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The reliability of general circulation climate model (GCM) global air temperature
projections is evaluated for the first time, by way of propagation of model calibration
error. An extensive series of demonstrations show that GCM air temperature projections
are just linear extrapolations of fractional greenhouse gas (GHG) forcing. Linear
projections are subject to linear propagation of error. A directly relevant GCM calibration
metric is the annual average ±12.1% error in global annual average cloud fraction
produced within CMIP5 climate models. This error is strongly pair-wise correlated across
models, implying a source in deficient theory. The resulting long-wave cloud forcing
(LWCF) error introduces an annual average ±4 Wm−2 uncertainty into the simulated
tropospheric thermal energy flux. This annual ±4 Wm−2 simulation uncertainty is
±114 × larger than the annual average ∼0.035 Wm−2 change in tropospheric
thermal energy flux produced by increasing GHG forcing since 1979. Tropospheric
thermal energy flux is the determinant of global air temperature. Uncertainty in
simulated tropospheric thermal energy flux imposes uncertainty on projected air
temperature. Propagation of LWCF thermal energy flux error through the historically
relevant 1988 projections of GISS Model II scenarios A, B, and C, the IPCC SRES
scenarios CCC, B1, A1B, and A2, and the RCP scenarios of the 2013 IPCC Fifth
Assessment Report, uncovers a ±15 C uncertainty in air temperature at the end of a
centennial-scale projection. Analogously large but previously unrecognized uncertainties
must therefore exist in all the past and present air temperature projections and
hindcasts of even advanced climate models. The unavoidable conclusion is that an
anthropogenic air temperature signal cannot have been, nor presently can be, evidenced
in climate observables.

Keywords: GCM, climate model, propagated error, theory-error, uncertainty, air-temperature projection

INTRODUCTION

The United Nations Intergovernmental Panel on Climate Change (UN IPCC) has predicted that
by the year 2100, unabated human emissions of CO2 could cause an increase in global averaged
surface air temperatures (GASAT) by about 3 Celsius (Essex et al., 2007; IPCC, 2007, 2013). The
validity of this warning depends upon the physical accuracy of general circulation climate models
(GCMs). In this light, the reliability of GCM projections of global surface air temperature is central
to the question of causality. This question is critically assessed herein.
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Published GCM projections of the GASAT typically present
uncertainties as model variability relative to an ensemble mean
(Stainforth et al., 2005; Smith et al., 2007; Knutti et al., 2008),
or as the outcome of parameter sensitivity tests (Mu et al., 2004;
Murphy et al., 2004), or as Taylor diagrams exhibiting the spread
of model realizations around observations (Covey et al., 2003;
Gleckler et al., 2008; Jiang et al., 2012). The former two are
measures of precision, while observation-based errors indicate
physical accuracy. Precision is defined as agreement within
or between model simulations, while accuracy is agreement
between models and external observables (Eisenhart, 1963,
1968; ISO/IEC, 2008).

Propagating physical errors through a model is standard
in the physical sciences, and yields a measure of predictive
reliability (Taylor and Kuyatt, 1994; Bevington and Robinson,
2003; Vasquez and Whiting, 2006; ISO/IEC, 2008; JCGM,
2008; Roy and Oberkampf, 2011). However, evaluations
of climate model projections typically neither discuss nor
include propagated physical error (Gates et al., 1999; Covey
et al., 2001, 2003; Giorgi, 2005; Gleckler, 2005; IPCC, 2007;
Räisänen, 2007; Jin et al., 2008; Meehl et al., 2009; Jiang
et al., 2012). Examination of published representations of
climate model performance reveals that apparently neither
parameter uncertainties nor systematic energy flux errors
are ever propagated through any step-wise simulation of
global climate (Gleckler et al., 2008; Knutti et al., 2008;
Fildes and Kourentzes, 2011).

In his evaluation of climate predictions Smith noted that,
“[E]ven in high school physics, we learn that an answer without
“error bars” is no answer at all” (Smith, 2002). However,
projections of future air temperatures are invariably published
without including any physically valid error bars to represent
uncertainty. Instead, the standard uncertainties derive from
variability about a model mean, which is only a measure of
precision. Precision alone does not indicate accuracy, nor is it a
measure of physical or predictive reliability.

The missing reliability analysis of GCM global air temperature
projections is rectified herein. The logic of the work follows
the standard method of physical error analysis. Thus, GCM
global air temperature projections are first accurately reproduced
using an emulation model. It is shown that advanced GCMs
project global air temperature as a simple linear extrapolation
of fractional greenhouse gas forcing. Extensive examples
of accurately emulated GCM air temperature projections
are then provided.

Next, GCM cloud simulation error is assessed and shown to
be systematic across 5th phase Coupled Model Intercomparison
Project (CMIP5) models. Cloud simulation error introduces a
consequent error into the simulated tropospheric thermal energy
flux. Tropospheric thermal energy flux is a critical determinant
of global air temperature (IPCC, 2013; cf. Figure 7.1). GCM
tropospheric thermal energy flux error thus provides a calibration
error statistic that conditions the accuracy of CMIP5 air
temperature projections, and represents a lower limit of
uncertainty in the simulated climate energy-state. Cloud error
is only one of a number of large-scale GCM simulation errors
(Soon et al., 2001; Wunsch, 2002; Wunsch and Heimbach,

2007; Koutsoyiannis et al., 2008; Williams and Webb, 2009;
Anagnostopoulos et al., 2010; Wunsch, 2013; Yamazaki et al.,
2013; Zhao et al., 2016; Găinuşă-Bogdan et al., 2018).

Finally, the successful GCM emulation model is used to
propagate GCM calibration error through CMIP5 global air
temperature projections to produce the first measure of their
physical reliability.

The logic of the analysis can be summarized as:

1. GCM air temperature projections are linear
extrapolations of greenhouse gas forcing.

2. CMIP5 GCMs produce a systematic calibration error in
simulated tropospheric thermal energy flux.

3. Propagation of CMIP5 error through global air
temperature projections reveals the uncertainty in, and
thus the reliability of, global air temperature projections.

A brief discussion follows that addresses the meaning and
impact of physical uncertainty with respect to predicting the
terrestrial climate. The actual extent of our knowledge of climate
futures is made clear in light of this analysis.

RESULTS AND DISCUSSION

To be kept in view throughout what follows is that the physics of
climate is neither surveyed nor addressed; nor is the terrestrial
climate itself in any way modeled. Rather, the focus is strictly
on the behavior and reliability of climate models alone, and on
physical error analysis.

A General Emulation of the GASAT
Projections of Climate Models
Equation 1 below introduces a simple GCM emulation model.
This emulation equation is not a model of the physical climate.
It is a model of how GCMs project air temperature. That is, it
is an emulation model of GCMs, not a model of the climate.
Equation 1 will be shown able to accurately emulate the global air
temperature projections of any advanced GCM, as they simulate
the thermal impact of increasing greenhouse gases (Frank, 2008).

1Tt(K) = fCO2 × 33K × [(F0 +
∑

i

1Fi)/F0] + a (1)

In Equation 1, 1Tt is the total change of air temperature in
Kelvins across projection time t, and fCO2 is a dimensionless
fraction expressing the magnitude of the water-vapor enhanced
(wve) CO2 GHG forcing relevant to transient climate sensitivity
but only as expressed within GCMs. Water-vapor-enhanced (wve)
CO2 forcing refers to the combined intrinsic CO2 radiative
forcing plus the calculated positive feedback following from the
condition of constant relative humidity (Held and Soden, 2000).

The 33 K in equation 1 is the unperturbed greenhouse
contribution to air temperature, F0 is the total forcing from
greenhouse gases in Wm−2 at projection time t = 0, and 1Fi
is the incremental change in greenhouse gas forcing of the ith
projection time-step, i.e., as i-1→i. Finally, coefficient a = 0 when
1Tt is calculated from a temperature anomaly, but is otherwise
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the unperturbed air temperature. Equation 1 is a surmise that
GCMs project the GASAT as a linear extrapolation of fractional
wve GHG forcing.

The fCO2 = 0.42 is derived from the published work of
Manabe and Wetherald (1967), and represents the simulated
fraction of global greenhouse surface warming provided by
water-vapor-enhanced atmospheric CO2, taking into account the
average of clear and cloud-covered sky. The full derivation is
provided in Section 2 of the Supporting Information, especially
Figure S2-1b. Manabe and Wetherald were perhaps the first
to use both the accurate spectra of water vapor and CO2 and
the correct physics of global energy balance (Pierrehumbert,
2011), following earlier anticipatory work (Kondratiev and
Niilisk, 1960; Smagorinsky, 1963; Viskanta, 1966). The work
of Manabe and Wetherald thus has continuing relevance to
modern GCMs and to their simulations of global climate
(Manabe and Wetherald, 1967).

It is important to emphasize here that fCO2 has no necessary
relevance to the physical climate, nor to the response of the
physical climate to CO2 emissions. It expresses the fractional
greenhouse response to CO2, but only as simulated by GCMs.
Equation 1 and fCO2 have relevance only to GCMs and their air
temperature projections.

In the emulations to follow, all greenhouse gas forcings used
in equation 1 were calculated using the equations given in
Myhre et al. (1998). The values of fCO2 and of coefficient a
were determined separately for each emulation. The method
is summarized below and is given in full in Supporting
Information Section 3.2.

In brief, to emulate any GCM global air temperature
projection, the projection anomalies (a = 0) or air temperatures
were first plotted against the standard SRES or RCP forcings.
Equation 1 was fitted to this plot, with fCO2 and a as adjustable
parameters (cf. Figure S3-2a in the Supporting Information).
The value of F0 in equation 1 was calculated as appropriate to the
start-year of the projection (see below). The fitted values of fCO2
and a were then entered into equation 1 and the emulation of
the air temperature projection for the given GCM was calculated
using the standard SRES or RCP forcings (1Fi), as appropriate
(cf. Figure S3-2b in the Supporting Information).

The reference conditions were, projection start-
year = Y0 = 1900 and the starting greenhouse
temperature = T0 = 33 K. The start-year forcing, F0, was
calculated as the sum of the forcings due to atmospheric
CO2, N2O, and CH4 at their year 1900 values. These are
(ppmv, Wm−2): 297.7, 30.47; 0.258, 1.81; 0.871, 1.03, and
F0 = 33.30 Wm−2, respectively (Etheridge et al., 1996; Myhre
et al., 1998; Etheridge et al., 2002; Khalil et al., 2002).

For an emulation starting from a year other than 1900, F0 was
the GHG forcing of the alternative start year, and T0 was adjusted
to reflect the change in base greenhouse temperature away
from the year 1900 condition. Equation 1 represents that GCM
air temperature projections follow linearly from the fractional
change in wve GHG forcing.

Figure 1 compares two standard GASAT projection scenarios
made using modern climate models, with the same two scenarios
emulated using equation 1 with fCO2 = 0.42 and a = 0.
Figure 1A follows a 1% annual increase in atmospheric CO2

FIGURE 1 | (A) Climate model projections of future GASAT anomalies following a 1% annual growth in atmospheric [CO2]; (—), the model ensemble average, and;
(—), equation 1. Model realizations were obtained from Figure 27 in Covey et al. (2001) (see also Figure 3.10 in AchutaRao et al., 2004). (B) Lines as for part a,
showing multiple GCM projections of the SRES A2 scenario from the IPCC. The individual model realizations were obtained from Figure 9.6 in the WG1 Report of the
IPCC 3AR (IPCC, 2001). The forcings for the SRES A2 scenario used for the equation 1 emulation were obtained from Appendix II, Table II.3.11 in the WG1 Report
(IPCC, 2001). The smooth emulation lines are in the midst of the projection lines.
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(Covey et al., 2001), while Figure 1B shows scenario A2 of the
Special Report on Emissions Scenarios (SRES) (IPCC, 2001).
These provide multiple independent GASAT projections from
representative climate models, and reflect two independent
scenarios in growth of greenhouse gases and their impact
on projected GASAT. These multiple independent GCM air
temperature projections offer a strong test of equation 1. In
Figure 1, the emulations are distinguishable from authentic
GCM projections only by the absence of noise. The fCO2 = 0.42
derived from Manabe and Wetherald (1967) (cf. Section 2 of the
Supporting Information) has put the emulation line very near
the center of the GCM air temperature projections.

Figures 1A,B show that equation 1 with fCO2 = 0.42
produced trends that are well within the envelope of the GASAT
projections of fully realized climate models, and is close to the
ensemble average in each scenario. The trends produced by
equation 1 are also consistent with the general shape of the
GCM projections. This consistency indicates that the curvature
in projected air temperature is determined by the trend in GHG
forcing, as expected for linear dependence. The same fidelity
is demonstrated in the emulations of projections from nine
GCMs driven by IPCC SRES scenario B2 (see Figure S3-1 in the
Supporting Information) (IPCC, 2001).

The Goddard Institute for Space Studies (GISS) Model
E GCM was used to determine that water vapor enhanced
CO2 forcing accounts for 20% of the total greenhouse
effect (Lacis et al., 2010). However, direct inspection

of Figure 1A shows that the parameterizations and
climate sensitivity used to make that 20% estimate are
representative of GISS Model E only, and are neither
necessarily inherent to all climate models nor necessarily
generalizable beyond Model E (Knutti and Hegerl, 2008;
Lemoine, 2010; Sanderson, 2010). That is, the variation
among the projected trends in Figures 1A,B clearly indicates
disparate magnitudes of CO2 climate sensitivity within
the several GCMs.

In Figure 1A the temperature trend projected by the GISS
model is somewhat below the ensemble average. With all else
being equal, and given the 20% of GISS model E, the fractional
transient greenhouse forcing due to CO2 within the GCMs
ranges from about 18% (DOE-PCM) to about 30% (GFDL).
This illustrates that the sensitivity of the terrestrial climate to
greenhouse gas forcing as derived from any one climate model is
not generalizable to other models and is thus also not necessarily
indicative of the physically real response of the terrestrial climate.

Figure 2 shows the further successful emulations of SRES
A2, B1, and A1B GASAT projections made using six different
CMIP3 GCMs. In the Supporting Information, Figure S4-1
through Figure S4-5 present 30 additional successful emulations
of SRES air temperature projections representing seventeen
CMIP3 GCMs. For all the emulations, the values of fCO2
and the coefficient a varied with the climate model. The
individual coefficients were again determined for each individual
projection from fits to plots of standard forcing versus projection

FIGURE 2 | CMIP3 SRES air temperature projections and their equation 1 emulations: (colored points), SRES B1, A1B, and A2 scenario global air temperatures
projected by representative CMIP3 GCMs, and; (colored lines), the same scenarios emulated using equation 1. The equation 1 coefficients for the individual
emulations are given in Table S4-1, Table S4-2, and Table S4-3 of the Supporting Information. Figure S5-1 shows the emulation coefficients are highly
correlated among the tested models (R = 0.98). The 4AR SRES anomalies were obtained from the IPCC electronic source:
http://www.ipcc-data.org/data/ar4_multimodel_globalmean_tas.txt. Projection minus emulation difference anomalies may be found in Figure S4-6 in the
Supporting Information.
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FIGURE 3 | Equation 1 emulation of CMIP5 RCP4.5 and RCP8.5 air temperature projections. Panel (A) (points), the GISS GCM Model-E2-H-p1, and; (lines), the
emulations. Panel (B) (points), the Beijing Climate Center Climate System GCM Model 1-1 (BCC-CSM1-1), and; (lines), the emulations. In (B), the vertical offset of
RCP4.5 was present in the downloaded data. The equation 1 coefficients were (fCO2, a; RCP4.5 and RCP8.5): GISS: 0.578 ± 0.004, 20.0 ± 0.1, and;
0.488 ± 0.001, 16.93 ± 0.05; BCC: 0.636 ± 0.004, 23.2 ± 0.1, and; 0.680 ± 0.003, 23.7 ± 0.1, respectively. In (B), the RCP4.5 emulation begins to depart from
the GCM projection after 2050, when forcing becomes constant. The GISS and BCM models treat this region differently.

temperature (cf. Section 3.2 of the Supporting Information).
The values of fCO2 and a pertaining to Figure 2 are given in
Table S4-1, Table S4-2, and Table S4-3, of the Supporting
Information. Projection minus emulation residuals, shown in
Figure S4-6 in the Supporting Information, are all very
near the zero line. Figure 2 and its difference residuals
plus the further SRES emulations of Figures S4-1 through
S4-5 in the Supporting Information represent successful
emulations of 58 IPCC AR4 SRES projections made using 21
different CMIP3 GCMs.

Figures 3A,B above extend the equation 1 emulations to
the CMIP 5 GISS-E2-H and BCC-CSM1-1 GCM projections of
Representative Concentration Pathway (RCP) scenarios RCP4.5
and RCP8.5, which appeared in the 2013 IPCC 5AR. The CMIP5
RCP simulations were downloaded from the KNMI Climate
Explorer website: http://climexp.knmi.nl/selectfield_cmip5.cgi?
id=rtisdale@snet.net. The RCP forcings used for the emulations
were from Meinshausen et al. (2011), and include solar and 25%
volcanic forcing.

Additionally, emulations of a further thirteen RCP projections
made using six different CMIP5 GCMs are shown in Figure
S4-7 and Table S4-4 in the Supporting Information. The
corresponding projection minus emulation difference residuals
are shown in Figure S4-8 in the Supporting Information. These
residuals are again very near to the zero line.

Emulations of the 20th century global air temperature record,
Figure S9-1 and Figure S9-2 of the Supporting Information,
also compare favorably with those of advanced climate models,
as shown in Figure S9-3.

The success of equation 1 shows that GCM projections of
emissions-driven global air temperature projections are just
linear extrapolations of the fractional change in GHG forcing.

The variability of emulation coefficients in Table S4-4 also clearly
shows that individual GCMs deploy unequal transient climate
sensitivities (Kiehl, 2007).

The finding that GCMs project air temperatures as just
linear extrapolations of greenhouse gas emissions permits a
linear propagation of error through the projection. In linear
propagation of error, the uncertainty in a calculated final
state is the root-sum-square of the error-derived uncertainties
in the calculated intermediate states (see Section 2.4 below)
(Taylor and Kuyatt, 1994). Linear propagation of GCM
error is appropriate for estimating the uncertainty of the
linear extrapolations that are GCM global air temperature
projections. Propagation of error is a standard measure of
model reliability [(Vasquez and Whiting, 2006), (see also Section
5 in the JCGM Guide) (JCGM, 2008)], and in this case
will provide an estimate of the reliability of GCM global air
temperature projections.

To that end, the GCM calibration error due to incorrectly
simulated cloud cover is described next [see Section CMIP5
Model Calibration Error in Global Average Annual Total Cloud
Fraction (TCF)]. Following this, Section “A Lower Limit of
Uncertainty in the Modeled Global Average Annual Thermal
Energy Flux” will propagate GCM calibration error through their
air temperature projections.

CMIP5 Model Calibration Error in Global
Average Annual Total Cloud Fraction
(TCF)
Scientific instrumentation may be viewed as expressing physical
relationships in hardware. Likewise, scientific models running
on computers are physical relationships expressed in software.
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FIGURE 4 | Total 25-year ensemble mean (hindcast minus observed) fractional TCF error (×100) over 1980–2004 of each of the 12 CMIP5-level climate models
listed next to the right ordinate. Mean observed cloud fraction was the global 25-year average [(MODIS + ISCCP2)/2] satellite TCF observations. See Section S6 and
Figure S6-1 of the Supporting Information for further details.

Instrumental resolution is the smallest magnitude the given
device can accurately and reliably measure. For a physical
model, the resolution limit is the smallest perturbation or
physical feature that the model can accurately and reliably
simulate. Instrumental accuracy is determined by calibration
against external measurement standards (Eisenhart, 1963,
1968). By the same token, model accuracy is determined by a
calibration simulation compared against an external standard,
often an accurately known observation (Vasquez and Whiting,
1998, 2006; Roy and Oberkampf, 2011). Calibration error
can be both systematic and random (Eisenhart, 1963; Ku,
1966). While random error can average away, systematic
error does not. Systematic error must be determined
empirically because it is typically of unknown magnitude
and can vary with the instrument or the model, or with
uncontrolled variables (Morrison, 1971; Roy and Oberkampf,
2011). Calibration error conditions the accuracy statements
of all subsequent instrumental measurements or model
expectation values (Vasquez and Whiting, 2006; JCGM, 2008;
Garafolo and Daniels, 2014) (see also Section F 1.2.3ff in
the JCGM Guide).

The CMIP5 GCMs implement the known physics of climate
and provide the foundation of the 2013 Fifth Assessment
Report of the IPCC (5AR). The accuracy of CMIP5-level GCMs
has been calibrated by comparison of simulated global cloud
fraction and atmospheric water vapor against their observations
(Jiang et al., 2012; Klein et al., 2013; Lauer and Hamilton,
2013; Su et al., 2013). The calibrations were particularly
penetrating, as they took advantage of high-resolution A-Train
satellite observations. These calibration results are now used
herein to extract and examine the CMIP5-level total cloud
fraction (TCF) error.

CMIP5 global cloud calibration error can be derived
by comparing 25-year (1980–2004) GCM annual TCF
hindcast cloud simulation means against appropriate A-train
observational averages (Jiang et al., 2012). For this comparison,
the target global MODIS and ISCCP2 observed total cloud
fractions were averaged to produce the mean global TCF.
Individual annual average GCM TCF error was then computed
as the simple difference between each 25-year annual mean
hindcast and the averaged observed TCF field (see Section S6
and Figure S6-1 of the Supporting Information for the sources
of the mean simulated and observed TCF).

Figure 4 presents the individual 25-year mean annual global
TCF hindcast errors made by 12 CMIP5-level climate models.
Any true random error in annual TCF should have been reduced
by a factor of 5 in the 25-year hindcast means. However, the error
profiles of the GCM cloud fraction means do not display random-
like dispersions around the zero-error line. They are all of a
similar shape, and the unmistakable similarities strongly support
an inference of common systematic origin. This inference is
specifically supported by the highly similar errors produced by
the two versions of GISS Model E (described further below).

Although not discussed further here, the CMIP3 models
produced very similar TCF error residuals (Jiang et al., 2012).
Direct inspection of Figure 4 is enough to show that the sign of
the TCF error is variable.

The Structure of CMIP5 TCF Error
The CMIP5 hindcast error residuals of Figure 4 were first
assessed for lag-1 autocorrelation. For a data series, x1, x2,. . . , xn,
a test for lag-1 autocorrelation plots every point xi against point
xi+1. A large autocorrelation R-value means the magnitudes of
the xi+1 are closely descended from the magnitudes of the xi.
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FIGURE 5 | Points: the lag-1 autocorrelation of the CSIRO_mk3.6 climate
model average annual TCF hindcast (observed minus simulated) error residual
that appeared in Figure 4. The line is a linear least squares fit.

For a smoothly deterministic theory, extensive autocorrelation
of an ensemble mean error residual shows that the error
includes some systematic part of the observable. That is, it
shows the simulation is incomplete. Figure 5 shows this test
applied to the annual average TCF hindcast error of the
CSIRO_mk3.6 climate model.

The highly autocorrelated lag-1 error (R = 0.97) implies that
systematic cloud effects remain in the error residual. This in turn
indicates that the CSIRO GCM systematically misrepresented the
terrestrial cloud cover.

Table 1 shows that the high CSIRO_mk3.6 climate model
lag-1 autocorrelation of error is typical of every tested CMIP5
climate model. All of the models produced TCF error residuals

of lag-1 autocorrelation R ≥ 0.95, and incorrectly simulated the
terrestrial cloud cover.

If the model annual TCF errors were random, then cloud
error would disappear in multi-year averages. Likewise, the lag-1
autocorrelation of error would be small or absent in a 25-year
mean. However, the uniformly strong lag-1 autocorrelations
and the similarity of the error profiles (Figure 4 and Table 1)
demonstrate that CMIP5 GCM TCF errors are deterministic,
not random. The autocorrelation is unlikely to reflect random
persistence because every tested TCF is a 25-year hindcast mean.

The structure of TCF error among the models was further
examined by evaluating inter-model pair-wise correlations. If the
TCF errors independently produced by two models are highly
correlated, then evidence is adduced that the models deploy
theoretical structures that share mistakes in common. Thus,
pair-wise correlations were assessed across all the GCM TCF
error residuals, producing 66 unique comparisons (Table 1).
Of these, twelve error pairs exhibited correlation R ≥ 0.9
(highlighted in bold). Thirty-eight pairs produced correlations
0.9> R ≥ 0.5 (in italics).

For a population of white noise random-value series with
normally distributed pair-wise correlations, the most probable
pair-wise correlation is zero. If the TCF errors were thus
random, the probability that any two error-series would exhibit
a correlation R = 0.9 is about 10−17. Likewise, a pair-wise
correlation R = 0.5 would occur at a rate of approximately
10−5. The multiple high-positive pair-wise correlations therefore
indicate that the CMIP5 TCF simulation errors are not
random but instead imply a common systematic cause. The
most likely common cause is a widely shared error in the
implemented theory (Stainforth et al., 2007; Pennell and
Reichler, 2010). In an analogous surmise, the average positive
correlation of CMIP3 model inaccuracies in simulated GASAT
has likewise been taken to imply systematic errors in theory
(Knutti et al., 2010).

TABLE 1 | Student-t correlation matrix, Lag-1 R values, and RMS uncertainty of CMIP5 Model TCFa error residuals.

GCMb Noresm Hadgem Miroc5 CAM5 CM5 CM4 GISS-er GISS-eh GFDL CSIRO CNRM Canesm Lag R RMS

Noresm 1.00 0.34 0.70 0.63 0.32 0.69 0.81 0.80 0.67 0.76 0.77 0.70 0.98 15.4

Hadgem 1.00 0.14 0.88 0.87 0.51 0.64 0.64 0.84 0.64 0.73 0.82 0.99 12.7

Miroc5 1.00 0.45 0.11 0.77 0.69 0.69 0.54 0.74 0.67 0.53 0.97 11.9

CAM5 1.00 0.81 0.79 0.85 0.83 0.97 0.89 0.92 0.91 0.99 9.4

CM5a 1.00 0.43 0.46 0.44 0.71 0.59 0.69 0.76 0.97 11.4

CM4 1.00 0.87 0.87 0.85 0.93 0.82 0.75 0.95 6.2

GISS-er 1.00 1.0 0.92 0.89 0.88 0.81 0.99 15.5

GISS-eh 1.00 0.91 0.88 0.86 0.80 0.99 15.7

GFDL 1.00 0.92 0.93 0.92 0.99 15.8

CSIRO 1.00 0.93 0.88 0.97 10.0

CNRM 1.00 0.95 0.98 11.3

Canesm 1.00 0.97 10.3

Avg. 0.98 12.1

aTCF, Total cloud Fraction. bCMIP5 General Circulation Models of climate used in the study (Jiang et al., 2012). The matrix includes Student t-test correlations of paired

data; column Lag R is the 2◦ latitudinal lag-1 autocorrelation of each hindcast error residual; column RMS is the root-mean-square, ±
√

n∑
i=1

e2
i /n, of the simulation residuals

of Figure 3, where ei is the TCF error of the ith of n points.
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The terrestrial climate can exhibit chaotic behavior (Heagy
et al., 1994; Dymnikov and Gritsoun, 2001; Shao, 2002; Rial,
2004). Physical chaos can be described as, "aperiodic long-
term behavior in a deterministic (physical) system that exhibits
sensitive dependence on initial conditions" (Wagner, 2011).
A single instance of deviation between a model realization and
observations due to chaos-driven GCM internal variability might
be impossible to distinguish from the systematic error following
from an erroneous or incomplete theory (Sugihara and May,
1990). Were the ±12% deviations in simulated TCF discussed
above due to chaos-driven internal variability of the models,
their global air temperature projections should be strongly
impacted because TCF directly impacts tropospheric thermal
energy flux (see Section 2.3 below). Model internal variability is
the chief source of noise evident in air temperature projections
(Dessler et al., 2018; Adams and Dessler, 2019). However, large-
scale deviations from the observed global air temperature target
are manifestly not present in global air temperature hindcasts
(Dessler et al., 2018) [(IPCC, 2013) cf. Figure TS 9, TFE3 Figure 1,
9.8, Box 10.1 Figure 1, 10.1)]. The coherence of GCM hindcasts
with observations is sufficient to exclude chaotic behavior as the
origin of the TCF deviations shown in Figure 4.

The conclusion that TCF calibration error derives from
systematic errors in the physical theory is strengthened on noting
that the two versions of the GISS model produced the most highly
correlated TCF lag-1 error (R = 1.0). The two Model E versions
share a common origin and among the models undoubtedly share
the greatest similarity in elaborated theory and parameterizations
(Stainforth et al., 2007). Were cloud simulation errors invariably
random, those models deploying a similar physical core and a
similar parameter set should nevertheless produce errors no more
inter-correlated than comparisons with the random errors of
other models with alternative physical cores. That the structurally
most similar models produce the most highly correlated error
demonstrates internal model theory-error as the source of the
systematic inaccuracies in cloud simulations.

A similar pair-wise analysis of AMIP1-level model global TCF
error residuals produced notably weaker inter-model correlations
(Frank, 2008). Among forty-six AMIP1 comparisons, only four
yielded correlation R ≥ 0.9 and thirteen 0.9 > |R| ≥ 0.5. The
average AMIP1 RMS global cloud error was ±10.1%, relative to
their ISCCP1 target. The stronger correlations among the CMIP5
hindcast error residuals, along with their average ±12.1% RMS
error, imply a convergence of theoretical structure since 1999
without an improvement in TCF verisimilitude.

A Lower Limit of Uncertainty in the
Modeled Global Average Annual Thermal
Energy Flux
The Magnitude of CMIP5 TCF Global Average
Atmospheric Thermal Energy Flux Error
Lauer and Hamilton (2013) have quantified CMIP3 and CMIP5
TCF model calibration error in terms of cloud forcings. They
compared the average of observed cloud properties with a 20-
year (1986–2005) annual mean simulation hindcast. CMIP model
error was derived as the differences in modeled (xmod) and

observed (xobs) 20-year means. The mean bias for N models was
defined as,

1mm
=

1
N

N∑
i=1

(xmod
i − xobs) (2)

In equation 2, xi
mod is 20-year simulation cloud cover mean

over each of the global grid-points for each model, and
the xobs is the corresponding observational mean at that
grid-point. This difference is a CMIP model calibration error
referenced to the observational standard. The derivational logic
following from equation 2 is presented in Section S6.2 of the
Supporting Information.

Dimensional analysis of the derivation yields the
units of the calibration error statistic: 620 years(xmod

i −

xobs) × 1/20 years = (xmod
i − xobs) year−1. Figure 4 shows

that individual annual mean grid-point xmod
i − xobs errors

can be of positive or negative sign. The global annual mean
simulation uncertainty in cloud cover for any CMIP model is
the root-mean-square (RMS) of the global array of the 20-year
grid-point (xmod

i − xobs) annual model error means (see Section
S6.2 in the Supporting Information for details).

For "N" CMIP GCMs, the ensemble average errors are
combined as the RMS. This process yields the GCM average
calibration error statistic in simulated cloud cover. That error
is of dimension ± (cloud-cover-unit) year−1. This calibration
error statistic is the average annual uncertainty in simulated
cloud cover across any given projection year to be expected for
a representative set of CMIP models.

The annual mean CMIP uncertainty in global annual cloud
cover, ±(cloud-cover-unit) year−1, must be converted into the
uncertainty in annual mean CMIP long-wave cloud forcing
(LWCF) in units of ±Wm−2. This yields the uncertainty
in tropospheric thermal energy flux, i.e., ±(cloud-cover-
unit) × [Wm−2/(cloud-cover-unit)] = ± Wm−2 year−1. It is
assumed here that the CMIP5 LWCF error is also a lower limit
of error for all climate models of earlier CMIP vintage.

Global cloud forcing (CF) is net cooling, with an estimated
global average annual magnitude of about −27.6 Wm−2

(Hartmann et al., 1992; Stephens, 2005). The average ±12.1%
RMS error in TCF made by the CMIP5 climate models implies
that CF is incorrectly simulated. Lauer and Hamilton divided
CF into short-wave cloud forcing (SCF) and long wave cloud
forcing (LWCF) exerted at the top of the atmosphere (TOA),
representing reflected radiant energy and long-wave radiant
energy propagating upward from the surface, respectively (Lauer
and Hamilton, 2013). LWCF represents the contribution made by
clouds to the thermal radiation flux of the atmosphere.

On conversion of the above CMIP cloud root-mean-squared
error (RMSE) as ±(cloud-cover unit) year−1 model−1 into
a longwave cloud-forcing uncertainty statistic, the global
LWCF calibration RMSE becomes ±Wm−2 year−1 model−1

The CMIP5 models were reported to produce an annual
average LWCF RMSE = ± 4 Wm−2 year−1 model−1,
relative to the observational cloud standard (Lauer and
Hamilton, 2013). This calibration error represents the
average annual uncertainty within any CMIP5 simulated
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FIGURE 6 | Panel (A), SRES scenarios from IPCC 4AR WGI Figure SPM.5 (IPCC, 2007), with uncertainty bars representing, “the±1 standard deviation range of
individual model annual averages.” Panel (B) the identical SRES scenarios showing the ±1σ uncertainty bars due to the annual average ±4 Wm−2 CMIP5 TCF
long-wave tropospheric thermal flux calibration error propagated in annual steps through the projections as equation 5 and equation 6.

tropospheric thermal energy flux and is generally representative
of all CMIP5 models.

By way of comparison, the CMIP5 long wave cloud forcing
error reported for 10 GCMs in Figure 6 of Zhang et al. (2005),
and for 28 GCMs in Figure 3 of Dolinar et al. (2015) were
evaluated (Zhang et al., 2005; Dolinar et al., 2015). The RMS
error in simulated long wave cloud forcing were estimated to
be ±4.9 Wm−2 and ±4.5 Wm−2, respectively. Alternatively,
the average CERES/ERBE/ISCCP long wave cloud radiative
forcing reported in Zhang et al. (2005) and in Dolinar et al.
(2015), are 28.2 Wm−2 and 27.6 Wm−2, respectively. If the
±12.1% CMIP5 cloud simulation error originally reported in
Jiang et al. (2012) is assumed to be uniformly distributed
among all cloud types, then simulated long wave cloud error
can be estimated from the observed LWCF to be ±3.4 Wm−2

or ±3.3 Wm−2 (Jiang et al., 2012). These four values are
comparable to and bracket the±4 Wm−2 employed in this study
(Lauer and Hamilton, 2013).

CMIP5 error in LWCF implies that the magnitude of
the thermal energy flux within the atmosphere is simulated
incorrectly. This climate model error represents a range of
atmospheric energy flux uncertainty within which smaller
energetic effects cannot be resolved within any CMIP5
simulation. Thus, the LWCF calibration error of ±4 Wm−2

year−1 is an average CMIP5 lower limit of resolution for
atmospheric forcing. This means the uncertainty in simulated
LWCF defines a lower limit of ignorance concerning the annual
average thermal energy flux in a simulated troposphere (cf.
Supporting Information Section 10.2).

GHG forcing enters into and is not separable from
the total flux of thermal energy within the troposphere

(Berger and Tricot, 1992; IPCC, 2013); cf. Figure 7.1 in IPCC,
2013. Therefore, model simulations of the climatic response
to changes in GHG atmospheric forcing are conditioned by
±4 Wm−2 of uncertainty in the magnitude of thermal energy
flux within the troposphere. In short, CMIP5 climate models
are unable to reliably simulate, determine, or bring into
view the effect of a tropospheric thermal flux perturbation
of magnitude within the ±4 Wm−2 bound. That is, the
±4 Wm−2 calibration error constitutes a lower limit of
model resolution.

Bringing this idea into context, this annual average
±4.0 Wm−2 year−1 uncertainty in simulated LWCF is
approximately ±150% larger than all the forcing due to all the
anthropogenic greenhouse gases put into the atmosphere since
1900 (∼2.6 Wm−2). Further, the ±4.0 Wm−2 year−1 LWCF
error is approximately ±114 × larger than the average annual
∼0.035 Wm−2 year−1 increase in greenhouse gas forcing since
1979 (Hofmann et al., 2006; IPCC, 2013).

Linear Models and Error Propagation
To this point, GCM air temperature projections have been
demonstrated to be linear extrapolations of greenhouse
gas forcing. The reliability of these projections must be
conditioned by the impact of the uncertainty in simulated
tropospheric thermal energy flux. To that end, error
propagation is introduced.

Propagation of error is a standard method used to estimate
the uncertainty of a prediction, i.e., its reliability, when the
physically true value of the predictand is unknown (Bevington
and Robinson, 2003). For example, in a single calculation of
x = f (u, v, ...), where u, v, etc., are measured magnitudes with
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uncertainties in accuracy of ±(σu, σv, ...), then the uncertainty
variance propagated into x is,

σ2
x = σ2

u(
δx
δu
)2 + σ2

v(
δx
δv
)+ ...+ 2σ2

u,v(
δx
δu
)(
δx
δu
)+ ... (3)

Likewise, if a final state, XN , is calculated through a serial
progression of prior states, i.e., XN = f (x0, ..., xi, ..., xn), where
the xi are intermediate states, then a serial propagation of physical
error through n steps yields the uncertainty variance in the
realization of the final state,

σ2
XN
= σ2

i (
δXN

δxi
)2 + σ2

i+1(
δXN

δxi+1
)2 + ...

+2σ2
i, i+1(

δXN

δxi
)(

δXN

δxi+1
)+ ...(i = 0, ..., n) (4)

That is, a measure of the predictive reliability of the final state
obtained by a sequentially calculated progression of precursor
states is found by serially propagating known physical errors
through the individual steps into the predicted final state.
When states x0,., xn represent a time-evolving system, then
the model expectation value XN is a prediction of a future
state and σ2

XN
is a measure of the confidence to be invested

in that prediction, i.e., its reliability. Propagation equation
4 is directly relevant to evaluating the impact of systematic
calibration error on the reliability of complex physical models
(Vasquez and Whiting, 1998, 2006). The ISO JCGM "Guide to the
Expression of Uncertainty" likewise recommends propagation
of systematic error as the root-sum square (JCGM, 2008, cf.
Sections 5.1.3–5.1.5).

Applying these concepts, air temperature projections involve
a step-wise sum of model realizations of serial future climate
states (x0. . . xn) through to some final climate state, XN (Pope
et al., 2000; Saitoh and Wakashima, 2000; IPCC, 2007, 2013).
Each intermediate climate state in the series provides the initial
conditions for a simulation of the subsequent state. These step-
wise simulated states are subject to propagation of error as
described above and in equation 4.

The final change in projected air temperature is just a
linear sum of the linear projections of intermediate temperature
changes. Following from equation 4, the uncertainty "u" in a sum
is just the root-sum-square of the uncertainties in the variables
summed together, i.e., for c = a + b + d + ... + z, then the

uncertainty in c is ±uc =
√

u2
a + u2

b + u2
d + ...+ u2

z (Bevington
and Robinson, 2003). The linearity that completely describes
air temperature projections justifies the linear propagation of
error. Thus, the uncertainty in a final projected air temperature
is the root-sum-square of the uncertainties in the summed
intermediate air temperatures.

The errors made by GCMs in simulating cloud cover
produce errors in the simulated tropospheric thermal energy
flux (Hartmann et al., 1992; Chen et al., 2000; Bony and
Dufresne, 2005; Stephens, 2005; Turner et al., 2007; Bony et al.,
2011). The error in the intensity of simulated tropospheric
thermal energy flux in turn injects errors into projected air

temperature. Nevertheless, propagation of error is remarkable
by its absence in any discussions of uncertainty in climate
prediction (Collins, 2007; Stainforth et al., 2007; Curry, 2011;
Curry and Webster, 2011; Hegerl et al., 2011).

Introducing CMIP LWCF Error Into Emulation
Equation 1
Figures 1–3, as well as Figures 7, 8 below and Supporting
Information Figures S3-1, S4-1 through S4-6, and Figure S8-
1 demonstrate that equation 1 successfully emulates the air
temperature projections of advanced climate models, including
the CMIP5 versions. Equation 1 indicates that advanced
GCMs simulate the impact of tropospheric thermal forcing
on air temperature as linear extrapolations of fractional
greenhouse gas forcing.

GHG forcing enters into and becomes part of the global
tropospheric thermal flux. Therefore, any uncertainty
in simulated global tropospheric thermal flux, such as
LWCF error, must condition the resolution limit of any
simulated thermal effect arising from changes in GHG
forcing, including global air temperature. LWCF calibration
error can thus be combined with 1Fi in equation 1 to
estimate the impact of the uncertainty in tropospheric
thermal energy flux on the reliability of projected global
air temperatures.

To be kept in mind during this exercise is that the source of
calibration error is inherent within the physical theory deployed
by CMIP GCMs. This means that the error in LWCF arises
in the GCM and enters into every step of a simulation. Each
step includes a fresh simulation of cloud cover; and each fresh
simulation will include a LWCF thermal flux error. An inherently
incorrect theory puts its intrinsic error into every simulation step.
This point is critical and is discussed further below.

The CMIP5 average annual LWCF ± 4.0 Wm−2 year−1

calibration thermal flux error is now combined with the thermal
flux due to GHG emissions in emulation equation 1, to produce
equation 5. This will provide an estimate of the uncertainty in
any tropospheric global air temperature projection made using
a CMIP5 GCM. In equation 5 the step-wise GHG forcing term,
1Fi, is conditioned by the uncertainty in thermal flux in every
step due to the continual imposition of LWCF thermal flux
calibration error.

1Ti(K)± ui = 0.42× 33K × [(F0 +1Fi ± 4Wm2)/F0] (5.1)

and

1Ti(K)± ui = 0.42× 33K × [(F0 +1Fi)/F0] ±

[0.42× 33K × 4 Wm2/F0] (5.2)

Where±ui is the uncertainty in air temperature, and±4 Wm−2

is the uncertainty in tropospheric thermal energy flux due
to CMIP5 LWCF calibration error. The remaining terms of
equations 5 are defined as for equation 1. In equations 5, F0+1Fi
represents the tropospheric GHG thermal forcing at simulation
step "i." The thermal impact of F0 + 1Fi is conditioned by
the uncertainty in atmospheric thermal energy flux. That is,
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FIGURE 7 | Panel (A) (points), the CMIP5 multi-model mean anomaly projections of the 5AR RCP4.5 (o, 21 models) and RCP8.5 (o, 21 models); (full lines), the
equation 1 emulations of the CMIP5 mean projections. The standard RCP forcings including solar and 25% volcanic forcing were used throughout (Meinshausen
et al., 2011). Individual CMIP5 mean forcings may not be identical to the Meinhausen RCP forcings. Panel (B): (colored lines), the same two CMIP5 mean RCP
projections with uncertainty envelopes derived from propagating the annual average ± 4 Wm−2 CMIP5 long wave cloud forcing error as in equations 5 and equation
6, starting from projection year 2005. For RCP4.5, the emulation departs from the mean near projection year 2050 when GHG forcing becomes constant.

FIGURE 8 | Panel (A): (points), historical air temperature projections of GISS Model II GCM for; (•), scenario A; (•), scenario B, and; (•), scenario C (Hansen et al.,
1988; Schmidt, 2007a,b). (Lines), equation 1 emulation of: (—), scenario A; (—), scenario B, and; (—), scenario C, with Y0 = 1958, TGHG(1958) = 33.25 K,
fCO2 = 0.42, F0 = 33.946 Wm−2 (CO2, N2O, and CH4 forcing only). Panel (B): The same A, B, and C scenario projections but with uncertainty bars from ±4 Wm−2

CMIP5-level LWCF calibration error propagated as equation 6.

resolution of GHG forcing is subject to the uncertainty in
simulated tropospheric thermal energy flux due to LWCF model
thermal flux calibration error.

The rationale for equations 5 is straightforward. The response
of the physical climate to increased CO2 forcing includes the
response of global cloud cover. However, global average cloud

cover is not simulated to better than ±12.1%. The error in
simulated cloud cover in turn produces an error in the thermal
energy flux of the simulated troposphere. The impact of a
0.035 Wm−2 annual forcing change on cloud cover due to
increased CO2 cannot be resolved, or simulated by, climate
models that have a ±4 Wm−2 resolution lower limit. Nor can
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the models resolve the subsequent feedback response of cloud
cover to the very small increase in tropospheric thermal energy
flux due to CO2 forcing. Thus, neither the outcome of the
forcing nor the feedback response can be resolved. In short,
the ±4 Wm−2 LWCF uncertainty specifically conditions 1Fi
because CO2 forcing enters into the total tropospheric thermal
energy flux and becomes part of it.

This should be seen in light of the fact that the mean
annual thermal perturbation to tropospheric thermal energy flux
due to GHG emissions is less than 1% of the uncertainty in
tropospheric thermal energy flux due to LWCF error, alone.
Following from equation 4, the final uncertainty envelope
about a multi-year projection is the ±ui of equations 5
propagated through the emulation as the root-sum-square
(see 2.4.3 below) (Vasquez and Whiting, 2006; JCGM, 2008;
Garafolo and Daniels, 2014).

Error Propagation and the Uncertainty in Projected
GASATs
Projections of future air temperatures proceed in discrete time-
steps (Pope et al., 2000; Saitoh and Wakashima, 2000) (cf. also
Box 9.1 and Box 11.1 in WG1 of the IPCC 5AR) (IPCC, 2013).
In a climate projection of “n” steps, each time step “i” initializes
with the climate variables delivered by the “i-1” step. Air
temperature follows from the total flux of thermal energy through
the atmosphere. The expression for uncertainty described next
follows the guidelines in Section 5 of, “The Guide to the
Expression of Uncertainty in Measurement” (JCGM, 2008), and
descends directly from equation 3, equation 4, and equations 5,
and Section “CMIP5 Model Calibration Error in Global Average
Annual Total Cloud Fraction (TCF)” through Section “Linear
Models and Error Propagation.” The approach also follows the
recommendations for evaluating systematic errors in numerical
models (cf. equation 2 in Vasquez and Whiting, 2006).

Vasquez and Whiting (2006) also point out that even random
error does not diminish as 1/

√
N in non-linear models, because

the non-linearity produces skewed distributions of expectation
values. However, this extended error is not evaluated here.

For the uncertainty analysis below, the emulated air
temperature projections were calculated in annual time steps
using equation 1, with the conditions of year 1900 as the
reference state (see above). The annual average CMIP5 LWCF
calibration uncertainty, ±4 Wm−2 year−1, has the appropriate
dimension to condition a projected air temperature emulated in
annual time-steps. Following from equations 5, the uncertainty
in projected air temperature "T" after "n" projection steps is
(Vasquez and Whiting, 2006),

±σTn =

√∑n

i=1
[±ui(T)]2 (6)

Equation 6 shows that projection uncertainty must increase
with every simulation step, as is expected from the impact of a
systematic error in the deployed theory.

Figure 6A shows global air temperature projections for
four standard multi-model global means of the IPCC Fourth
Assessment Report (4AR) Special Report on Emissions Scenarios
(SRES). The uncertainty bars in Figure 6A are taken from

the 4AR WG1 Figure SPM.5 and represent “the±1 standard
deviation range of individual model annual averages,” i.e., the
variation about the means of the multi-model temperature
projections. Figure 6B presents the uncertainty for the same
SRES projections upon propagating ±4 Wm−2 of LWCF error,
calculated according to equations 5 and equation 6. The SRES
temperature anomalies and forcings were obtained from the
IPCC 4AR (IPCC, 2007).

The difference between the two representations of uncertainty
in Figures 6A,B lays in the fact that in Figure 6A, the uncertainty
bars are a statistical measure of inter-model precision. In
Figure 6B, the uncertainty bars reflect physical accuracy, and are
a statistical measure of projection reliability.

Figure 7 extends this analysis to the CMIP5 air temperature
projections of the RCPs appearing in the 2013 IPCC 5AR.
Figure 7A presents an equation 1 emulation of multi-
model CMIP5 mean projections of the RCP4.5 and RCP8.5
scenarios. For these emulations, the equation 1 parameters were:
RCP4.5, fCO2 = 0.593 ± 0.004, a = 20.4 ± 0.1 and RCP8.5,
fCO2 = 0.585 ± 0.002, and a = 20.19 ± 0.08. Figure S4-
7 and Table S4-4 in the Supporting Information show the
successful emulations of thirteen additional RCP projections
from six CMIP5 GCMs. These successful emulations generalize
the uncertainty limits illustrated above to all CMIP5 air
temperature projections.

Figure 7B displays the effect of LWCF error propagated
through the CMIP5 mean RCP projections of Figure 7A.
The uncertainty envelopes again represent the physically real
±4 Wm−2 annual average LWCF thermal flux calibration error
of the CMIP5 models and are a measure of confidence to be
placed in the projections. The growth of uncertainty shown
in Figures 6B, 7B convey the increasing level of ignorance
about the successive physical states of the evolving climate.
Ignorance increases because the projection trajectory of the
erroneously simulated climate, relative to the future evolution
of the physically real climate, cannot be known. This ignorance
increases with every simulation time-step.

Figures 6B, 7B show that the uncertainty in projected GASAT
is immediately so large that even the first projection year conveys
no predictive confidence. This can be understood as following
directly from the fact that the annual uncertainty in atmospheric
thermal energy flux due to the average annual model LWCF
CMIP5 calibration error is ∼ ± 114 × larger than the annual
average increase in GHG forcing. That is, the finest resolution
of the model is ±114 times larger than the perturbation to be
resolved. Consequently, the effect of the perturbation is lost
within the very wide uncertainty of the simulation.

The message of the uncertainty envelopes in Figures 6B, 7B is
clear: neither the SRES nor the RCP projection scenarios convey
reliable information about possible future air temperatures.
Further, the realizations are not predictively unique. Each SRES
or RCP scenario is fully embedded in the uncertainty spread
of all the other scenarios. Individual SRES or RCP projections
would not be observationally distinguishable on any time
scale, nor would be the fidelity of one or the other scenario
relative to any observed temperature trend. These points are
discussed further below.
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Differencing From a Base-State Climate Does Not
Remove Systematic Error
It may be supposed that all model errors are already present
in an equilibrated 1850 base-state climate simulation and
can be removed from subsequent projected climate states by
differencing. However, elimination of model error by differencing
has never been empirically validated, and indeed cannot be
tested against an 1850 climate that is nearly an observational
unknown. Further, this method of eliminating model error is
unmentioned in the 2013 IPCC 5th Assessment Report (IPCC,
2013; Stocker et al., 2013).

Nevertheless, it is worthwhile to show that differencing
does not remove systematic theory-error. The terrestrial
climate is simulated through time as state magnitudes, not
as anomalies. The erroneous theory deployed within GCMs,
fully illustrated by TCF error, means that an initial physical
climate state produced by equilibrium spin-up will be wrong,
even if the initial conditions were perfectly known. Further,
the magnitudes of the base-state errors will be unknown.
This initial-state error follows from an imperfect theory
and is not due to the stochasticity of climate stemming
from physical chaos.

Theory-error means the available energy is incorrectly
partitioned among the internal climate sub-states. A model can
be in perfect external energy balance at the TOA all the while still
expressing a climate with an internally incorrect energy-state.

The initial equilibrium spin-up climate state is then not a
physically correct representation of its energy-state. The error
relative to the physically real climate is consequent to this
internal model error. The continuing impact of theory-error
during a step-wise simulation, means that the erroneous flux
magnitudes of the initial spin-up state are again and further
incorrectly partitioned within each subsequent climate state.
That is, the incorrect structures of the base-state climate, C0,
will themselves be incorrectly projected into and through the
subsequent simulation state.

This situation is graphically illustrated in Scheme 1.
Following from an initially erroneous C0 state, systematic
theory-error ensures that the newly simulated subsequent
climate state, C1, will suffer further distortions, but of
unknown magnitude. State C1 represents a proposed climate
existing at some future time, where physical simulation
error cannot be determined. Therefore, it cannot be known
that differencing removes error when that error is of
unknown magnitude.

This circumstance is also implied by the large multiple
of simulated climate states produced by models subjected to
perturbed physics tests (Rowlands et al., 2012). As Figure 4
shows with TCF calibration error, systematic GCM error persists
through high-multiple ensemble means (Annan and Hargreaves,
2004; Palmer et al., 2005; Collins, 2007; Tebaldi and Knutti, 2007).

Supporting Information Section 7, "Differencing and
Systematic Theory-bias Model Error” includes a more detailed
discussion of simulation differencing. Supporting Information
Sections 7.1 "The problem of observational error" and 7.1.1
"The problem of validating a model difference," address the
unresolved problem of differencing using the standard 1850

SCHEME 1 | A stylized representation of a GCM simulation adapted from
Fildes and Kourentzes (2011), with permission from Elsevier. Known initial
conditions include errors and uncertainties, while others are incompletely
known. The inner blue double-headed arrows represent sub-state couplings.
The inner red dashed arrows represent internal feedbacks. The external black
dashed arrow represents the step-wise simulation circumstance that climate
state Ci provides the initial conditions for climate state Ci+1. Thus, errors in
state Ci are propagated into state Ci+1. Theory-error means that Ci and Ci+1

are each simulated incorrectly. The errors introduced by Ci are further and
incorrectly propagated within the model when simulating Ci+1. This sequence
builds error upon error. Theory-error also means that even if the first set of
initial conditions were perfectly known, base-state climate C0 would
nevertheless be simulated incorrectly. Model spin-up equilibrates C0 to an
erroneous stable state. The errors in simulated state C0 are not known to
subtract away in calculating climate change because the errors in simulated
future climate state C1 are not known to be identical to those in C0 (see
Section 7.1 in the Supporting Information for an extended discussion).

base-state reference climate (cf. Supporting Information
Table S7-1 and text).

A Contemporary Example of Predictive Reliability
A recent analysis proposed statistical measures to suggest that
the 1988 scenario B of the GISS Model II GCM included a
skillful prediction of the subsequent trend in global averaged
air temperatures (Hargreaves, 2010). Figure 8 shows a test of
this suggestion in terms of propagated CMIP5 LWCF calibration
thermal energy flux error. Figure 8A shows the original Model II
A, B, and C scenarios (Hansen et al., 1988). The lines in Figure 8A
were calculated using equation 1 and the original scenario
forcings (Hansen et al., 1988; Schmidt, 2007a,b). Equation 1
again successfully emulated the projections. Further details of
this emulation are given in Section S8 and Figure S8-1 of the
Supporting Information.

Figure 8B shows the same 1988 GISS Model II GCM anomaly
scenarios A, B, and C, but now including uncertainty bars after
propagating the CMIP5-level ± 4 Wm−2 LWCF calibration
error through the projections. The large overlapping uncertainty
bars show that projections A, B, and C are not unique. None
of them can be validated against observations because the
uncertainty envelopes are far larger than any conceivable increase
in GASAT. Further, each projection is so deeply embedded in
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the uncertainties of the alternative projections that it cannot
be distinguished by any comparison with observables. For
example, in the 1988 GASAT projection year, the scenario
anomalies are: A, 0.45 ± 8.9 C; B, 0.36 ± 8.9 C, and; C,
0.25 ± 8.9 C. These are not predictions in any useful or skillful
sense. Any statistical similarity between scenario B and the
observed subsequent temperature trend is indistinguishable from
calculational happenstance and thus is without any physical
meaning, a diagnosis also advanced by the original author
(Hansen, 2005).

In conjunction with the other equation 1 emulations presented
here, Figure 8A also shows that the linear dependence of
projected GASAT on fractional GHG forcing has remained a
central feature of GCMs for at least 30 years.

Following from this analysis, the uncertainty due to physical
LWCF calibration error alone defeats any measure of GCM
statistical merit, and is enough to vitiate both the predictive
validity of the 1988 GISS Model II GCM scenarios and of all
subsequent projections of the GASAT made using GCMs up to
and including the present CMIP5 generation.

CONCLUSION

This analysis has shown that the air temperature projections
of advanced climate models are just linear extrapolations of
fractional GHG forcing. Linear propagation of model error
follows directly from GCM linear extrapolation of forcing. The
±4 Wm−2 year−1 annual average LWCF thermal flux error
means that the physical theory within climate models incorrectly
partitions energy among the internal sub-states of the terrestrial
climate. Specifically, GCMs do not capture the physical behavior
of terrestrial clouds or, more widely, of the hydrological cycle
(Stevens and Bony, 2013). As noted above, a GCM simulation
can be in perfect external energy balance at the TOA while still
expressing an incorrect internal climate energy-state.

The further meaning of uncertainty in projected air
temperature is extensively discussed in Section 10.1 of the
Supporting Information, “Why confidence intervals do not imply
model oscillation.” Sections 10.2 and 10.3 of the Supporting
Information provide an extended discussion of the meaning
of confidence intervals, uncertainty, and propagated error.

Although other approaches to uncertainty in projections and
simulations of climate futures have been carried out, most
notably perhaps using Bayesian statistics (Tebaldi et al., 2005;
Buser et al., 2009; Urban and Keller, 2010; Zanchettin et al.,
2017), none of them propagate calibration error through model
simulation steps into the projected future climate-state. In these
studies, the impact of the continued evolution of simulation
error on the uncertainty within the final projected climate state
remains unevaluated.

It is now appropriate to return to Smith’s standard description
of physical meaning, which is that, “even in high school physics,
we learn that an answer without “error bars” is no answer at all”
(Smith, 2002). LWCF calibration error is ±114 × larger than
the annual average increase in GHG forcing. This fact alone
makes any possible global effect of anthropogenic CO2 emissions
invisible to present climate models.

At the current level of theory an AGW signal, if any, will never
emerge from climate noise no matter how long the observational
record because the uncertainty width will necessarily increase
much faster than any projected trend in air temperature. Any
impact from GHGs will always be lost within the uncertainty
interval. Even advanced climate models exhibit poor energy
resolution and very large projection uncertainties.

The unavoidable conclusion is that a temperature signal from
anthropogenic CO2 emissions (if any) cannot have been, nor
presently can be, evidenced in climate observables.
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