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Changes in terrestrial water storage (TWS) in High Mountain Asia (HMA) could have major

societal impacts, as the region’s large reservoirs of glaciers, snow, and groundwater

provide a freshwater source to more than one billion people. We seek to quantify and

close the budget of secular changes in TWS over the span of the GRACE satellite mission

(2003–2016). To assess the TWS trend budget we consider a new high-resolution mass

trend product determined directly from GRACE L1B data, glacier mass balance derived

from Digital Elevation Models (DEMs), groundwater variability determined from confined

and unconfined well observations, and terrestrial water budget estimates from a suite of

land surface model simulations with the NASA Land Information System (LIS). This effort

is successful at closing the aggregated TWS trend budget over the entire HMA region, the

glaciated portion of HMA, and the Indus and Ganges basins, where the full-region trends

are primarily due to the glacier mass balance and groundwater signals. Additionally,

we investigate the closure of TWS trends at individual 1-arc-degree mascons (area

≈12,000 km2); a significant improvement in spatial resolution over previous analyses

of GRACE-derived trends. This mascon-level analysis reveals locations where the TWS

trends are well-explained by the independent datasets, as well as regions where they are

not; identifying specific geographic areas where additional data andmodel improvements

are needed. The accurate characterization of total TWS trends and its components

presented here is critical to understanding the complex dynamics of the region, and

is a necessary step toward projecting future water mass changes in HMA.

Keywords: terrestrial water storage, High Mountain Asia, GRACE mascons, glacier mass balance, groundwater,

land information system

1. INTRODUCTION

Secular changes in High Mountain Asia (HMA) terrestrial water storage (TWS) can modify global
mean sea level (Reager et al., 2016) and affect the availability of freshwater for the more than one
billion people living in the region (Wester et al., 2018; Pritchard, 2019), motivating the accurate
determination of TWS trends and the partitioning of individual components. The hydrology of
the HMA region is complex due to the multiple cryospheric sources of runoff (snow, glacier and
permafrost melting), the influence of complex topography andmonsoon dynamics on precipitation
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distribution, and rapidly shifting patterns in irrigation practices.
Existing models show high variability in runoff composition for
each of the major HMA river basins and provide estimates of
future trends in runoff in a changing climate (Lutz et al., 2014;
Armstrong et al., 2019); however, there are few independent
observations available to calibrate and validate these simulations.

The launch of the Gravity Recovery and Climate Experiment
(GRACE) in March 2002 revolutionized the ability to monitor
TWS on a global scale to a spatial resolution of 300–500 km
(Gaussian smoothing half-radius) (Wahr et al., 1998; Tapley et al.,
2004; Luthcke et al., 2013). While GRACE is extremely valuable
for its unique ability to recover the full TWS signal, its standard
monthly products are somewhat limited in their application due
to relatively low spatial resolution as compared to other remote
sensing measurements, in situ observations, and model outputs.
A number of previous studies have applied the monthly GRACE
data products for determining TWS changes in HMA at large
basin scales (length ≥500 km; area ≥250,000 km2), with some
comparisons made to individual TWS components (Matsuo and
Heki, 2010; Moiwo et al., 2011; Jacob et al., 2012; Rodell et al.,
2018; Scanlon et al., 2018). Studies that attempt to disaggregate
GRACE TWS into individual components take two approaches:
they either isolate the residual of interest by using independent
data and models to represent the remaining water budget
components or assimilate GRACE into land surface models
(Frappart and Ramillien, 2018). The first method propagates
error from the independent data or models into the residual of
interest. The second method can inaccurately distribute mass
change within the model if the model is missing components
that are included in the GRACE signal. While the assimilation
approach has successfully reduced groundwater uncertainties in
certain areas, it performs less well in regions dominated by
human dynamics that are not captured in the model (Frappart
and Ramillien, 2018). Scanlon et al. (2018) recently demonstrated
that land surface models are not able to match decadal trends in
TWS as seen by GRACE in large global river basins, indicating
a clear need to identify the source of discrepancies from the
models to improve projections of future water storage change.
To date, no HMA study we are aware of has demonstrated the
successful closure of the individual TWS trend components with
the GRACE-derived total, or attempted to extract sub-basin scale
(<300 km) mass trends with GRACE.

In this work we examine the TWS trend budget in an attempt
to close the budget for the full HMA region, the glaciated sub-
region, the Indus, Ganges, and Brahmaputra basins (Figure 1),
and at sub-basin spatial scales within HMA that correspond to
the NASA Goddard Space Flight Center (GSFC) 1-arc-degree
GRACE mascons (length ≈110 km; area ≈12,000 km2) (Loomis
et al., 2019). We present several important advancements toward
understanding secular changes in HMATWSwith a newGRACE
mascon product, in situ data, and innovative methods applied
in the recovery of individual TWS components derived from
independent studies. We present the results of a new GSFC
global mascon product that directly estimates regression model
parameters from the GRACE Level 1B measurements (referred
to hereafter as “L1B regression mascons”) from which a trend
(i.e., regression slope) may be inferred. These GRACE-only

trend estimates approach a spatial resolution of ∼110 km
and achieve significant improvements in the magnitude of the
recovered signal as compared to trends determined from the
monthly GRACE products. This new product also includes a
rigorous assessment of the uncertainties, which accounts for the
solution bias that results from the regularized estimation of the
mascon parameters. This new L1B regression product facilitates
a comparative analysis between GRACE-derived TWS and other
HMAmodels and data sets at a higher spatial resolution than was
previously possible.

In an effort to partition the GRACE-derived HMA TWS
trends into their major components, we consider the following
data sets: (1) new geodetic glacier mass balance estimates
from ∼36,000 Digital Elevation Models (DEMs) (Shean et al.,
in review); (2) groundwater storage changes inferred from well
measurements separated into confined and unconfined systems;
and (3) model outputs of eight different Land Information
System (LIS; Kumar et al., 2006) runs that employed two
different Land Surface Models (LSMs) using four different sets of
meteorological boundary conditions (Kumar et al., 2012; Yoon
et al., 2019). The geographic distribution of these different data
products is shown in Figure 1B. With a rigorous characterization
of the GRACE mascon uncertainties that accounts for both noise
and bias, we are able to identify basins and individual mascons
where closure is, and is not, achieved. When budget closure is
achieved we assume we have successfully identified the primary
driver(s) of the TWS trends, while lack of closure highlights the
geographic locations in HMA where additional data or future
model development is needed.

2. DATA AND METHODS

2.1. GRACE
2.1.1. Monthly Mascons
The standard Level 2 time-variable gravity product provided
by the GRACE project is a series of unregularized spherical
harmonic coefficients estimated at monthly time steps (Wahr
et al., 1998). Due to larger noise at the higher spherical harmonic
degrees (smaller spatial scales), it is necessary to apply post-
process filtering to retrieve geophysically meaningful global maps
or regional time series ofmass change (Wahr et al., 1998;Wouters
et al., 2014). Many different filters and methods have been
developed over the course of the mission, where the selected
approach can significantly impact the results. For example, Jacob
et al. (2012) determined a HMA glacier trend of −4 ± 20
Gt yr−1 while Matsuo and Heki (2010) reported −47 ± 12
Gt yr−1 over approximately the same time period using the
same Level 2 product but different post-processing techniques.
More recently, regularized global mass concentration solutions
(mascons) have emerged as a preferred time-variable gravity
product for many researchers, with different monthly products
provided by NASA GSFC (Luthcke et al., 2013; Loomis et al.,
2019), the Jet Propulsion Laboratory (JPL) (Watkins et al., 2015),
and the University of Texas Center for Space Research (CSR)
(Save et al., 2016). Regularized mascon estimation is a more
optimal approach for improving the solution signal-to-noise
ratio because the time-variable gravity parameters are directly
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FIGURE 1 | (A) The High Mountain Asia region, including glacier extent from Pfeffer et al. (2014) (blue) and the major basins in the region (red): 1-Indus, 2-Ganges,

and 3-Brahmaputra. (B) Zoom-in of the HMA region showing the data distribution of the Land Information System (shaded gray), groundwater measurements (green

X’s), and geodetic glacier mass balance observations (blue boxes). The visible cells correspond to the HMA subset of the global 1-arc-degree NASA GSFC mascon

product.

estimated from the Level 1B data while fully accounting for the
noise and signal covariance matrices (Sabaka et al., 2010) thereby
eliminating the need for post-processing. Another advantage
of the mascon approach is the ability to introduce constraint
regions that significantly mitigate signal leakage across constraint
boundaries (e.g., land and ocean), effectively increasing the
spatial resolution at these boundaries. It is important to note,
however, that the fundamental resolution of themascon solutions
(300–500 km) is the same as the spherical harmonics within
a constraint region (Luthcke et al., 2013). In the analysis of
basin-scale TWS trends we present results for the GSFC, JPL,
and CSR monthly mascon products along with their model fit
uncertainties, which do not account for signal leakage. We note
that all GRACE results presented in this work have had the ICE-
6G_D glacial isostatic adjustment (GIA) model removed (Peltier
et al., 2018).

2.1.2. L1B Regression Mascons
A fundamental challenge of working with GRACE data and
its application to understanding TWS variability is the limited
spatial resolution of the GRACE data products. The spatial
resolution of the GRACE products is determined by a complex
combination of factors including the accuracy of the inter-
satellite instrument, the spatiotemporal sampling of the ground
tracks, and errors in the atmospheric and ocean dealiasing
models applied in the processing in an effort to remove those
high-frequency signals from the monthly gravity solutions.
Throughout the duration of the GRACE mission, various static
(mean) spherical harmonic gravity fields have been estimated
to much higher spatial resolution than is possible for the time-
variable monthly fields. A fundamental trade-off exists between
the spatial and temporal resolution of GRACE-derived gravity
estimates, where increased spatial resolution is achieved with
the accumulation of multiple years of data (Pail et al., 2010),
and sub-monthly solutions have lower spatial resolution than the
monthly products (Croteau, 2019).

Several of these static gravity fields determined from GRACE,
such as the GOCO and EIGEN spherical harmonic models (Pail

et al., 2010; Rudenko et al., 2014), co-estimate time-variable
components such as a trend and annual signal along with the
mean component. These “static” spherical harmonic gravity
products recover the time-variablemodel components to a higher
spatial resolution than is possible with a single month of data.
Recognizing the benefit of regularized mascon estimation, NASA
GSFC has recently expanded this same concept by estimating
a regression model for each of its 41,168 1-arc-degree mascons
using more than 13 years of GRACE data (January 2003–July
2016). The product that is discussed in this work co-estimates a
bias, trend, and annual signal for a total of four parameters for
each mascon. Additional model parameters can be estimated if
desired and the relevant term for this work is the recovered trend.
Figure 2 clearly demonstrates the improved spatial resolution
and signal recovery for the regression product as compared to
estimating the trend from the series of monthly estimates. This
new, regularized L1B regression mascon product has improved
signal recovery as compared to themulti-year spherical harmonic
estimates, and presents an opportunity to study GRACE-derived
TWS trends to a much higher spatial resolution than was
previously possible, allowing for a more direct comparison with
model output and in situ observations.

To understand the improvement of the L1B regression
mascon products over the time series derived from explicit
GSFC monthly mascon solutions, consider the adjustment to the
mascons for the jth month, m̂j, which are assumed to be static
within the month, such that

m̂j =

(

AT
j WjAj + Pj

)−1
AT
j Wjdj, (1)

where Aj is the design matrix that relates the L1B inter-satellite
observations to the mascons, Wj is the inverse of the data noise
covariance, Pj is the inverse of the signal noise covariance, and
dj is the vector of inter-satellite residuals. This expression is
commonly referred to as Tikhonov regularization (Tikhonov,
1963). Note that in Equation (1) we have assumed an a priori
mascon state of zero. In the explicit method, the time series
of the kth mascon assembled from the j=1, . . . ,Nt , estimates,
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FIGURE 2 | GRACE mass trends in terms of centimeter water equivalent per year (cm w.e. yr−1), as determined from (A) the GSFC monthly mascon solution, and (B)

the GSFC L1B regression solution. Trends are computed for January 2003–July 2016.

m̂T
k
=

[

m̂1,k . . . m̂j,k . . . m̂Nt ,k

]

, where Nt is the number of months
for which estimates are available, is fit with Nf temporal basis
functions whose multipliers, x̂k, are estimated as

x̂k =
(

FTF
)−1

FTm̂k, (2)

where, in the case of basis functions such as bias, trend, and an
annual sinusoid, Nf=4 and the elements of F ∈ R

Nt×Nf are
given by

Fj1 = 1, Fj2 = tj, Fj3 = cos 2π tj, Fj4 = sin 2π tj, (3)

with tj rendered in units of years. If we collect the Ns = 41,168
bias, trend, cosine, and sine multipliers into the vectors, x̂b, x̂t ,
x̂c, and x̂s, respectively, then a simultaneous inversion for all
multipliers in the explicit method may be expressed as

x̂ =

[

(

FTF
)−1

FT ⊗ I

]

m̂, (4)

where x̂T=
[

x̂T
b
x̂Tt x̂Tc x̂Ts

]

, m̂T=

[

m̂T
1 . . . m̂T

j . . . m̂T
Nt

]

, I ∈

R
Ns×Ns is an identity matrix, and “⊗" is the Kronecker product,

whose operation on two arbitrary matrices G ∈ R
k×ℓ and H ∈

R
n×m produces a matrix G⊗H ∈ R

k·n×ℓ·m such that

G⊗H =







H G11 · · · H G1ℓ

...
. . .

...
H Gk1 · · · H Gkℓ






. (5)

In summary, the explicit monthly method first solves for m̂j from
dj in Equation (1) for j=1, . . . ,Nt and then solves for x̂ from the
m̂j via Equation 2.

By contrast, the L1B regression mascon products, x̂, are solved
for directly from the dj for j=1, . . . ,Nt , in a manner similar to

x̂ =

[(

FT ⊗ I
) (

ATWA+ P
)

(F⊗ I)
]−1 (

FT ⊗ I
)

ATWd, (6)

where A, W, and P are block-diagonal matrices whose
jth blocks are given by Aj, Wj, and Pj, respectively, and

dT=
[

dT1 . . . dTj . . . dTNt

]

. However, in the actual L1B regression

case, the term
(

FT ⊗ I
)

P (F⊗ I) is treated as a diagonal matrix
corresponding to a signal covariance that is encoded only as
auto-covariant terms in the temporal multipliers with no cross-
covariance. Aside from this technicality, it should be clear that
Equations (1) and (4) are nested inside Equation (6). In fact, if the

formal error-covariances,
(

AT
j WjAj + Pj

)−1
, of each estimate

m̂j from Equation (1) were incorporated into the estimate x̂

in Equation (4), then the explicit method would be equivalent
to the L1B regression method. However, this is precisely why
the L1B regression is superior to the explicit method since it
does not ignore the error-covariances on the m̂j. The explicit
method has traded the self-consistent propagation of error in
the L1B estimate for the convenience of estimating x̂ via simple,
independent estimates of each x̂k in Equation (2). It turns out that
while the explicit method provides an unbiased estimate of x̂ in
the ideal case [i.e., assuming m̂ is unbiased, which (Loomis et al.,
2019) shows is not the case], it does not provide a minimum-
variance solution in contrast to the L1B regressionmethod. Given
that nature provides only a single sample of the data, it is far
superior to draw x̂ from a distributionmore narrowly centered on
the true value of x̂ that is provided by the L1B regression method
then from a broader distribution provided by the explicit method.
In practice, the enhanced spatial resolution of the L1B regression
solution is due to the reduced strength of the regularization
applied in Equation (6) than is required for estimating m̂ in
Equation (1).

2.1.3. Confidence Intervals
The rigorous characterization of uncertainties is critical for the
proper interpretation of GRACE TWS estimates. Loomis et al.
(2019) demonstrate the importance of properly accounting for
the bias (or leakage) of regularized solutions, and provide detailed
procedures for building the total GRACE monthly mascon error
budget. To frame the issue we begin with the expression that
defines the regularized linear least-squares mascon estimate by
rewriting Equation (6) as

x̂ =

(

HTWH+Q
)−1

HTWd, (7)

where

H = A (F⊗ I) , (8)
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Q =

(

FT ⊗ I
)

P (F⊗ I) , (9)

The construction ofQ is the key design parameter for regularized
mascon estimation, and any non-zero Q almost certainly
introduces a bias in the solution. As previously noted in Hoerl
and Kennard (1970) and Kusche and Springer (2017), the
solution bias, b, is defined by the expected value of the difference
between the estimated state, x̂, and the unknown true state, x:

b ≡ E
[

x̂− x
]

= (R− I) x, (10)

where R is termed the model resolution operator and is
defined as:

R ≡

(

HTWH+Q
)−1

HTWH. (11)

Note that the unregularized solution results from setting Q to
zero, in which case R becomes the identity matrix and the
bias is zero (this case produces an unusable solution due to its
unmitigated noise). The implication of Equation (10) is that a
rigorous assessment of the mascon uncertainties must account
for the solution bias.

As the true mascon state, x, is unknown, some assumptions
must be made in order to compute the solution bias described by
Equation (10). Following the procedure in Kusche and Springer
(2017), Loomis et al. (2019) substitute x̂ for x in Equation (10) to
define the bias. Alternatively, if one begins with the assumption
that some independent data set (or combination of data sets)
represents the true signal, the independent data defines x and a
value for the bias can be computed. In the absence of noise errors,
the estimated mascon state resulting from Equation (7) is exactly
equal to the resolution operator multiplied by the unknown true
state: x̂ = Rx (Menke, 2015; Loomis et al., 2019). Considering
this expression and the assumption that the independent data set,
xmodel, is the truth (i.e., xmodel = x), then Rxmodel is contained
within [x̂ − zσ , x̂ + zσ ], where zσ defines the half-width of
the confidence interval (for normally distributed errors, σ is the
noise standard deviation and z = 2 for ∼95% confidence). This
is the common form of confidence intervals, which are typically
reported as x̂ ± zσ . A direct comparison between xmodel and
x̂ ± zσ neglects the bias/leakage that is quantified by applying
R. This concept is similar to the common method of applying
the same smoothing or post-processing to both xmodel and x̂ to
facilitate comparative analyses, which is a reasonable approach
when x̂ is defined by unregularized spherical harmonics (though
the post-processed spherical harmonics have the shortcomings
discussed in section 2.1.1).

If we want to form the comparison in terms of the
independent data set instead of the GRACE solution, then xmodel

is contained by the confidence interval [x̂− b− zσ , x̂− b+ zσ ]
if it is the true signal. The hypothesis xmodel = x can be tested
for individual mascons or for any combination of mascons that
define a basin or region. If xmodel is contained by the interval
then the hypothesis is not disproved and the independent data
set is considered to be in agreement with GRACE. Conversely,
disproving the hypothesis is an effective method for identifying
specific mascons and basins where additional data and/or model

improvements are needed to close the TWS trend budget. When
reporting our GRACE-derived regional trends we report the first
type of confidence interval, x̂ ± 2σ , as this follows common
practice and the bias/leakage errors are relatively small for the
L1B regression product at regional scales. When testing the
hypothesis xmodel = x for individual mascons, we consider the
99% confidence interval [x̂ − b − 2.576σ , x̂ − b + 2.576σ ],
and note that this interval is not guaranteed to contain x̂.
We test the hypothesis xmodel = x for the glacier mass
balance and groundwater data sets only, due to their relatively
good agreement with the GRACE trends over their respective
regions. The noise uncertainties for the high-resolution trends
are determined by examining the statistics of the ocean mascons,
which are expected to be close to zero, meaning that their
spread should approximate the solution noise (similar statistics
are observed in the Sahara desert, which is also expected to
have near-zero trends). We note that in Loomis et al. (2019) all
equations are developed for monthly mascon estimation, while
for this work we have extracted the trend-only portion of R,
which our analysis shows is largely independent of the bias and
annual components.

Lastly, we note that the applied GIA model and geocenter
corrections are also non-negligible sources of error for regional
GRACEmass trend estimates. These errors are insignificant at the
mascon level, with maximum magnitudes of ∼0.1 cm yr−1. To
account for these errors the total regional uncertainties reported
in Table 1 and Figure 5B are computed as the root-sum-square
(RSS) of the 2σ noise, the GIA model error, and the geocenter
correction error. We define the GIA error as the difference
between the Geruo et al. (2013) and ICE-6G_D (Peltier et al.,
2018) models, and the geocenter error as the difference between
Swenson et al. (2008) and Sun et al. (2016).

2.2. Glacier Mass Balance
Glaciers cover approximately 98,000 km2 of the HMA
region, and their mass is constantly changing in response
to accumulation (primarily snowfall), and ablation (primarily
surface melt). For this study, we use new 2000–2018 geodetic
glacier mass balance observations derived from DEM time
series for all 95,536 glaciers in HMA (Shean et al., in review).
The NASA Ames Stereo Pipeline (Shean et al., 2016) was
used to process archives of 15 m ASTER stereo imagery and
sub-meter DigitalGlobe WorldView-1/2/3, and GeoEye-1
imagery. The observed elevation trend for each glacier was
converted to volume change using Randolph Glacier Inventory
(RGI) polygons (Consortium, 2017), and mass change for the
2000–2018 period was estimated using standard density values
(Huss, 2013). The water equivalent sum of glacier mass balances
was calculated for each mascon, enabling direct comparison
with mass trends observed by GRACE. The geometric centroid
of each glacier polygon was used to assign each glacier to a
specific mascon. Noting that the mass balance signal is expected
to be larger in mascons with more glaciated area, we report
regional trends for both the full glaciated region shown in
Figure 1B, and for the subset of mascons with ≥100 km2 of
glacier area.
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TABLE 1 | GRACE regional mass trends and uncertainties (Gt yr−1) for different mascon solutions over the span January 2003–July 2016, along with the applied GIA

correction for each region.

Region GRACE global mascon solution after GIA correction GIA

GSFC L1B GSFC monthly JPL monthly CSR monthly

[Gt yr−1] [Gt yr−1] [Gt yr−1] [Gt yr−1] [Gt yr−1]

Glaciated −23.6 ± 5.5 −17.7 ± 5.8 −17.8 ± 5.9 −13.9 ± 5.7 7.6 ± 3.1

Glaciated≥100 km2† −15.9 ± 3.6 −10.9 ± 3.5 −12.8 ± 3.7 −8.5 ± 3.4 3.9 ± 1.6

Groundwater −23.2 ± 4.3 −24.4 ± 13.6 −22.3 ± 13.4 −20.8 ± 13.3 4.9 ± 1.7

Indus basin −3.9 ± 3.0 −5.6 ± 2.6 −2.6 ± 2.7 −5.2 ± 2.6 2.8 ± 1.1

Ganges basin −15.1 ± 3.1 −15.8 ± 8.1 −18.0 ± 8.4 −14.6 ± 7.5 2.5 ± 0.8

Brahmaputra basin −15.6 ± 2.4 −13.5 ± 5.0 −12.8 ± 5.6 −10.8 ± 5.3 2.1 ± 0.7

LIS −30.1 ± 9.6 −30.7 ± 21.9 −30.3 ± 23.0 −30.0 ± 22.5 16.1 ± 6.2

HMA‡ −37.8 ± 10.4 −36.3 ± 21.8 −34.8 ± 23.0 −34.1 ± 22.4 17.5 ± 6.8

The regions are defined in Figure 1B. All reported GRACE mass trends have had the ICE-6G_D GIA model removed. Total uncertainties include the 2σ noise, errors in the GIA model,
and the geocenter correction.
†The subset of glaciated mascons that contain at least 100 km2 of glacier area.
‡The combined set of mascons with either glacier mass balance, groundater, or LIS data.

2.3. Groundwater
2.3.1. Groundwater Level Time Series and Aquifer

Properties
Historical depth-to-water (DTW) measurements between 2003
and 2016 have been collated from 9,976 dug wells (unconfined
aquifer) and 3,673 tube wells (confined aquifer) from the India
Water Resources Information System (NWIC, 2018) and through
personal communications with Dr. Tess Russo at Intellectual
Ventures and Dr. Naveed Iqbal at Pakistan Council for Research
on Water Resources. The distribution of dug wells is widespread
across northern India but limited in Pakistan covering only parts
of the Punjab Province. The tube well data are available only
in India and are geographically restricted to locations with a
confined aquifer system. The available data covers the majority of
the domain where large and complex aquifers are present (Richts
et al., 2011). The vertical datum for the DTW measurements
is defined relative to the local land surface elevation. The raw
DTW data are pre-processed to remove any negative values,
incorrect geographic coordinates, and anomalous DTW values
likely resulting from typographical errors.

Storage coefficients are necessary to convert from
groundwater level anomalies to groundwater storage anomalies.
These coefficients include specific yield for unconfined aquifers
and the product of specific storage and aquifer thickness for
confined aquifers. Specific yield values are parameterized using
percentages of sand, silt and clay (Hengl et al., 2014) that are
classified into soil texture class boundaries (Soil Survey Division
Staff, 1993) and then assigned specific yield ranges by texture
class (Johnson, 1967). Since storage coefficients for confined
aquifers storage are rarely available in this region, we use typical
values published in the literature from other regions (Domenico
and Schwartz, 1997). We also use an upper limit for the storage
coefficient in the confined areas equal to the specific yield, i.e.,
in the event the water levels fall below the top of the confined
aquifer, which can occur due to overpumping. We compared
trends in the total groundwater storage anomaly with trends in

GRACE TWS, both at regional and individual mascon scales,
to determine the combination that provides the best agreement
under the assumption that the GRACE trend is predominantly
driven by groundwater in this region (discussed further in
section 3.3). The anomalies for the unconfined and confined
portions are combined for calculating the total groundwater
storage anomaly across the study domain.

2.3.2. Gridded Groundwater Level Anomalies
Monthly groundwater level anomalies (GWLA) were calculated
at each well by removing the study period (2003–2016) mean
DTW from observed values such that positive anomalies indicate
a rise in water level and vice-versa. GWLA for months with no
measurements are calculated using linear interpolation between
successive times not more than four months apart. These point
GWLA calculations were used to estimate gridded groundwater
level anomalies (gridded-GWLA) using the kriging interpolation
scheme at 0.25◦ spatial resolution. The gridded-GWLA for
unconfined aquifers is estimated using GWLA calculated
from individual dug wells, and gridded-GWLA for confined
aquifers is estimated using GWLA calculated from individual
tube wells. These gridded-GWLA values are multiplied by
the appropriate aquifer storage coefficients to obtain monthly
gridded groundwater storage anomalies (gridded-GWSA).

2.4. Land Surface Model Outputs From
NASA LIS
NASA LIS is a land surface modeling and data assimilation
environment that facilitates the use of ensemble land surface
modeling with multiple LSMs, meteorological boundary
conditions, land surface parameters, and data assimilation
options. In order to study terrestrial water budget estimates
and their uncertainties, an ensemble of land surface model
runs was conducted using a combination of two different
LSMs and three different sets of meteorological boundary
conditions. The Catchment Land Surface Model (CLSM) version
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Fortuna 2.5 (Ducharne et al., 2000; Koster et al., 2000) and
Noah-MP LSM version 3.6 (Niu et al., 2011; Yang et al., 2011)
are forced with meteorological boundary conditions derived
from MERRA-2, GDAS, and ECMWF. Note that we chose this
subset of boundary conditions as they meet the spatial and
temporal coverage needs for this comparison. In addition, we use
the CHIRPS2 precipitation product (in conjunction with near
surface meteorology derived from ECMWF) because CHIRPS2
is found to have relatively low errors, high correlations, and
better consistency of trends in the precipitation evaluations
presented in Yoon et al. (2019). The evaluation of the terrestrial
water budget from this suite of model runs was found to provide
comparable estimates to those reported in global studies such as
Rodell et al. (2015).

Even though the LSMs used in this study lack glacier physics
(i.e., mass balance) and only account for shallow groundwater,
the output from these LSMs is valuable as it serves to fill
in the process gaps (in space and time) that is not captured
in the observational record. When the LSMs are convolved
with the glacier and groundwater estimates derived from stereo
imagery and well measurements, respectively, a more cohesive
view of terrestrial water storage across HMA is achieved that
could not be made using any one of the data products on
its own. Furthermore, GRACE-derived TWS retrievals provide
an independent evaluation of the integrated stereo imagery
(glaciers), well measurement (deep groundwater), and LSM (soil
moisture, snow, surface runoff, shallow groundwater) estimates
such that an assessment of HMA water balance closure, or lack
thereof, may be made.

3. RESULTS AND DISCUSSION

3.1. GRACE Total Water Storage
GRACE-derived regional mass trends for HMA and the regions
defined in Figure 1B are reported inTable 1. Excellent agreement
is achieved between the independent GRACE solutions for the
full HMA region, which is defined as the combined set of
mascons with either glacier mass balance, groundwater, or LIS
data. The spread in the GRACE solutions is greater for the smaller
regions within HMA, especially those that have significant trends
near the regional boundaries. The GSFC L1B regression solution
reports notably larger mass losses for the glaciated region and
the Brahmaputra basin. These differences can be attributed to
the significant reduction in signal leakage achieved by the L1B
regression product due to its improved spatial resolution, which
is made evident by comparing Figures 2A,B. We specifically
highlight the enhanced signal recovery of the mass losses in
the Tien Shan mountains (43◦N, 86◦E), the eastern Himalayas
(30◦N, 95◦E), and northwestern India (28◦N, 76◦E). The largest
trend magnitude within HMA is for the identified mascon
in northwestern India, which is −11.7 cm w.e. yr−1 for the
L1B regression solution and only −4.1 cm w.e. yr−1 for the
monthly mascons.

Our preferred GRACE L1B regression solution reports a mass
trend of−37.8± 10.4 Gt yr−1 for the full HMA region, where the
glaciated region accounts for−23.6± 5.5 Gt yr−1. As mentioned
above, a fairly large spread of GRACE-derived HMA glacier mass

trends exists between published results, with previous studies
reporting values of −47 ± 12 Gt yr−1 (Matsuo and Heki, 2010),
−4± 20 Gt yr−1 (Jacob et al., 2012),−19± 20 Gt yr−1 (Gardner
et al., 2013), and −17.7 ± 11.3 (Wouters et al., 2019). These
previous efforts sought to isolate the glacial mass change by
removing both the GIA and non-glacial hydrologic components
of the trend, while our reported value of −23.6 ± 5.5 Gt yr−1

has only removed GIA. The suite of LIS outputs described in
section 2.4 yield an average mass trend of −3.1 Gt yr−1 for
the subset of LIS/glaciated mascons, and we note that our LIS
region encompasses most but not all of the glaciated region. If we
remove this mean hydrologic trend from our preferred GRACE
estimate, the glacier mass loss becomes −20.5 Gt yr−1, which
agrees with the more recent assessments of Gardner et al. (2013)
and Wouters et al. (2019). We note that both of these previous
studies apply a complex set of post-processing procedures to the
Level 2 GRACE data sets in an effort to mitigate signal leakage,
while our preferred trend solution has been directly estimated
from the Level 1Bmeasurements resulting in the improved signal
recovery shown in Figure 2.

Below we discuss TWS mass trends in the context of our
effort to close the budget between the GRACE-derived values
and the independent glacier mass balance, groundwater, and
LIS data sets at both regional and mascon spatial scales.
The mascon-level comparisons apply our novel approach to
build rigorous confidence intervals by employing the resolution
operator in the computation of the solution bias as detailed in
section 2.1.3. While previous studies implicitly close the water
budget by using a residual to isolate water budget components
or fully assimilating GRACE into land surface models, we
demonstrate where further work is needed to close the budget
by leveraging the availability of independent glacier mass balance
and groundwater data.

3.2. Glacier Mass Balance
The total mass balance of HMA glaciers during 2000–2018
derived from geodetic observations is−19.0± 2.3 Gt yr−1 (Shean
et al., in review), which agrees well with the −16.3 ± 3.5 Gt
yr−1 estimate by Brun et al. (2017) during 2000–2016. The 2003–
2016 GRACEGSFC L1B regression estimate (after removing GIA
only) is −23.6 ± 5.5 Gt yr−1 The successful closure between the
new geodetic and GRACE mass trends over the glaciated region
demonstrates that the GRACE-observed mass trends are largely
dominated by glacier mass balance. If we limit the considered
region to mascons with at least 100 km2 of glacier area the
agreement further improves, with a geodetic glacier mass balance
estimate of−18.0 Gt yr−1 andGRACE estimate of−15.9± 3.6 Gt
yr−1. We also note that the agreement between the geodetic and
GRACE values is vastly improved for the L1B regression estimate
as compared to the monthly mascon products.

Following Section 2.1.3, we assess mass budget closure in
the glaciated region between the geodetic mass balances and
GRACE for individual mascons by accounting for the solution
bias/leakage via the resolution operator. Over the full glaciated
HMA region, we find that the glacier mass balances in 72%
of individual mascons lie within the 99% GRACE-derived
confidence intervals, while the sign of the mass balance agrees
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FIGURE 3 | Comparison between mass trends for (A) geodetic glacier mass balance for 2000–2018 and (B) GRACE L1B regression mascons for January 2003–July

2016. The open circles in (A) indicate where the sign of the glacier mass balance trend agrees with the 99% confidence interval and the closed circles indicate where

the glacier mass balance trend estimates are within the 99% confidence interval.

with the confidence intervals for 96% of mascons (Figure 3). The
greatest disagreements between GRACE and glacier mass balance
trend exist over the eastern Himalaya (24–30◦N, 92–100◦E) and
the Pamir and Tien Shan mountains (40–44◦N, 80–88◦E). These
regions generally correspond with areas of reduced density of
DEMs available for the elevation change analysis, and hence
tended to have larger uncertainties. We also observe some
disagreement between GRACE and geodetic mass balances over
the inner Tibetan Plateau (30–36◦N, 80–92◦E), with GRACE
showing some areas of mass gain not apparent in the glacier
datasets. Satellite altimetry and lake area data suggest lakes on
the Tibetan Plateau have been increasing in volume during 1990–
2015 (Treichler et al., 2018). These lake changes may account
for some of the observed mass increase not attributed to our
glacier observations, however most of the lake volume increase is
associated with a step-like increase in precipitation in 2000 that
pre-dates the GRACE observation period.

Our analysis supports the use of GRACE data to
independently assess the long-term mass trends of glaciers
in the HMA region. While our findings suggest that glacier
processes dominate the long-term water budget for regions
where glaciers are located, they do not necessarily support
the use of standard monthly GRACE solutions to represent
year-to-year or seasonal glacier mass balances. This is because
leakage and attenuation of signal have a much larger impact
on monthly GRACE solutions than our approach to directly
estimate mass trends from the L1B data, which is designed to
maximize spatial resolution over the full GRACE record. In
addition, fully accounting for sub-annual glacier mass balance
requires additional corrections for, among other factors, seasonal
accumulation and ablation of snow on non-glacier land surfaces.

3.3. Groundwater
The regional GRACE trend is partially explained by the trend
in groundwater in the study domain across northern India,
where in situ water levels are available, as shown in Figure 4.
Considering the set of mascons where groundwater data is
available (Figure 1B), the GRACE trend is −23.2 ± 4.3 Gt yr−1.
The total groundwater trend is 1.35 Gt yr−1 (2 Gt yr−1 for
unconfined, −0.64 Gt yr−1 for confined) when it is assumed the
confined areas are acting as fully confined layers, and becomes
−13.6 Gt yr−1 (2 Gt yr−1 for unconfined, −15.6 Gt yr−1 for
confined) when it is assumed that the confined water levels are
behaving in an unconfined manner. The latter situation results in

a trend that is similar to other studies in the region that use wells
from the same database as ours and only apply specific yield to all
study wells (MacDonald et al., 2016; Mukherjee et al., 2018), and
we believe this is a reasonable approach because the seasonality of
the water levels in both the confined and unconfined aquifers are
very similar suggesting a connection along with the possibility
that dropping water levels over time below top of the confined
aquifer could result in unconfining conditions. This approach
is further supported by the closer match to the GRACE trend,
along with previous literature explaining the trend is due to
groundwater declines. We report gridded-GWSA trends of +2.0
Gt yr−1 for the unconfined and −0.64 Gt yr−1 to −15.6 Gt
yr−1 for the confined layers, depending on the storage coefficient
used. MacDonald et al. (2016) found a stable or increasing trend
in 70% of the Indo-Gangetic Basin. Their study corroborates
our findings between both the GRACE trend and the in situ
groundwater trend of increases in water storage along the Indus
River and across the northern boundary of our groundwater
domain, as well as declining trends in northwestern India.
Significant groundwater depletion has been well documented
in northwestern India, including in the states of Rajasthan,
Haryana, and Punjab (Rodell et al., 2009; Tiwari et al., 2009),
and this region is known for extensively irrigated agriculture
(Zaveri et al., 2016).

Figure 4 shows that the trend sign agrees in almost every
mascon in northwestern India, however the magnitude of the
trend is generally smaller for the groundwater observations
than for GRACE. The LIS outputs in this region (Figure 5),
which is not glaciated, varies in both sign and magnitude. The
majority of pumping in this domain is from confined layers
(Panda and Wahr, 2016), however approximately two-thirds of
the wells used in this study within the confined area (based
on maps from Kumar et al., 2012) are unconfined. Therefore,
part of the discrepancy between the GRACE trend and the
observed groundwater trend in this region could potentially be
due to an under-representation of confined wells. The majority
of GRACE studies that attribute the high water loss rates
to deep groundwater use TWS model output to isolate the
groundwater residual, though the models neglect anthropogenic
impacts such as irrigation and diversions through canals. It is
possible that some of the discrepancy is also driven by changes
in other components of the water budget that are not robustly
represented in the models, especially those impacted by human
dynamics. The results in the southwestern and central portions
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FIGURE 4 | Comparison between mass trends for (A) groundwater data and (B) GRACE L1B regression mascons. The open circles in (A) indicate where the sign of

the groundwater trend agrees with the 99% confidence interval and the closed circles indicate where the groundwater trend estimate is within the 99% confidence

interval. Trends are computed for January 2003–July 2016.

of the groundwater domain show an increasing trend from
both the groundwater levels and GRACE. It has previously been
shown that the region with the highest increasing trend over
the state of Gujarat has increasing water levels due to policy
changes that decreased groundwater pumping (Bhanja et al.,
2017). An increasing trend in precipitation in the central region
subsequently increases recharge into the unconfined system,
causing the positive trend (Rodell et al., 2018). This study
demonstrates that further work is needed to close the water
budget in this domain and that the total groundwater trends in
the region are largely driven by the confined aquifers, indicating
that the anthropogenic influence of groundwater pumping is a
key driver of TWS change across this region.

The utility of groundwater levels to validate GRACE-derived
groundwater estimates is challenged by the need for groundwater
storage coefficients to convert from water levels to storage
changes, which tend to be sparse if available at all. Previous
studies have used GRACE to constrain model parameters related
to soils and groundwater (Lo et al., 2010; Sun et al., 2012),
however, they emphasize unconfined parameters. Here, we use
prior knowledge from the literature, and the demonstration of the
relatively small influence of the LIS TWS components over most
of the region, to assume that the GRACE trend is largely driven
by deep groundwater storage changes. This assumption allows
us to tune the storage coefficient used to convert water levels to
storage anomalies. The results are promising given our analysis
which shows that the majority of the regional GRACE trend is
accounted for by the groundwater estimates over the relevant
region. Further work, however, is needed to continue to refine
the groundwater parameters given that only 44% of the mascons
agree to within the 99% confidence interval. This indicates that
either the storage coefficients are not yet representative of true
values at the mascon scale and/or that the declining trend from
groundwater is being partially offset by an increasing trend in
a different water storage component that is integrated into the
GRACE trend.

3.4. Terrestrial Water Storage via Land
Surface Models
Figure 5A presents the trend maps of each combination of LSM
and meteorological boundary condition tested within LIS, while
Figure 5B compares the various regional LIS trends and their
average value to those obtained by removing the glacier mass

balance and groundwater from the GRACE L1B regression trend
estimates (referred to hereafter as “GRACE-corrected”). Clearly
the spatial structure of the LIS output is highly dependent on the
selected meteorological forcing. When considering the average of
the LIS results at regional scales and solution uncertainties, trend
budget closure is achieved for the glaciated region, the Indus and
Ganges basins, and the full LIS simulation region (following the
region definitions in Figure 1B). The LIS simulations, regardless
of the LSM or meteorological boundary conditions used, suggest
a small gain within the Ganges basin (average value of 1.8 ± 3.1
Gt yr−1), while the GRACE-corrected value reports a small mass
loss (−2.3 ± 3.3 Gt yr−1), though agreement is achieved when
accounting for uncertainties. In the Indus, we observe a larger
spread in the LIS results, but report excellent agreement between
their average value (2.4± 5.2 Gt yr−1) and the GRACE-corrected
trend estimate (1.9 ± 3.2 Gt yr−1). Comparing over the full LIS
simulation domain, the GRACE-corrected trend (+2.6 ± 10.3
Gt yr−1) is encapsulated by the spread of both the LSMs, where
Noah-MP trends range from −4 to +24 Gt yr−1, CLSM yields
trends of −5 to +10 Gt yr−1, and the mean of all LIS outputs is
+4.3± 18.4 Gt yr−1.

Budget closure is not achieved for the Brahmaptra basin, for
which the GRACE-corrected value is strongly negative (−9.1 ±

2.5 Gt yr−1), whereas the LIS trends range from weakly negative
to weakly positive depending on which precipitation product is
applied at the boundary conditions, and have an average value
near zero (0.7 ± 5.7 Gt yr−1). A likely reason for this behavior
is the larger inconsistencies in the precipitation trends over the
eastern parts of HMA. For the Brahmaputra the application
of ECMWF- or CHIRPS-based precipitation yields a relatively
small, negative trend in TWS while GDAS and MERRA-2
precipitation products yield a small, positive trend. As detailed
in Yoon et al. (2019), the trend of increasing precipitation
in datasets such as GDAS and MERRA-2 is inconsistent with
the reported declining trends in precipitation over this area.
Other possible reasons for the lack of budget closure here
include model structure errors within the LSMs used in this
study or the limitations in the regional trends estimated with
sparse groundwater observations and the lack of groundwater
data in the portion of the Brahmaputra that is outside
of India.

Overall, the reported regional GRACE-only trends in Table 1

and the GRACE-corrected trends in Figure 5 reveal that
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FIGURE 5 | (A) Trend maps for the eight different LIS outputs. (B) Summary of regional trend values for LIS outputs and GRACE with the glacier mass balance and

groundwater signals removed (see Figure 1B for region definitions). Trends are computed for 2004–2016 to match the available LIS data. The CLSM/Noah-MP

uncertainties represent 2σ noise, the “Average of CLSM/Noah-MP” errors are twice the standard deviation of the eight CLSM/Noah-MP values, and the uncertainties

for “GRACE - glacier MB - GW” include the 2σ GRACE noise, GIA model error, and geocenter correction error.

the trends derived from a LSM are insufficient to explain
those observed by GRACE. The LSM-based estimates used
here primarily reflect the influence of precipitation as a
first-order control on the conservation of mass balance at
the land surface. The LSMs used in this study have a
limited representation of shallow (i.e., unconfined) groundwater
dynamics while completely lacking confined groundwater
dynamics and the glacier physics needed to compute glacier mass
balance. In addition, they do not incorporate the impacts of
human management such as agricultural irrigation, groundwater
abstraction, and canal diversions. On the other hand, implicit
in the GRACE-derived estimates are the changes in the stores
of freshwater, including confined groundwater, unconfined
groundwater, surface water impoundments, soil moisture, snow,
and glacier ice. Therefore, the analysis presented here clearly
indicates that the differences between GRACE-derived TWS
trends and TWS derived from a land surface model in HMA are
more generally related to glaciers and/or confined groundwater.

The observed differences between the LSMs can be attributed
to model structural differences. For example, CLSM represents
subsurface storage changes from which unconfined groundwater
changes can be inferred, and Noah-MP has an explicit
unconfined groundwater layer, while neither model represents
confined groundwater. The impact of these differences is
highlighted in northwestern India in Figure 5A for the
ECMWF/CHIRPS2 output for each model. The larger positive
anomaly in Noah-MP could be explained by the availability
of additional storage as unconfined groundwater to hold

precipitation, whereas the subsurface component in CLSM is
more tightly connected to the surface layer and has a decreased
ability to retain moisture in the subsurface. Previous studies in
this domain have compared GRACE-derived groundwater trends
to in situ observations, finding good agreement in seasonality,
but not always a high correlation between trends such as in
the Ganges Basin within India (Bhanja et al., 2016). Mukherjee
et al. (2018) attribute recent drying trends in the Ganges river
to groundwater depletion that is causing a reduction in baseflow.
Groundwater abstractions can also lead to an increase in recharge
across the Indo-Gangetic Basin (MacDonald et al., 2016), which,
when combined with decreases in baseflow, minimize storage
loss from the aquifers and instead cause declines in surface
water supplies. These human-driven groundwater-surface water
interactions are not represented in the LSMs and could
explain some of the disagreement between the LSMs and the
expected output.

4. CONCLUSIONS

We have presented HMA regional mass trends for January 2003–
July 2016 as computed from four different GRACE mascon
products. The GSFC, JPL, and CSR monthly solution trends
range from −34.1 to −36.3 Gt yr−1, while the new high-
resolution GSFC L1B regression trend product reports a trend of
−37.8± 10.4 Gt yr−1. The good agreement between the GRACE
mascon products is an important achievement considering the
large discrepancy between previously-published GRACE HMA
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trends (e.g., Matsuo and Heki, 2010; Jacob et al., 2012), and the
significant differences in processing and regularization strategies
employed for the four different products. We attribute this
improved agreement to the quality of the mascon solutions
and the extension of the GRACE data time series, and the
larger mass losses of the L1B regression are explained by its
improved spatial resolution and the corresponding reduction in
signal leakage. The L1B regression mascon HMA mass trend is
equivalent to a +0.10 ± 0.02 mm yr−1 contribution to global
sea level rise, assuming that all HMA mass losses have entered
the ocean.

The total mass trends for the geodetic glacier mass
balance and groundwater observations are −19.0 Gt yr−1

and −13.6 Gt yr−1 over their respective sub-regions within
HMA. Summing these values results in a combined mass
trend of −32.6 Gt yr−1, matching our preferred GSFC L1B
regression mascon value of −37.8 ± 10.4 Gt yr−1 for all HMA
within uncertainties. Removing the glacier mass balance and
groundwater components from the GRACE trends identifies the
combinations of LSM and meteorological boundary conditions
that best close the TWS trend budget over the HMA LIS
region, and the Indus and Ganges basins, while reporting
lack of closure in the Brahmaputra for all combinations. In
Figures 3, 4 we have applied a rigorous uncertainty analysis
that employs the resolution operator to quantify solution bias
in order to determine where TWS trend budget closure has and
has not been achieved for each individual ∼110 km mascon,
identifying geographic regions where additional data and/or
model improvements are needed. Investigating the TWS trend
budget at these scales is made possible by the new GSFC
L1B regression mascon product, which contains higher spatial
resolution information than the monthly mascons and improves
the signal recovery as compared to previous multi-year spherical
harmonic trend estimates.

We have clearly established the significant impact of confined
groundwater changes on the HMA TWS trend. Consistent
with previous studies, we find that the trend in unconfined
groundwater alone is positive (+2.0 Gt yr−1) and well outside
the uncertainty range of the GRACE trend, but when combined
with the confined trend results in a trend of −13.6 Gt yr−1.
Though agreement with GRACE in this region is not achieved, it
is clear that the confined groundwater is a significant contributor
to the GRACE-derived trend in HMA. The method used herein
to constrain aquifer storage parameters is promising based on
the overall regional match between the GRACE L1B regression
trend and groundwater across the region. However, further
work is required to refine the storage parameters to improve
the match at the mascon scale. The lack of agreement between
the GRACE and LSM trends in HMA can be largely explained
by the missing glacier mass balance and confined groundwater
representation in the LSMs, where the groundwater component
is lacking both the dynamics and anthropogenic impacts such
as pumping. Future work to improve the performance of
LSMs in HMA should include the assimilation of the available

unconfined groundwater changes, groundwater and surface
water abstractions, and an explicit representation of unconfined
(CLSM) and confined (CLSM and Noah-MP) groundwater
dynamics. Such an effort should significantly improve the
LSM agreement with the GRACE-observed TWS trends
in HMA.

DATA AVAILABILITY

The monthly GRACE mascon products analyzed in this
study are available at http://neptune.gsfc.nasa.gov/grace
(GSFC), https://grace.jpl.nasa.gov/data/get-data/jpl_global_
mascons/ (JPL), and http://www2.csr.utexas.edu/grace/RL05_
mascons.html (CSR). The Randolph Glacier Inventory (RGI)
polygons are available at http://www.glims.org/RGI/randolph60.
html. The groundwater levels collected from India - Water
Resource Information System (WRIS) platform is available at
http://indiawris.gov.in/wris/. Information on the NASA Land
Information System is available at https://lis.gsfc.nasa.gov. The
new GRACE L1B regression mascons will be made available
in the near future, and requests for this product can be sent to
bryant.d.loomis@nasa.gov.
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