
feart-07-00221 September 10, 2019 Time: 14:35 # 1

MINI REVIEW
published: 11 September 2019
doi: 10.3389/feart.2019.00221

Edited by:
Rolf Hut,

Delft University of Technology,
Netherlands

Reviewed by:
Lutz Breuer,

University of Giessen, Germany
Peter M. Marchetto,

University of Minnesota Twin Cities,
United States

Chet Udell,
Oregon State University,

United States

*Correspondence:
Feng Mao

f.mao@bham.ac.uk

Specialty section:
This article was submitted to

Hydrosphere,
a section of the journal

Frontiers in Earth Science

Received: 19 March 2019
Accepted: 13 August 2019

Published: 11 September 2019

Citation:
Mao F, Khamis K, Krause S,

Clark J and Hannah DM (2019)
Low-Cost Environmental Sensor

Networks: Recent Advances
and Future Directions.

Front. Earth Sci. 7:221.
doi: 10.3389/feart.2019.00221

Low-Cost Environmental Sensor
Networks: Recent Advances and
Future Directions
Feng Mao* , Kieran Khamis, Stefan Krause, Julian Clark and David M. Hannah

School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, United Kingdom

The use of low-cost sensor networks (LCSNs) is becoming increasingly popular in
the environmental sciences and the unprecedented monitoring data generated enable
research across a wide spectrum of disciplines and applications. However, in particular,
non-technical challenges still hinder the broader development and application of LCSNs.
This paper reviews the development of LCSNs over the last 15 years, highlighting trends
and future opportunities for a diverse range of environmental applications. We found air
quality, meteorological and water-related networks were particularly well represented
with few studies focusing on sensor networks for ecological systems. Furthermore,
we identified bias toward studies that have direct links to human health, safety and
livelihoods. These studies were more likely to involve downstream data analytics,
visualizations, and multi-stakeholder participation through citizen science initiatives.
However, there was a paucity of studies that considered sustainability factors for the
development and implementation of LCSNs. Existing LCSNs are largely focused on
detecting and mitigating events which have a direct impact on humans such as flooding,
air pollution or geo-hazards, while these applications are important there is a need
for future development of LCSNs for monitoring ecosystem structure and function.
Our findings highlight three distinct opportunities for future research to unleash the full
potential of LCSNs: (1) improvement of links between data collection and downstream
activities; (2) the potential to broaden the scope of application systems and fields; and (3)
to better integrate stakeholder engagement and sustainable operation to enable longer
and greater societal impacts.

Keywords: sensor network, low-cost, environment, monitoring, internet of thing, information and communication
technology

INTRODUCTION

In recent years there has been a marked increase in the use of low-cost sensor networks (LCSNs)
in the environmental sciences to address both pure research questions and applied management
issues (Benedetti et al., 2010; Ojha et al., 2015; Prasad, 2015). As sensor networks with low-cost
components in the setup, the rise of LCSNs has been driven by a number of factors including:
the reduced cost of microcontrollers, communication modules and environmental sensors (Fisher
et al., 2015), and the open science movement, which has seen the research community readily
sharing designs, underlying software and firmware and data (Pearce, 2013). While there are some
trade-offs with regards to robustness, calibration requirements and accuracy of low cost sensors
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when compared to high–end commercial sensors (Castell et al.,
2017), the potential for greatly increased spatial coverage will
facilitate new insights into environmental process dynamics
(Krause et al., 2015). In addition to the low-cost, a key
advantage of open source electronics and “DIY” sensor networks
is that end-users can fully customize the network applications
with potential to employ adaptive monitoring or real-time
feedback and control (Blaen et al., 2016). This also enables
specific monitoring or research requirements to be achieved
in a number of contexts, such as smart earth and smart
agriculture (Hart and Martinez, 2006; Ojha et al., 2015;
Bakker and Ritts, 2018).

The technical aspects of low-cost sensor network design
and application are now relatively well understood, thanks
to the rapid development of information and communication
technologies. However, recent research suggests that remaining
challenges are largely focused around non-technical factors
such as stakeholder engagements, socio-economic contexts,
financial and operational mechanisms (Mao et al., 2018).
These non-technical issues have already started to hinder the
potential benefits these sensor networks can provide society. For
example, the potential for risk reduction, resilience building,
and adaptive management are frequently overlooked (Paul
et al., 2018). These points are salient given the potential
of low-cost sensor networks to address the inadequate data
coverage in low- and mid-income countries (e.g., Strigaro
et al., 2019), particularly as this lack of information remains
a major challenge for policy makers in these regions (UN,
2015). Hence, there is an urgent need to better understand
these emerging challenges and identify possible opportunities for
future research.

Given the above, this study aims to quantitatively and
systematically review and synthesize the contemporary
literature on environmental LCSNs, in order to analyze
current research foci and identify knowledge gaps. Reviewed
publications are assessed in three non-technical dimensions
that are believed to be critical for successful implementation
of low-cost sensor networks and maximize their societal
benefits (Mao et al., 2018) – first, clear workflow from data
collection to data processing and provision (Paul et al.,
2018); second, consideration of stakeholder groups (e.g.,
end-users and operators) in designing, using or managing
sensor networks; and third, sustainable and adaptive setup of
the sensor network. In doing so we sought to address four
specific hypotheses, namely that: (H1) studies using LCSNs
have a bias toward fields that have a in situ sensor monitoring
tradition, such as meteorology; (H2) the predominate focus
has been on data collection, with limited effort dedicated to
other downstream data activities such as data visualization,
analytics or real-time control; (H3) most studies focus
on technically orientated single end-users (i.e., scientists),
without considering the high potential for multi-stakeholder
participation; and, (H4) given H3, the focus in the field has
been on the technical feasibility of sensors and networks
and the importance of factors such as sustainable operating
mechanisms and physical and socio-economic contexts
have been neglected.

METHODS

The use of systematic review procedures to identify the state of
the art in a given research field is becoming increasingly popular
in the physical (e.g., Bartesaghi Koc et al., 2018), medical (e.g.,
Hill et al., 2016) and social sciences (e.g., Karpouzoglou et al.,
2016). This approach facilitates a rigorous appraisal and synthesis
of the literature in a (semi)-quantitative way to address specific
hypotheses or research questions (Mulrow, 1987). Furthermore,
the analytical tools and search engines now available enable
large databases of academic literature to be searched and results
categorized in short amounts of time (Xu and Marinova, 2013).
However, search criteria must be carefully selected to ensure the
pool of literature used is suited to the hypotheses or questions
posed. Here we adopt the approach outlined by Pickering
and Byrne (2014) which attempts to identify geographical
patterns, theoretical trends, and methodological gaps rather than
undertake statistical analysis of evidence as is common in the
meta-analyses of the medical sciences.

To identify the body of literature for quantitative review we
used the Web of Science database, which is the largest online
database for searching peer reviewed scientific literature and the
most academically orientated of the main search engines (Xu
and Marinova, 2013). Our aim was to include papers from two
general themes: (1) low-cost environmental sensors networks,
and (2) low-cost technologies that have direct relevance to (low-
cost environmental) sensor networks. To achieve this, we used
the following search criteria:

TS = [(“sensor network∗”) AND (“low-cost” OR “lowcost”

OR“opensource” OR “open source” OR “inexpensive”)]
(1)

where TS represents topic searching title, abstract and keywords
that returned the initial pool of papers for consideration
(n = 4593). The literature was then filtered to include only
papers that were deemed explicitly related to environmental
monitoring. To achieve this, we only included papers from
Web of Science categories that were related to the geographical,
environmental or earth sciences (see Supplementary Table S1
for list of categories). This step returned 218 articles from 153
journals and conferences proceedings.

These papers were then assessed in turn by examining the
abstract or full manuscript to extract: (i) general information
(publication year, country and study type); (ii) information
on the environmental system studied (H1; i.e., Atmosphere,
Hydrosphere, Earth, etc.); (iii) sensor mobility and data
transmission/processing level (H2); (iv) user groups (H3); and,
(v) sustainability considerations (H4). In order to consider how
the existing studies utilize sensor networks, we also checked if the
publications were: (1) focused on an environmental application
of the technologies described; (2) describing a sensor network
rather than a single sensor; or (3) focused on the measurement
and collection of environmental data rather than the performance
of the network per say. There were 135 publications meeting
all the three criteria. More detailed information on this
procedure can be found in Supplementary Table S2. All
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data collation and analysis was conducted using R version
3.5.1 and the Tidyverse ecosystem of packages outlined in
Wickham and Grolemund (2016).

RESULTS AND DISCUSSION

The concept of low-cost environmental sensor networks appears
to have first emerged in the literature in 2004. Since this date
there has been a steady increase in the number of publications
per year, with the highest numbers (32 and 33) recorded in 2017
and 2018, respectively (Figure 1A). This result was expected
as the increase in published studies tracks the growing trend
toward open science and the rise of the “makers movement”
within the wider scientific community (Baden et al., 2015).
Interestingly, 2004 roughly coincides with the development and
release of theArduino board an inexpensive, consumer orientated
microcontroller board1 and the increase in publications post 2012
also coincides with the release of the low cost, single board
computer, Raspberry Pi2.

1https://www.arduino.cc/
2https://www.raspberrypi.org/

The global distribution of the analyzed studies displayed a
distinct bias toward developed countries (particularly North
America and Western Europe) with no studies from Africa
and only a limited number from other developing regions
(Figure 1B). This is concerning as, for example, the low number
of African hydrological or meteorological monitoring stations
hamper policy development and environmental management
(van de Giesen et al., 2014). However, there are some projects
underway such as the TAHMO project3 which aims to install
20,000 low-cost weather stations across Africa.

Most studies were single case studies with few review or
conceptual articles captured by our literature search (Figure 1C).
This disparity is likely to represent the relatively recent
development of LCSNs as tools for environmental monitoring
applications, particularly those used in peer reviewed scientific
studies. The review papers were either focused on more general
technological advances in environmental monitoring and not
focused solely on low-cost networks (e.g., Rossiter, 2018), or
provided a user group perspective on low cost sensor networks
(e.g., citizen science; cf. Rai et al., 2017; Paul et al., 2018).

3https://tahmo.org

FIGURE 1 | Number of publications as a function of: (A) year of publication, 2004–2018; (B) country in which the study was conducted; (C) the type of study or
paper; (D) broad study system(s), and; (E) sub-categories identified within the air, water and earth study systems. In panel (B) only countries with >5 studies
are displayed.
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When considering the study system at a relatively coarse
scale the literature appeared to support H1 (i.e., there was
a bias toward fields with a history of in situ monitoring),
with 77 publications focused on applications in the lower
atmosphere and 19 on ecological systems (Figure 1D). Given the
long history of sensor use for in situ atmospheric monitoring,
particularly for meteorological variables, and limited use of
sensors for monitoring ecological systems these results may not
be surprising (Hart and Martinez, 2006). However, a larger
number of the atmosphere system studies were focused on
air pollution (n = 39), rather than displaying a bias toward
meteorology as anticipated (n = 34) (Figure 1E). This was
unexpected given the historical reliance on passive sampling
and expensive laboratory equipment for analysis in air quality
studies (Snyder et al., 2013). It appears public awareness of
health risks (Ali et al., 2015; van Zoest et al., 2018), and the
proliferation of low-cost in situ sensors (Schneider et al., 2017;
Munir et al., 2019) are driving this trend. For water systems
more studies focused on quantity (n = 17) as opposed to quality
(n = 11). The water quantity studies were predominately focused
on flooding (e.g., Horita et al., 2015; Acosta-Coll et al., 2018;
Bartos et al., 2018), but studies on water resource management
(e.g., Katsiri and Makropoulos, 2016) and the interface between
agriculture and water resource monitoring were apparent (e.g.,
Kim et al., 2011; López et al., 2015). The water quality studies
represented a mixture of pollution monitoring networks (e.g.,
Schneider et al., 2016) and agriculture focused applications
(e.g., López Riquelme et al., 2009). Studies on earth systems
were evenly distributed between those with a geo-hazard focus,
such as landslides and earthquakes (Pumo et al., 2016; Finazzi
and Fassò, 2017) and those with a focus on soil properties
(e.g., Shaw et al., 2016). A further category was identified
that represented studies focused on communication protocols
or network architecture. An interesting trend was identified
with many of these studies being pre 2012 (e.g., Bengston and
Dunbabin, 2007; Walter, 2010), suggesting the field is moving
beyond some of the technical aspects of wireless communication
protocols and hardware with the focus now on data quality,
interpretation and analysis.

When considering how existing studies collect environmental
data and how they are utilized (e.g., analysis, decision-making
and system control), some distinct patterns are apparent.
Firstly, most sensor networks used fixed point sensors and
data were transferred wirelessly either to a base station,
remote server or the cloud (Figures 2A,B). The use of mobile
sensors is more common for ecological systems, particularly
tracking animal movement (e.g., Davis et al., 2012) and
for monitoring air quality (Mead et al., 2013); however,
Schneider et al. (2016) outlined a study in which sensors
fitted to rafts or kayaks were used to continuously gather
water quality data while moving downstream. Wired sensor
networks or systems that required direct data download
from local storage were associated with either: (1) scientific
studies in which networks were maintained to answer a
specific research objective or test a new senor type (Barnard
et al., 2014; Pohl et al., 2014); or (2) monitoring networks
for human infrastructure in urban environments where

Ethernet connections were available (Dauwe et al., 2014;
Rettig et al., 2014).

Secondly, there was a slight bias with regards to how the
data were used with more papers (n = 76) reporting just data
collection and storage than with a data analysis component
(n = 59) (Figure 2C). This result appears to support H2
(i.e., predominate focus is on data collection), however, there
appears to be a growing trend toward the development of online
analytics and visualization with 23.8% of all pre 2012 studies
and 46.6% of those post 2011. Most storage-only-networks were
used in scientific studies with analysis conducted offline by
researchers. For example, Pohl et al. (2014) used a network
of low-cost weather stations to collect information on snow
depth at a high spatial-resolution to quantify the influence of
landscape factors on snow accumulation. Monitoring networks
with online analytics and visualization were more common
in recent studies where some degree of human safety or
health was related to the sensed parameters. Examples include
geo-hazards (Finazzi and Fassò, 2017), flooding (Jones et al.,
2015; Acosta-Coll et al., 2018; Bartos et al., 2018) or air quality
(Schneider et al., 2017; Kizel et al., 2018). A further type
of monitoring network with analytics and visualization was
associated with agriculture (Kubicek et al., 2013) and in several
studies this was advanced toward automated control of nutrient
addition/irrigation to optimize resource use and yield (López
et al., 2015; Srbinovska et al., 2015).

Thirdly, the majority of studies (82.9%) involved networks
that collected data and were isolated in nature (i.e., not
part of a wider dataset or larger network) (Figure 2D).
These data were then only available to or used by direct
stakeholders, for example technicians/scientists (e.g., Pohl et al.,
2014) or farmers involved in crop production (e.g., López
et al., 2015). More recent studies have collected data to
complement existing monitoring efforts (i.e., or have been
operating as a sub network within a larger national network).
These were in many cases associated with human health
(Rogulski, 2018) or climate impacts (Shusterman et al., 2018;
Šećerov et al., 2019) or had direct economic implications,
for example through flooding (Horita et al., 2015) or fishing
livelihoods (Wada et al., 2007). It should be noted that very
few studies embraced the principles of open science and
open data more generally (however see Rettig et al., 2014;
Jones et al., 2015).

Despite stakeholder engagement, especially citizen science,
being one of the most significant “innovative” approaches
associated with LCSNs there was a paucity of such studies
identified in the literature (Figure 2F). Given the relatively
small number of studies with multiple stakeholders (21.2%)
there appears to be strong support for H3 (i.e., most studies
focus on technically orientated single end-users). However,
there are some interesting examples of multiple stakeholder
participation (e.g., Ali et al., 2015; Finazzi and Fassò, 2017). The
involvement of citizen scientists can improve the functionalities
and impacts of low-cost sensor networks by supporting its
operation, enhancing adaptation, information provisioning and
resilience building (Horita et al., 2015; Paul et al., 2018).
In return, some sensor network applications have tailored

Frontiers in Earth Science | www.frontiersin.org 4 September 2019 | Volume 7 | Article 221

https://www.frontiersin.org/journals/earth-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-07-00221 September 10, 2019 Time: 14:35 # 5

Mao et al. Low-Cost Environmental Sensor Networks Review

FIGURE 2 | The distributions of publications based on sensor and data collection properties. (A) Publication number split by sensor/node deployment properties.
(B) The breakdown between wireless transmission of data to a base station or cloud-based server vs. hard-wired connection including Ethernet and local storage
with manual data download. (C) The number of studies which highlighted networks for collection and data storage only, as opposed to studies with a data analysis
component after collection, including visualization, analytics and control. (D) Data access, here the category “Isolated” refers to a dataset only available internally or
to direct stakeholders, “Open” refers to an open access data storage platform, and “Larger dataset” refers to a study that contributed to a larger dataset. (E) The
number of publications that explicitly considered sustainability principles. (F) The degree of stakeholder and end-user engagement in the study.

designs to improve the user experience of citizen scientists
(Schneider et al., 2016).

The application of low-cost sensor networks has been
highlighted as a key area that can transform environmental
governance, yet long-term environmental governance requires
sustainable and long-term operations of low-cost sensor
networks (Bakker and Ritts, 2018; Paul et al., 2018). Despite
this, most studies identified in this review do not explicitly
consider sustainability (92.5%; Figure 2E) and thus support
of H4 is strong (i.e., sustainable operating mechanisms and
physical and socio-economic contexts have been neglected).
One possible explanation for this could be that most studies
are from developed regions with significant resources and
infrastructure (cf. Figure 1B). Sustainability can be achieved
through either technical improvements via means such as
optimization of energy efficiency (Gleonec et al., 2017; Mazinani
and Davarzani, 2017), or innovative soft management/incentive-
based approaches (Bakker and Ritts, 2018). Most of the reviewed
studies identified with a sustainability element were associated
with explicit and direct human benefits, such as monitoring a

particular resource (e.g., Wada et al., 2007), protecting property
or livelihoods (e.g., Lopes Pereira et al., 2014) or were agricultural
in nature and focused on resource use to maximize yields (e.g.,
Geipel et al., 2015).

CONCLUSION AND FUTURE
OPPORTUNITIES

To summarize, LCSNs are increasing in popularity but there
is still a distinct bias toward developed countries, particularly
Western Europe and North America, and certain study systems
(e.g., atmosphere and hydrosphere). From this systematic
literature review, three key challenges and opportunities were
identified, which can also guide future technical development
of LCSNs. Firstly, data outputs from LCSNs need to be
processed and presented to benefit multiple stakeholders
including scientists, the general public and policy makers. While
there is still a paucity of examples with studies exploring
down-stream data activities such as analysis, decision-making
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and system control examples exist for certain study purposes
(e.g., geo-hazards) from which lessons can be learned for other
purposes. Secondly, there is a clear need to improve data
integration and sharing. This will involve a move away from
isolated datasets to closer alignment with existing monitoring
systems to create larger, richer datasets and a concerted effort to
make data more open. While this has begun the idea needs to be
at the core of future networks to improve system understanding
and avoid duplication of effort. Thirdly, the design of LCSNs
needs to better integrate stakeholder engagement and sustainable
operation to enable longer term and greater societal impacts and
environmental benefits.
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