Impact Factor 2.892 | CiteScore 2.74
More on impact ›

Original Research ARTICLE Provisionally accepted The full-text will be published soon. Notify me

Front. Earth Sci. | doi: 10.3389/feart.2019.00216

Terrain induced biases in clear-sky shortwave radiation due to digital elevation model resolution for glaciers in complex terrain

  • 1The University of Utah, United States
  • 2University of Washington, United States

Advancements in remote sensing, along with greater access to high spatial and temporal resolution imagery, have improved our ability to model glacier surface energy and mass balance in remote regions of complex terrain, such as High-mountain Asia (HMA). In general, net shortwave (SW) radiation accounts for the majority of energy available on a glacier surface during the summer months, suggesting that SW modeling errors can critically impact surface energy balance estimates. In this study, we model the clear-sky SW irradiance for a group of glaciers in the Everest region of HMA using a high-resolution (8-meter) digital elevation model (DEM) composite derived from commercial stereo satellite imagery. We then systematically downsample this DEM and considered the effect on incoming SW irradiance, with a sensitivity analysis for standard terrain attributes. The slope and aspect (combined) and topographic shading have the greatest impact on daily SW irradiance and also introduce a larger SW bias when DEM resolution is downsampled. Our results show that modeled incident SW is overestimated as resolution becomes coarser. For 10 selected glaciers in the Everest region, decreasing spatial resolution from 8 to 30 meters results in a range of average daily biases between +20 to +60 Wm-2 (or ~7 to 20%) at some high and low elevations, and an average bias of more than +100 Wm-2 (~33%) as resolution is coarsened to 500 meters. In order to determine the bearing these results have on surface melt, we explore the diurnal variability of this bias. Additionally, we compare our results with modeled incident SW using several global DEM products (ASTER, SRTM, and ALOS) to evaluate error introduced by lower resolution. Models using the 30-meter products show an overall average daily SW bias of +24 Wm-2 (or ~8%) across elevation with some elevations showing a bias up to +60 Wm-2 (~20%) on multiple glaciers. Taken together, our results demonstrate the value of high-resolution data to correct biases in modeled SW radiation and constrain uncertainties for glacier energy balance modeling in regions of complex terrain.

Keywords: solar radiation, modeling, topography, energy balance, shortwave radiation, glaciers, Digital elevation model

Received: 01 May 2019; Accepted: 07 Aug 2019.

Edited by:

Markus M. Frey, British Antarctic Survey (BAS), United Kingdom

Reviewed by:

Jakob Steiner, Utrecht University, Netherlands
Isabelle Gouttevin, Météo-France, France  

Copyright: © 2019 Olson, Rupper and Shean. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence: Mx. Matthew Olson, The University of Utah, Salt Lake City, United States,