.7 V Tb10.7 GHz, vert. pol. − Tb18.7 GHz, vert. pol. K

1Tb10.7–18.7 H Tb10.7 GHz, horz. pol. − Tb18.7 GHz, horz. pol. K

1Tb10.7–36.5 V Tb10.7 GHz, vert. pol. − Tb36.5 GHz, vert. pol. K

1Tb10.7–36.5 H Tb10.7 GHz, horz. pol. − Tb36.5 GHz, horz. pol. K

1Tb18.7–36.5 V Tb18.7 GHz, vert. pol. − Tb36.5 GHz, vert. pol. K

1Tb18.7–36.5 H Tb18.7 GHz, horz. pol. − Tb36.5 GHz, horz. pol. K

Tb subscripts refer to the microwave radiation frequency and polarization. “V” stands for

vertical polarization while “H” specifies horizontal polarization.

trained SVM was then used to predict the subset-B data and
the corresponding mean squared error (MSE) was computed
(Equation 6). This process was repeated across a range of ε and
γ values. The same procedure was then employed for subset-
B and mean squared error values (for various combinations of
ε and γ ) were calculated by predicting subset-A using the subset-
B trained SVM. All of the MSE values were compared and the
corresponding ε and γ pair that yielded the lowest absolute
mean squared error was selected for use during the final phase
of SVM training.

The final phase of training used the selected optimal
parameter values of ε and γ from the first phase and then training
was completed using the entire 9-year AMSR-E observational set.
A separate and independent SVM was generated at each grid
cell for each fortnight (14-day duration) in the study period.
The SVM training data set for a given fortnight also included
data from 2-weeks before and 2-weeks after the fortnight of
interest. Thus, each SVM training data consisted of a 6-week
period (selected from eight of the total 9 years of available
data). The 2-week overlap at the beginning and ending of each
fortnightly SVM was intended to better maintain continuity
between temporally consecutive SVMs. To minimize the effects
of wet snow, only observations gathered during the nighttime
AMSR-E overpass were used during training. While training for
a certain fortnight, f, in a certain year, Yf , the AMSR-E data
from all the years except year Yf was used for training. Thus,
each fortnight was trained using the relevant 6-week data from

the remaining 8 years. AMSR-E observations that were excluded
from training were later used for validation purposes.

3.2. SVM 1Tb Prediction
SVM input consisted of four geophysical Noah-MP states
whereas the output consisted of six independent brightness
temperature spectral differences and polarization combinations
(Figure 2). SVM output validation was accomplished using the
Yf year fortnightly data that was omitted during training for
each trained SVM such that split sampling validation techniques
were utilized. Figure 3 presents the time-averaged bias and
RMSE (formulae in Appendix) for two different vertically-
polarized spectral differences (subplots Figures 3A,B show
results for 1Tb10.7–36.5 V whereas Figures 3C,D show results
for 1Tb18.7–36.5 V) predicted by the SVMs with respect to the
AMSR-E observations not used during training. SVM prediction
accuracy varies considerably across the study area. Positive
as well as negative bias values are apparent in Figures 3A,C.
However, most of the bias values for both spectral differences
lie within the −0.5 and 0.5 K range. Both spectral differences
have relatively small, domain-averaged bias magnitudes. This
relative unbiased-ness is a result of the statistical principles on
which the SVM algorithm is based. The RMSE magnitude varies
spatially with most of the values being <10 K. The domain-
averaged RMSE for 1Tb10.7–36.5 V is greater than 1Tb18.7–36.5 V.
In general, a larger RMSE is observed in areas that are collocated
with glaciers. One explanation behind this is the absence of a
glacier module in the Noah-MP (version 3.6)/LIS (version 7.2)
framework and hence, the SVM-based predictions lack explicit
glacier-related information. Similar results were observed for
the remaining spectral differences as well (results not included).
Coarse resolution of the 1Tb coupled with mountainous
topography introduces complexity (primarily originating from
sub-pixel variability) that is sometimes not fully accounted by the
SVM prediction framework, and hence, poor accuracy can ensue.

In general, SVM predictions were able to capture the seasonal
variability of 1Tb. Figure 4 displays the seasonal variability (for
the 2004–2005 snow season) in AMSR-E observed1Tb vs. SVM-
based predictions of 1Tb for five major river basins in HMA.
All the boxplots were generated using those pixels only that
had Noah-MP predicted SWE >1 cm. Figure 4 shows that the
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FIGURE 3 | Average bias and RMSE for SVM-based 1Tb predictions vs. AMSR-E observations (2002–2011) across snow-covered areas in HMA. Black lines

represent country demarcations while the white regions represent areas with limited (or no) snow coverage during the study period.

trained SVMs are able to simulate the seasonal change in the
median values of 1Tb for all of the basins except the Ganges
river basin. There are, however, considerable differences in the
inter-quartile ranges for particular months within each basin.
The highest difference is seen in the Ganges river basin, which
could be due to the presence of vegetation and other brightness
temperature influencing features that are not explicitly accounted
for by the four Noah-MP states used as input for trained SVMs,
leading to decreased SVM prediction accuracy.

4. NORMALIZED SENSITIVITY
COEFFICIENT (NSC)

A sensitivity analysis was performed to examine the change
in model output relative to a change in each predictor
input (McCuen, 2016). For this specific study, normalized
sensitivity coefficients (NSC), presented in Equation 1, were
computed to assess the sensitivity of a well-trained SVM
to each Noah-MP modeled state variable used as input for
SVM prediction (Figure 2). The NSC can be approximated as
(Willis and Yeh, 1987):

NSC =
∂Mj

∂Pi
∗

Poi
Mo

j

≈
Mi

j −Mo
j

1Pi
∗

Poi
Mo

j

(1)

where i = parameter index, j = output metric index, Mi
j =

perturbed metric value, Mo
j = initial metric values, Pi = initial

state value, and 1Pi = amount of parameter perturbation. It is
assumed that the model output changes linearly over a small
perturbation. NSC magnitude reflects the importance of the
perturbed parameter while the sign indicates the direction of the
relationship between the input state and the predicted output.

Each geophysical variable was perturbed one-at-a-time while
maintaining the original, nominal value of all the other predictor
states. The observed change in output relative to the induced
perturbation is a measure of the effect a change in that input state
will have on the SVM predicted output. This method assumes
independence between the individual states since only one input
state is perturbed at a time while the other states remain constant.
However, the sensitivity coefficient calculated is often affected by
values of all the states and not just the one that is perturbed. The
calculated NSC value is assumed to represent the effect of the
perturbed state only on SVMoutput while the other states remain
unaffected by that perturbation. In reality, this assumption is only
valid for states that are uncorrelated and mutually independent.

The amount of parameter perturbation, 1Pi, was selected
manually through a studied process. The perturbation size needs
to be large enough to detect a change in the output, yet
small enough that the model behavior remains linear. A range
of perturbation percentages was tested and the corresponding
relative change was analyzed. Figure 5 displays the variability in
relative change in 1Tb18.7–36.5 V with respect to perturbations
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FIGURE 4 | Seasonal variability in (Left) observed AMSR-E 1Tb and (Right) SVM-predicted 1Tb for the five major river basins in HMA. Only the 2004–2005 snow

season is presented here for visual clarity. Box plots for each month include 1Tb values from locations with a simulated SWE>1 cm for all the pixels within the basin

boundary. The blue box represents the inter-quartile range (IQR), the red line is the median, and the whiskers encompass 25% percentile − 1.5*IQR and 75%

percentile + 1.5*IQR, respectively.
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FIGURE 5 | Variability in relative change in SVM-based 1Tb18.7–36.5V
predictions when modeled SWE (via Noah-MP) is perturbed at a point location

in HMA (36.1250◦N, 74.1250◦E) on 03 Jan 2004.

in SWE. Relative change vs. amount of perturbation plots for
all the other states were also generated (results not shown).
After studying a range of locations and days, a perturbation
value of ±2.5% (i.e., total perturbation of 5% about the nominal
value) was selected. That is, a positive and a negative (equal
magnitude) perturbation was applied and a centered difference
was calculated about the nominal value. This was done as
a secondary check to remove the influence of model output
behaving non-linearly within the perturbation limits for any
day or location.

5. SENSITIVITY ANALYSIS RESULTS

The relative sensitivity of SVM-predicted brightness temperature
spectral difference (1Tb) to the Noah-MP modeled input states
was studied spatially as well as temporally using normalized
sensitivity coefficients. A synthesis of the analyses carried
out follows.

5.1. Spatial Variability of NSCs
The annual precipitation cycle is divided into snow accumulation
and snow ablation periods for analysis. The snow accumulation
period generally corresponds to dry snow conditions whereas
the snow ablation period, in general, represents a relatively wet
snowpack. This division is based on the fact that dry vs. wet snow
interacts differently with the microwave radiation emitted by the
surface below the snowpack (Chang et al., 1982). The climatology
of the Western HMA region places the main snow accumulation
period within the months of December, January, and February
whereas for Central and Eastern HMA snow accumulation and
ablation events can occur simultaneously throughout the year
(Ageta and Higuchi, 1984; Ménégoz et al., 2013). Various studies
have attempted to locate the melt onset and end date in HMA
(Panday et al., 2011; Smith et al., 2017; Xiong et al., 2017).
Although these studies differ regarding the exact dates, they tend
to agree on the general spatiotemporal patterns of snowmelt in
HMA. Snow ablation generally begins in April in the Western
and Central HMA, while it can start earlier in the Eastern HMA
region. For consistency, we select the months of December,

January, and February to represent the snow accumulation period
and April, May, and June to specify the ablation period over the
whole HMA region. Snow accumulation and ablation periods
were restricted to the three most important months to lessen
excessive temporal averaging of the NSCs.

NSCs were calculated only for “snow-covered” areas, i.e.,
at points in time and space where SWE was greater than 1
cm. The NSC maps in Figures 6, 7 represent the relationship
between each Noah-MP input state and the SVM-predicted
1Tb18.7–36.5 V for snow-covered areas in HMA during the snow
accumulation and ablation periods, respectively. In Figure 6, the
map of snow density NSCs averaged over the snow accumulation
period shows that the majority of the pixels have a positive
NSC sign. This is physically rational because for a denser snow
pack in idealized conditions, microwave volume scattering at
higher frequency (i.e., 36.5 GHz) will increase, which will result
in an increased spectral difference magnitude. Higher sensitivity
to snow density is observed in the Western and Central HMA
region as compared to Eastern HMA. For snow temperature,
the NSCs are predominantly negative values. NSC magnitudes
for snow temperature are relatively higher in the upper Tibetan
plateau, indicating the relatively higher sensitivity of SVM 1Tb
to snow temperature at this location. The Amu darya basin and
the upper Indus basin exhibit relatively greater SWE sensitivity.
In an idealized scenario, SWE is expected to have positive NSCs
considering its influence on 1Tb, but the presence of positive
as well as negative NSCs is apparent during both snow periods.
These NSC signs originate, in part, due to poor SVM predictive
accuracy at these locations as well as due to cross-correlated
Noah-MP inputs. Detailed discussion regarding these reasons is
included in section 6.

Relative to the snow ablation period (Figure 7), there is a
general increase in NSC magnitudes apparent during the snow
accumulation period (Figure 6) as the amount of snow mass and
snow extent increases. In terms of SVM-prediction, this can be
interpreted as the influence of an increased number of training
data points since training is done using snow-covered pixels only.

Comparing NSC results for horizontally- vs. vertically-
polarized brightness temperature spectral differences, it was
observed that both polarizations yield similar results. A slight
increase in NSC magnitudes was seen for the vertically-polarized
spectral differences as compared to the horizontally-polarized
spectral differences. This could be explained by the fact that
vertically-polarized microwave radiation is relatively less affected
by surface ice crusts or internal ice layers present within
the snow pack relative to horizontally-polarized microwave
radiation (Foster et al., 2011). Considering the lack of model
physics related to internal ice layers or surface ice crusts in
the snow model routines within Noah-MP (version 3.6), it is
expected that the SVM framework will render better results for
vertically-polarized brightness temperature spectral difference.
Spatial variability in NSCs observed for each geophysical variable
for other spectral differences mentioned in Figure 2 (results
not shown) presented quite similar sensitivity magnitudes and
signs. Location specific features (e.g., glaciers) affected the
various polarization and spectral difference combinations in a
similar manner.
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FIGURE 6 | Maps of NSCs from SVM-based predictions of 1Tb18.7–36.5 V averaged over the snow accumulation months (Dec, Jan, Feb) from 2002 to 2011 for

snow-covered areas in HMA. (A) Snow density [kg/m3 ], (B) snow temp. (top layer) [K], (C) snow water equivalent [m], and (D) snow liq. water content [mm].

FIGURE 7 | Maps of NSCs from SVM-based predictions of 1Tb18.7–36.5 V averaged over the snow ablation months (Apr, May, Jun) from 2002 to 2011 for

snow-covered areas in HMA. (A) Snow density [kg/m3 ], (B) snow temp. (top layer) [K], (C) snow water equivalent [m], and (D) snow liq. water content [mm].
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5.1.1. Influence of Model Boundary Conditions
Noah-MP boundary conditions were characterized in this
analysis by MERRA-2 (Gelaro et al., 2017). Influence of the
boundary conditions on geophysical variables’ simulation varies
from model to model. In cases where the model simulation is
highly sensitive to the boundary conditions used, it is expected
that the errors or uncertainties in the boundary conditions will
be propagated to the model simulation results. Hence, in order
to explore the influence of MERRA2 boundary conditions on
the sensitivity results, an alternative set of meteorological forcing
fields was used to run the Noah-MP land surface model.

The alternative boundary condition product used was an
amalgamation of precipitation data taken from the Climate
Hazards Group InfraRed Precipitation with Station data-version
2 (CHIRPS-2; Funk et al. 2015) and all other forcings acquired
from the European Centre forMedium-RangeWeather Forecasts
(ECMWF; Molteni et al. 1996). The selection of this particular
combination data-set is based on the comparative analysis of
boundary conditions used for Noah-MP carried out by Yoon
et al. (2019). NSCs for each geophysical variable (in space and
time) were calculated and compared with the corresponding
MERRA-2 results. Figure 8 presents the spatial variability in
NSCs for 1Tb18.7–36.5 V averaged over the snow accumulation
period. Comparing Figures 6, 8, it can be observed that the
corresponding NSCs for each state display similarity in NSC
signs but vary in NSC magnitude. SVM 1Tb prediction is
more sensitive to MERRA-2 forced Noah-MP output (higher
NSC magnitudes) as compared to ECMWF+CHIRPS-2 forced
Noah-MP output. It can, thus, be concluded that the sensitivity
magnitude is indeed affected by the Noah-MP model boundary
conditions used, however, the NSC signs are similar for
both forcings.

5.2. Relative Importance of Noah-MP Input
States for SVM Prediction
Spatial analysis of NSCs highlighted the location specificity
of SVM predictive capabilities. A representative test location
within the study domain (Figure 1 shows location of test site—
37.8750◦N, 75.3750◦E) was selected based on the SVM input
state sensitivity, the prediction accuracy (1Tb18.7–36.5 V mean
bias= 0.024 K and 1Tb18.7–36.5 V mean RMSE = 3.142 K), and
the absence of sub-pixel glacier ice [sub-pixel glacierized area
fraction obtained from the Global Land Ice Measurements from
Space (GLIMS) database; Kargel et al. 2014]. The NSC of each
state at the test location was plotted (Figure 9) to gain further
insight into the relative importance of individual states. Figure 8
represents location specific results averaged over 3 months.
However, it must be considered that different pixels can have
different state responses on different days.

For the snow accumulation period (Figure 9A), SLWC shows
zero sensitivity, which could be explained by the general absence
of SLWC during the (winter) snow accumulation months when
the snow is relatively dry. Snow temperature of the top layer
of the snow pack exhibits the highest general sensitivity during
both snow periods (Figures 9A,B). Sensitivity of SVM-derived
1Tb to SWE is, in general, relatively low compared to other
tested Noah-MP states for all spectral differences (results not

shown) during both snow periods. Snow density has a positive
sign for the vertically-polarized 1Tb and a negative NSC sign for
the horizontally-polarized 1Tb during the snow accumulation
period (Figure 9A). In an idealized scenario, snow density is
expected to be positively related to 1Tb. Considering that this
test location was selected due to its low RMSE, the irrational snow
density NSC sign for horizontally-polarized 1Tb seems counter-
intuitive. This could possibly represent a case of correctly
predicting 1Tb, but for wrong (physically irrational) reason.
The term “irrational” is used to reflect a statistical quantity
that differs from the basic physical principles. Irrational and
physically inaccurate NSCs refers to NSC signs that defy the
first-order relationship between 1Tb and each of the input
predictors. Figure 9B displays the same NSC signs for both
spectral differences during the snow ablation period. The NSC
signs seem to be representing the physically-rational first-order
relation between1Tb and the individual states. The horizontally-
polarized spectral difference shows higher NSC magnitudes.
However, it seems both polarizations are representing a case of
achieving the right answer for the right reason.

5.3. Conformance Between SVM-Based
Predictions and First-Order Physics
Even though the SVM regression for 1Tb estimation has
been shown to capture the first-order physical response here
and elsewhere (Forman and Reichle, 2015; Xue and Forman,
2015), a trained SVM is based on statistical learning theory
principles and is by nature a statistical model rather than
a physics-based model. If the training data (both input and
target data) provided is erroneous or insufficient, the SVM has
a tendency to behave similar to a curve fitting function. In
such as case, the prediction accuracy would be high despite
inconsistency with first-order physics. This phenomenon is
described through two test locations (Figure 1 shows location of
test sites) representing snow-on-land (36.1250◦N, 69.6250◦E—
Figure 10A) vs. snow-on-ice, i.e., a glaciated pixel (38.8750◦N,
72.3750◦E—Figure 10B). The GLIMS dataset (Kargel et al., 2014)
provided glacier outlines which were used to develop a binary
glacier mask. The glacier mask was then upscaled to the 0.25
× 0.25◦ grid scale and the sub-pixel glacier percentage was
calculated based on the original GLIMS data.

Figure 10 highlights the difference between obtaining the
right answer for the right reason vs. the right answer for the
wrong reason. Figure 10A displays an increase in SVM predicted
1Tb with respect to a corresponding increase in Noah-MP
simulated SWE for a location without any glacial coverage. Thus,
Figure 10A represents the electromagnetic response of snow-on-
land. In contrast, Figure 10B shows good SVM 1Tb prediction
ability at a location with significant glacierized area coverage, but
without the benefit of modeled glacier states because Noah-MP
(version 3.6) does not include glacier physics. Instead, the same
terrestrial snow states (albeit at a different location) that were
used to predict 1Tb in Figure 10A for snow-on-land are used
to predict 1Tb for snow-on-ice even though the corresponding
electromagnetic response is different (Ulaby et al., 2014). Not
accounting for all the relevant physical processes can introduce
structural error in the trained SVMs. The irrational negative NSC
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FIGURE 8 | Same as Figure 7 except using ECMWF+CHIRPS-2 as the precipitation boundary conditions to Noah-MP. White regions represent the areas that were

either not snow-covered or where snow coverage in time was insufficient for SVM training. (A) Snow density [kg/m3], (B) snow temp. (top layer) [K], (C) snow water

equivalent [m], and (D) snow liq. water content [mm].

FIGURE 9 | Relative importance of geophysical variables (via Noah-MP) for SVM-based predictions of 1Tb18.7–36.5 averaged over the (A) snow accumulation (dry)

period [Dec, Jan, Feb] and (B) snow ablation (wet) period [Apr, May, Jun] at a point location in HMA (37.8750◦N, 75.3750◦E).

signs for SWE observed in Figures 6, 7 often result from cases like
these. This is a useful reminder that statistical methods can give
the correct answer but not always for the proper reason.

AMSR-E 1Tb observations also contain signal noise and
measurement errors. The encircled portion of the timeseries

in Figure 10A highlights the discrepancies that arise when the
SVMs are trained using noisy data (AMSR-E observations).
Unexplained noise in the training data can also give rise
to an under-determined system, and hence, poor SVM
prediction ensues.
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6. DISCUSSION

Figure 3 presented the goodness-of-fit statistics of SVM for
the whole study area. There are similar patterns visible
in all four maps. Poor prediction accuracy is apparent in
Afghanistan (32◦N to 35◦N, 67◦E to 70◦E). One primary
reason for the comparatively large errors is the lack of SVM
training data in this region. Noah-MP geophysical states data
for snow-covered areas and time periods only was used
during training. Since the total number of snow days in
this region is much less (Bair et al., 2018) as compared
to the other parts of HMA, SVM training is not adequate,
and thus poor accuracy ensues. SVM predictions were able
to capture the seasonality of the AMSR-E observed 1Tb in
the major HMA river basins, except for the Ganges river
basin (Figure 4).

FIGURE 10 | Timeseries of SVM-based predictions of 1Tb18.7–36.5 V along

with AMSR-E 1Tb18.7–36.5 V observations for (A) snow-on-land at a location

with no glacier-covered areas and (B) location with significant sub-pixel

glacierized areas. Sub-pixel glacier percentage is calculated from the GLIMS

dataset (Kargel et al., 2014). The encircled portion in (A) highlights the

significant noise in the AMSR-E observations during the ablation period.

TABLE 4 | Cross-correlation matrix between Noah-MP simulated states for year

2004.

SWE ρsnow SLWC ST

SWE 1.00 0.69 0.76 0.11

ρsnow 0.69 1.00 0.54 0.34

SLWC 0.76 0.54 1.00 −0.07

ST 0.11 0.34 −0.07 1.00

SWE, snow water equivalent; ρsnow, snow density; SLWC, snow liquid water content; ST,

top-layer snow temperature.

Most of the normalized sensitivity coefficients in Figures 6, 7
showed conformity with first-order physics, however irrational
and physically inaccurate NSC signs were also observed for some
instances. Poor predictive capability highlighted by high RMSE
in certain locations (Figure 3) is one reason for the existence
of irrational NSC signs. Low prediction accuracy indicates
the absence of accountability of contributions made by some
pertinent physical states, which can, in turn, fill the gaps rendered
by unexplained variability in the SVMmodel formulation.

In this study, only four geophysical variables were utilized
in an attempt to account for all the relevant physical processes
that affect PMWbrightness temperature over snow-covered land.
Thus, it is already acknowledged that these four states cannot
account for all the factors that influence the spectral difference
measurements observed by AMSR-E. The unexplained variability
will, in part, affect the accuracy of the spectral difference
predictions rendered using the trained SVMs. One solution is
to increase the number of geophysical variables used in SVM
training. It is known that increasing the number of relevant
states used for prediction will decrease the RMSE, however, it
will also decrease the model output sensitivity to snow mass
(Xue and Forman, 2017), which is the variable of interest in the
assimilation scheme designed to improve water cycle modeling in
mountainous terrain.

Another factor that affects the sensitivity of each state is the
inter-correlation between the Noah-MP input states. When a
single state is perturbed, e.g., snow density, SWE is expected to
undergo some change as well (assuming that the snow depth
remains the same) since SWE is equal to the product of snow
density and snow depth. During individual state perturbation,
we ignore this physical connection. By not taking into account
the cross-correlation between the geophysical variables, the
accuracy of the NSCs is compromised. An example of the
extent of cross-correlation is presented by the cross-correlation
matrix of all Noah-MP input states in Table 4. High cross-
correlation is witnessed between SWE and snow density. During
the snow accumulation period, in the absence of snow-melt, as
the snow pack increases in depth, the snow density increases via
compaction, and hence, the positive correlation.

Further, the SVM model formulation is highly influenced by
the training data that is used as input or target data during the
SVM training phase. Errors in Noah-MP simulated states (due to
model structure error, parameter error, or boundary condition
error) can reduce the effectiveness of SVM training. Also, the
presence of observation error (noise) and sub-pixel variability
(e.g., sub-pixel lakes or glaciers) in1Tb satellite observations can
translate into poor SVM prediction that can result in irrational
sensitivity coefficients.

7. CONCLUSION

The aim of this study was to analyze the conformance to
first-order physics of a passive microwave (PMW) brightness
temperature spectral difference (1Tb) machine learning
prediction mechanism for snow-covered land in the HMA
region. A sensitivity analysis was utilized to investigate support
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vector machine (SVM) predictions of PMW 1Tb as a function
of Noah-MP modeled geophysical variables. AMSR-E spectral
difference measurements over snow-covered areas in HMA were
used for training the SVMs. Normalized sensitivity coefficients
were calculated to analyze the relative influence of each state on
SVM 1Tb prediction.

Sensitivity analysis results generally conform with the known
first-order physics. Most of the NSC signs seem physically
rational, although location specific discrepancies do exist. Higher
NSC magnitudes were observed during the snow accumulation
period, likely due to an increase in the training data (i.e.,
number of snow-covered pixels). During both snow periods (i.e.,
accumulation and ablation) for spectral difference, 1Tb18.7–36.5,
the modeled snow temperature generally demonstrates the
highest sensitivity. SWE has relatively low NSC magnitudes
during both snow seasons and for all the spectral differences
tested. However, SWE sensitivity varies spatially and temporally.
Recent studies have utilized SVM as an observation operator
within data assimilation frameworks (Forman and Xue, 2017;
Xue and Forman, 2017; Xue et al., 2018). If such a methodology
is performed over HMA, then it is expected that the utilization
of SVM within a data assimilation framework would benefit
those areas the most that have high sensitivity to SWE or high
sensitivity to other geophysical variables that have high cross-
correlation with SWE (such as snow depth and snow liquid water
content). From Figures 6, 7, it is observed that the Western and
parts of Central HMA region has relatively higher sensitivity to
SWE, therefore it is expected that SWE estimation would be most
improved by1Tb assimilation in the correspondingWestern and
parts of Central HMA region.

The sensitivity results suggest that the NSC value obtained
for each Noah-MP input state is influenced by a number of
concurrent and interacting physical processes, cross-correlation

between the input states, and the effect of location specific
features such as glaciers. These issues highlight the fact that
if a SVM is trained on physically irrational or inconsistent

input and target data the predictions obtained will also be
physically irrational and erroneous. This is one of the major
pitfalls of machine learning. It is, therefore, imperative to analyze
the quality and accuracy of the training data before SVM
model formulation.
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