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Organic amendments from animal production are commonly used for promoting soil
fertility, and their impacts on the residual soil organic carbon (SOC) are of both
agricultural and environmental interest. Iron (Fe) in the form of (oxyhydr)oxides has been
proposed to play a critical role in long-term SOC preservation by forming Fe-organic
associations, though currently a comprehensive understanding of how these Fe-organic
associations are regulated by long-term organic amendments is limited. Here, we
synthesize information to link Fe (oxyhydr)oxides, SOC sequestration, and long-term
organic inputs from both field and laboratory studies. The results show that vigorous
Fe mobilization can be regulated by long-term application of organic amendments,
and these organically amended soils contained significantly higher concentrations of
poorly crystalline Fe that was closely related to SOC storage in both upland and paddy
soils. Potential mechanisms are proposed as follows: (1) DOM from the organically
amended soils is more likely to co-precipitate with poorly crystalline Fe, and DOM
from the inorganically fertilized soils is to a larger extent adsorbed on poorly crystalline
Fe. The co-precipitated Fe-OM complexes are more resistant to desorption than
the adsorbed OM. (2) DOM extracts from soils treated with organic amendments
exhibit a stronger inhibitory effect on the crystallization of poorly crystalline Fe than
DOM from inorganically fertilized soils, which may be the consequence of increased
numbers of aromatic functional groups. Organic acids in root exudates increased
soil mineral availability and the formation of poorly crystalline minerals. Compared
to inorganic fertilizers, organic amendments significantly increase (>20%, p < 0.05)
the concentration of poorly crystalline minerals in the presence of actual roots. (3)
Microbially mediated Fe cycling is strongly linked to the Fe mineralogy in soils, and
regulated by long-term organic amendments. Greater consumption of poorly crystalline
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Fe was observed in inorganically fertilized soil than that in organically amended soil,
due to a higher relative abundance of well-known Fe(III) reducers. Conversely, Fe(II)
oxidizers, were more abundant, and produced higher levels of poorly crystalline Fe
under organic amendments. In conclusion, continuous organic amendments initialize
a positive feedback loop for the maintenance of poorly crystalline Fe in soils, which can
contribute to enhanced SOC storage.

Keywords: organic amendments, poorly crystalline Fe(III) minerals, Fe (oxyhydr)oxides transformation,
microbially mediated Fe cycling, SOC preservation

INTRODUCTION

Nearly 80% of the total carbon (C) in terrestrial ecosystems is
preserved in soils, and∼75% of this is in the form of soil organic
carbon (SOC) (Lal, 2004). As the largest pool of biologically
active C on earth, SOC is a primary indicator of soil health
and plays a critical role in maintaining soil fertility. It is thus
important for agricultural food production, and the control of
greenhouse gas emissions (Schmidt et al., 2011; Lorenz and Lal,
2016). The consensus view of mechanisms of SOC sequestration
has changed greatly in recent years, as a result of progress in
physics, material sciences, genomics, and computation, as well as
in the application of the new techniques of in situ soil microscopy
and mass spectrometry. Now there is an increasing view that
the persistence of SOC is not primarily a molecular property,
but an ecosystem property (Mikutta et al., 2006; Rasmussen
et al., 2006; Schmidt et al., 2011; Kleber et al., 2015; Xiao et al.,
2015). In particular, interactions with reactive mineral phases,
such as poorly crystalline or short-range ordered (SRO) Al-/Fe-
(oxyhydr)oxides, has been identified as an important mechanism
for stabilization and long-term protection of SOC (Kleber et al.,
2005; Kögel-Knabner et al., 2008). Iron (Fe) is the most abundant
transition metal on the Earth’s surface, and its biogeochemical
cycle is closely related to the dynamics of soil organic matter
(Weber et al., 2006a). The poorly crystalline Fe (oxyhydr)oxides,
which have been isolated from many soil types, are more effective
than the crystalline Fe oxides or oxyhydroxides in stabilizing
soil aggregates, even though they may be present in smaller
concentrations (Duiker et al., 2003). Moreover, up to 21.5% of
the global OC are associated with reactive forms of Fe in soils and
sediments (Lalonde et al., 2012).

The maintenance and improvement of soil quality is crucial
for sustainable agricultural productivity (Rasmussen et al., 1998;
Ludwig et al., 2011), and land use and associated management
affect soil structure, properties, and SOC reserves. Organic
amendments, such as manure from pig and cattle farms,
are commonly used as a substitute for inorganic nitrogen
and phosphorus fertilizers for agricultural crop production
worldwide. Such continuous organic inputs to soil have led
to improvements in crop yields and SOC stocks (Griffiths
et al., 2010; Gattinger et al., 2012; Maillard and Angers, 2014;
Wen Y.L. et al., 2014). However, caution is also needed in the
prolonged agricultural use of heavy metal-containing organic
wastes, which can lead to substantial amounts being accumulated
in the SOC (e.g., Goodman et al., 1991a,b), and available to
plants. Soil minerals can also be affected by fertilization practices,

and some recent investigations have shown that management
practices, such as the application of organic amendments,
can convert crystalline minerals to nano-size forms, which
have higher capacity for C binding (Yu et al., 2012; Wen Y.
et al., 2014). However, significant changes in SOC due to land
management practices occur slowly, and may require many years
before they can be detectable by present analytical methods
(Rasmussen et al., 1998). Therefore, long-term experiments
with agro-ecosystems are crucial for better evaluating the
effects of different fertilization regimens on soil quality and
system sustainability.

Although there has been increasing recognition of the
importance of SRO/reactive Fe minerals in protecting soil C,
there is still a gap in our understanding of Fe-mediated protection
of SOC in agricultural soils under long-term fertilization. It
has been long known that poorly ordered Fe oxide species are
associated with the SOC extracted from podzol soils by alkaline
EDTA and NH4OH (McBride et al., 1983), but it is only relatively
recently that Yu et al. (2012) proposed that non-crystalline
minerals were formed in soluble SOC from 21 years’ long-term
organically amended soils. Subsequent research based on both
field and laboratory studies has provided more information on
the regulation of interactions between Fe (oxyhydr)oxides and
SOC by long-term application of organic amendments. Still, a
systematic and mechanistic knowledge of effects of soil organic
amendments on the SOC storage ability of Fe (oxyhydr)oxides
is scarce, although organic amendments were proposed to
increase the amount of SOC by direct C input from the organic
amendments and an indirect effect from increased net primary
production in most of the current studies. The aim of this
synthesis article is to present a collection of recent arguments that
address improvements in SOC stability through regulation of the
species and mineralogy of Fe by long-term organic amendments.
We hypothesize that long-term organic amendments could
markedly influence the soil biogeochemical properties which
benefit the existence of poorly crystalline Fe in soils, and
further favor long-term SOC protection. First, we integrated
the information regarding the effects of organic amendments
on the reactivity and crystallinity of Fe (oxyhydr)oxides in field
studies. Then, potential mechanisms were proposed from the
results of controlled microcosm incubation studies, i.e., the effects
of organic amendments on the reactivity of Fe (oxyhydr)oxides
with soil dissolved organic matter as well as Fe redox cycling
microorganisms, and on the occurrence of co-precipitation
or adsorption processes between SRO Fe and DOM in those
fertilized soils.
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SOIL PHYSICOCHEMICAL PROPERTIES,
IRON FRACTIONS IN FIELD SAMPLES
UNDER LONG-TERM ORGANIC OR
INORGANIC AMENDMENTS

A description of the physicochemical properties of the soils
reviewed in this work is presented in Table 1. Overall, there
was considerable variation in the soil pH, SOC content, and
Fe mineral fractions among sites and long-term amendments
(Table 1). From all of the sites in Table 1 and other studies
(Whalen and Chang, 2002; Bhattacharyya et al., 2010; Gattinger
et al., 2012; Maillard and Angers, 2014), it is seen that continuous
input of organic amendments to the soils markedly increased
the amount of SOC compared with no fertilization. This is due
to both direct C input from the organic amendments and an
indirect effect from increased net primary production. Inorganic
amendments increased SOC concentrations to a lesser extent, and
was solely the result of input from crop residues (Halvorson et al.,
1999; Galantini and Rosell, 2006; Tong et al., 2014). Inorganic
amendments (NPK) greatly decreased soil pH compared to
organic amendments and no fertilization treatments (i.e., NPKM
and Control, respectively). Soil acidification in acidic soils was
seriously accelerated under NPK treatment, but was effectively
alleviated by organic amendments. Enhancement of soil SRO
nanominerals under long-term organic amendments has been
suggested as a potential mechanism for increasing the pH in acid
soils (Wen Y.L. et al., 2014).

Iron fractions could be significantly altered by long-term
fertilization, and the total Fe concentration in the soils reviewed
here ranged from 24.5 to 55.4 g kg−1 (Table 1), with the highest in
the Ferrialic Cambisol. The different fertilization treatments had
little or no effect on the total Fe concentration, although some
observations reported a slight decrease in total Fe in NPK and
NPKM treated soils compared with the no fertilization control.
This is probably a result of Fe uptake by plants or leaching (Wen
et al., 2018). However, the Fe concentrations in water-dispersible
soil colloids, which could be a good indicator of the availability
of a mineral for C binding, was significantly enhanced by long-
term organic amendments (by over 2 orders of magnitude at the
Qiyang Experiment, and 2–12 times at the Shenyang, Ürümq,
Gongzhuling, Park Grass and Broadbalk sites) (Table 1). This
index has been ignored by most studies of Fe (oxyhydr)oxides
and C associations in soils, including those listed in Table 1 and
the reports of Arias Estévez et al. (2016), Coward et al. (2017),
and Wang et al. (2019).

It has also been reported that reactive Fe concentrations
(or SRO minerals) are significantly increased by organic
amendments in both upland and paddy soils (Zhou et al.,
2009; Yan et al., 2013; Huang X. et al., 2016; Yu et al., 2017;
Wen et al., 2018; Wang et al., 2019). Although this observation
is confused by the definition of reactive Fe minerals, it is
interesting that the amounts of Fe extracted by acid ammonium
oxalate (i.e., Feo) in Table 1 were consistently greater under
organic amendments in all paddy soils, but not in upland
soils, whereas long-term organic amendments increased the
Feo−p values (which is the difference between Feo and Fep),

in upland soils. In general, acid ammonium oxalate extracts
poorly crystalline Fe (oxyhydr)oxides and organically complexed
Fe, whereas pyrophosphate extracts Fe (Fep) primarily from
Fe-humus complexes (López-Ulloa et al., 2005; Zhang et al.,
2013; Wen et al., 2018). The stabilization by SOC of poorly
crystalline Fe is through organo-mineral associations, whereas
the Fep is a measure of the formation of organo-metal complexes
(Van De Vreken et al., 2016). Studies have demonstrated
positive relationships between Feo and SOC (Adams and Kassim,
1984; Huang et al., 2017), and also between Feo−p and SOC
(Supplementary Table S1; Torn et al., 1997; Rasmussen et al.,
2006; Zhang et al., 2013; Porras et al., 2017; Wen et al., 2019).
However, in forest soils it has been observed that the poorly
crystalline minerals were not consistently correlated with SOC
concentrations, but with SOC turnover times (Porras et al., 2017).
This might reflect the comparatively low abundances of poorly
crystalline minerals in these soils, as has also been postulated for
grassland soils (Masiello et al., 2004). Thus poorly crystalline Fe
could better predicate SOC turnover times, whereas organically
complexed Fe could be a better predictor of SOC concentrations
(Porras et al., 2017), and the processes measured by Feo and Feo-p
could both be important for soil C sequestration.

Selective extraction methods may give only operationally
defined pools of reactive Fe minerals, and chemical selective
extractions have intrinsic limitations due to the artifacts
associated with reagent selectivity and their inability to
differentiate specific reactive minerals. In recent years, the
application of the synchrotron-based X-ray absorption fine
structure (XAFS) spectroscopy has been shown to provide
complementary information to chemical extraction, and could
provide direct identification of reactive Fe minerals (Yu et al.,
2017). Compared to inorganic amendments, results from the
Fe K-edge XANES (near edge part of XAFS) showed that
soil treated with organic amendments contained significantly
higher concentrations of poorly crystalline ferrihydrite (Xiao
et al., 2015; Huang C. et al., 2016; Yu et al., 2017; Wen et al.,
2019). Poorly crystalline Fe minerals have larger specific surface
area (about 800 m2 g−1, ferrihydrite) than crystalline forms
of Fe (about 200 m2 g−1, goethite) (Eusterhues et al., 2005),
and have a greater capacity to stabilize SOC than crystalline
minerals (Torn et al., 1997). It has also been well documented
that poorly crystalline ferrihydrite and SOC are closely related
(Supplementary Tables S1, S2; Eusterhues et al., 2011; Yu et al.,
2017; Wen et al., 2019). Thus, the poorly crystalline Fe phase
plays a proportionately more important role in long-term SOC
storage and stabilization by providing extensive surface areas
and chelation capacity for organic molecules to form stable
organic-mineral bonds (Torn et al., 1997; Wen et al., 2019).
Additional information on the forms of Fe in soil samples can
be obtained by Mössbauer spectroscopy. Not only are each of
the crystalline Fe minerals characterized by distinctly different
spectral parameters, but these parameters are also sensitive to
crystallinity and the extent of isomorphous substitution of Fe
by Al (Murad and Cashion, 2004). Furthermore, this technique
can be used for tracer studies to follow the fate of Fe added to
a system in forms enriched in 57Fe. As an example, it was used
to determine the effect of pH on the redox status of Fe, and to
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TABLE 1 | Soil physicochemical characteristics and Fe fractions under long-term (6–170 years) organic or inorganic amendments in long-term fertilization experiment sites.

Site (Years) Soil
classification

Amendment
regimena

pH SOC/g kg−1 Fet/g kg−1 Feco/g kg−1 Fed/g kg−1 Feo/g kg−1 Fep/g kg−1 Feo−p
b/g kg−1 References

Qiyangu (23 years,
1990–2013)

Ferrialic Cambisol Control 5.35 (0.04) 7.27 (0.23) 50.70 (1.32) 0.0006 40.01 (1.09) 3.12 (0.06) 2.65 (0.05) 0.48 (0.06) Huang C. et al., 2016;
Wen et al., 2018, 2019NPK 4.05 (0.02) 10.43 (0.24) 55.40 (1.89) 0.0001 48.12 (2.01) 3.88 (0.04) 3.53 (0.28) 0.35 (0.29)

NPKM 6.01 (0.03) 13.95 (0.48) 49.21 (0.59) 0.454 41.52 (1.05) 4.15 (0.07) 2.72 (0.24) 1.43 (0.24)

Gongzhulingu

(23 years,
1990–2013)

Luvic Phaeozems Control 7.57 (0.08) 14.29 (0.21) 28.05 (0.59) 0.0037 13.35 (0.21) 1.93 (0.05) 0.22 (0.00) 1.71 (0.05) Wen et al., 2019

NPK 6.41 (0.02) 13.21 (0.27) 29.06 (0.69) 0.01 12.79 (0.09) 2.23 (0.11) 0.73 (0.03) 1.49 (0.08)

NPKM 7.56 (0.05) 24.56 (0.19) 27.70 (0.79) 0.02 11.14 (0.17) 2.05 (0.03) 0.43 (0.01) 1.62 (0.03)

Shenyangu

(34 years,
1979–2013)

Haplic Alisol Control 5.92 (0.07) 9.08 (0.17) 26.89 (0.56) 0.003 8.81 (0.11) 4.10 (0.03) 1.52 (0.08) 2.58 (0.11) Wen et al., 2019

NPK 5.09 (0.09) 9.90 (0.19) 25.53 (0.66) 0.002 9.49 (0.27) 4.02 (0.21) 2.44 (0.40) 1.58 (0.32)

NPKM 6.15 (0.12) 14.05 (0.35) 24.50 (1.35) 0.01 7.98 (0.19) 3.65 (0.08) 1.84 (0.09) 1.81 (0.17)

Ürümqiu (23 years,
1990–2013)

Haplic Calcisol Control 8.02 (0.03) 13.59 (0.16) 28.00 (0.39) 0.04 6.33 (0.18) 1.07 (0.06) 0.18 (0.01) 0.89 (0.07) Wen et al., 2019

NPK 7.79 (0.01) 14.34 (0.22) 29.12 (0.61) 0.02 6.02 (0.29) 1.31 (0.02) 0.33 (0.02) 0.98 (0.03)

NPKM 8.01 (0.05) 30.39 (1.49) 28.55 (0.29) 0.11 4.98 (0.79) 1.26 (0.02) 0.18 (0.01) 1.08 (0.03)

Rothamsted
research station
(Park Grass)u

(152 years,
1856–2008)

Silty clay loam Control 4.89 36.3 (0.5) – 8.84 – 5.00 (0.11) 4.03 (0.03) 0.97 (0.12) Yu et al., 2017; Yu
unpublished data

N1PK 3.40 58.4 (1.0) – 0.44 – 7.90 (0.15) 9.29 (0.32) –

N2PK 3.57 31.8 (0.7) – 11.37 – 6.15 (0.13) 4.14 (0.06) 2.01 (0.07)

M 5.18 31.6 (0.2) – 19.55 – 6.12 (0.11) 5.13 (0.16) 0.99 (0.15)

Rothamsted
research station
(Broadbalk)u

(170 years,
1843–2013)

Chromic Luvisol Control 8.24 8.8 – 10.14 – 3.10 (0.17) 0.56 (0.06) 2.54 (0.22) Yu et al., 2017; Yu
unpublished data

NPK 7.20 10.4 – 1.92 – 3.22 (0.13) 2.26 (0.27) 0.96 (0.29)

NPKM 7.76 28.3 – 13.59 – 3.22 (0.08) 1.15 (0.03) 2.07 (0.10)

Xuzhouu (37 years,
1980–2017)

Sandy loam Control 6.80 16.41 – – 25.24 (1.35) 10.13 (2.20) 6.52 (0.45) 9.40 (1.18) Wang et al., 2019

NPK 6.60 17.88 – – 31.43 (1.55) 11.34 (0.81) 6.25 (0.17) 9.61 (0.83)

NPKM 6.73 22.13 – – 24.27 (1.15) 11.38 (0.81) 7.31 (0.24) 12.52 (1.67)

Jiangxiu (24 years,
1986–2010)

Plinthosols Control – 7.98 – – 31.8 2.16 – – Yan et al., 2013

NPK – 9.87 – – 32.5 1.80 – –

NPKM – 12.1 – – 31.0 2.35 – –

Jiangxip (29 years,
1981–2010)

Typic stagnic
anthrosols

Control – 20.1 – – 19.3 3.79 – – Yan et al., 2013

NPK – 20.1 – – 19.7 5.74 – –

NPKM – 25.7 – – 19.1 7.36 – –

Jinxianp (21 years,
1981–2002)

Hapludult Control – – – – 20.9 12.8 0.78 12.0 Zhou et al., 2009

NPK – – – – 22.4 13.9 1.02 12.9

NPKM – – – – 30.9 17.1 1.79 15.3
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distinguish between chelated and oxide forms in the presence
of large excesses of SOC (Goodman et al., 1991c; Goodman
and Cheshire, 2002). Unfortunately, Mössbauer spectroscopy is
insensitive and very time-consuming for routine investigations
of environmental samples.

Overall, long-term organic amendments could enhance SOC
stability by increasing the amounts of reactive poorly crystalline
Fe minerals in soils, which then interact with SOC by
adsorption or co-precipitation. This is one of the most important
mechanisms that could stabilize a significant proportion of SOC
over long timescales (Kögel-Knabner et al., 2008; Rumpel et al.,
2015), as SOC stability is governed by accessibility rather than
recalcitrance (Schmidt et al., 2011; Dungait et al., 2012).

ASSOCIATION BETWEEN DOM UNDER
DIFFERENT FERTILIZATION REGIMENS
AND Fe VIA CO-PRECIPITATION OR
ADSORPTION

Microbially- or abiotically mediated Fe redox cycling in the
Earth’s crust could trigger the precipitation and dissolution
of Fe-rich minerals, and these are thus strongly interlinked
with SOC preservation. Adsorption or co-precipitation between
SOC and ferrihydrite are the main pathways for the formation
of ferrihydrite-OC associations in the natural environment
(Pohlman and McColl, 1988; Dahlgren and Marrett, 1991;
Eusterhues et al., 2005; Wagai and Mayer, 2007; Chen et al.,
2014). In soils, OC could adsorb on pre-existing ferrihydrite
surfaces, and the so called “sorptive protection” by ferrihydrite
could stabilize OC from biological degradation as well as
retarding the transformation of ferrihydrite into more crystalline
Fe (oxyhydr)oxides (Kalbitz et al., 2005). Meanwhile, carboxyl
groups that dominate DOM structures can provide abundant
binding sites for co-precipitation with Fe(III), resulting in
adsorption and occlusion of organic molecules in the interstices
of ferrihydrite crystals (Eusterhues et al., 2011; Chen et al., 2014;
Mikutta et al., 2014). Indeed, the co-precipitation or adsorption
of DOM and Fe (oxyhydr)oxides has been proposed to be an
important process for stabilizing C and Fe forms in the soil
system (Mikutta et al., 2014).

To date, there are limited studies that compare the effects
of different associations resulting from OC adsorption vs. co-
precipitation on the stability of OC under different fertilizations
regimens in agricultural soils. However, the adsorption and
co-precipitation processes have been compared by using pure
ferrihydrite and DOM extracted from soils at the Qiyang site
with different amendments, and Fe K-edge XANES spectra
coupled with LCF analysis was applied to determine the relative
amounts of insoluble Fe(III) - organic complexes and unreacted
ferrihydrite in co-precipitates and adsorption complexes. In
the co-precipitation assays, 73% of the total ferrihydrite was
precipitated with DOM to form insoluble OM-Fe complexes
under NPKM, whereas only 34% was precipitated under NPK
(Figure 1, and unpublished data). Significantly, the opposite
trend was observed in the adsorption assays. These showed that
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more than 50% ferrihydrite under NPK, but only 12–20% under
NPKM, were adsorbed on the DOM (Figure 1, and unpublished
data). Lower pH values in the reaction systems increased the
amount of DOM adsorbed on ferrihydrite, especially for the
Control and NPKM treatments, and this result is similar to
that reported by Chen et al. (2014). More importantly, these
results indicate that DOM from soils treated with long-term
organic amendments (NPKM) is more likely to co-precipitate
with ferrihydrite, whereas adsorption processes are favored by
DOM from NPK treated soils. This might be the consequence
of different C/Fe ratios in the reaction systems as well as the
composition of the DOM in different fertilized soils (Chen et al.,
2016). In the initial systems in this work, the molar C/Fe ratio
ranged from 0.14 to 1.41, with the highest C/Fe molar ratio
in DOM extracted from the NPKM-treated soil, followed by
the Control, and lowest for the NPK treatment (Wen et al.,
unpublished data). However, the overall C/Fe ratios are at the low
end of the C/Fe ratio range described in previous research (Chen
et al., 2014). That work reported the presence of higher amounts
of aromatic groups during adsorption and co-precipitation at
low C/Fe ratios, which is consistent with our recent studies.
Other researchers have also reported that adsorption and co-
precipitation of lignin resulted in a preferential association
of aromatic C (Eusterhues et al., 2011). Therefore, higher
amounts of aromatic C groups in the tested organically treated
soils (Supplementary Table S3) might be responsible for the
dominance of co-precipitation processes.

As the presence of DOM during the co-precipitation process
inhibits ferrihydrite growth by blocking the mineral surface
sites, and leads to the formation of large aggregates, co-
precipitated ferrihydrite often has smaller crystal sizes, greater
structural disorder, and lower specific surface area than pure
ferrihydrite (Eusterhues et al., 2008; Mikutta et al., 2008; Cismasu
et al., 2011; Mikutta, 2011). It has been reported that co-
precipitation of ferrihydrite with DOM lowers its crystallinity, as
well as the magnetic ordering temperature and internal magnetic
field in Mössbauer spectroscopic measurements (Schwertmann
et al., 2005), whereas ferrihydrite precipitated with synthetic
acid polysaccharides showed stronger aggregation due to the
presence of the organic polymers, but only a small decrease
in the magnetic hyperfine field, and no significant change
in crystal structure (XRD) or the local Fe coordination
(Mikutta et al., 2008). Furthermore, co-precipitated C has a
relatively higher stabilization than adsorbed C (Chen et al.,
2014; Mikutta et al., 2014), and co-precipitation of DOM
and Fe makes the more important contribution to SOC
storage (Lalonde et al., 2012). Overall, the use of organic
amendments can promote the co-precipitation of DOM and
ferrihydrite in soils (Figure 1), and thus enhance the long-term
protection of SOC.

DOM COMPOSITION INFLUENCES
CRYSTALLIZATION OF Fe

Poorly crystalline ferrihydrite is the first solid to precipitate
during hydrolysis of Fe(III). But it is thermodynamically

unstable. It is likely to and ages to more stable crystalline forms,
such as goethite or hematite, after a few months, even at room
temperature (Raiswell, 2011; Chen et al., 2015). However, it is well
known that there are often large quantities of poorly crystalline
ferrihydrite in soils. This discrepancy was firstly explained by
the inhibitory effect of SOC five decades ago (Schwertmann,
1966), and later by other researchers (Schwertmann, 1970;
Kaiser and Guggenberger, 2007; Kaiser et al., 2007; Chen
et al., 2015), who showed that the aging transformations of
ferrihydrite can be inhibited or even reversed. It was proposed
that boiling for hours in strong alkaline solution would favor
the transformation of ferrihydrite to its crystalline counterparts
(Schwertmann, 1966), and our unpublished synchrotron-based
Fe K-edge XANES data showed that after aging the synthetic
ferrihydrite for 4 h in 1 mol L−1 KOH at 100◦C, almost all of the
poorly crystalline ferrihydrite had been converted to crystalline
forms (Figures 2A,B and Table 2). By adding dissolved organic
matter (DOM) extracted from soils treated with different long-
term amendments, the transformation process was significantly
inhibited; only ∼28% of the ferrihydrite was transformed to
goethite with OM from the NPKM treatment, but ∼55 and 40%
were transformed with OM from NPK and Control treatments,
respectively (Figures 2A,B and Table 2). Similar results were
observed in another study (Yu et al., 2017). When the DOM
solution from NPKM treated soil was diluted by 5 times, so that
its concentration was comparable to that in the NPK-treated
soil (Supplementary Table S3), ∼ 40% of the ferrihydrite was
transformed (Figures 2A,B and Table 2). Therefore, both the
DOC concentration and DOM composition could play important
roles in the ferrihydrite aging processes.

The results obtained by X ray photoelectron spectroscopy
show that aliphatic carbon was dominant and played an
important role in binding exogenous Fe in all treatments
(Supplementary Table S3). Aliphatic compounds were reported
not to interact substantially with kaolinite, smectite, or poorly
crystalline Fe, because this fraction was bound to crystalline
Fe oxides (Barbera et al., 2008). Soils treated with organic
amendments (NPKM) contained more than twice as much
aromatic C as those with the NPK treatment (Supplementary
Table S3), which was also found in other studies (Lima et al.,
2009; Wen et al., 2019). It has been reported that the amounts
of aromatic C, originating from either lignin, tannins, or low
molecular weight compounds (e.g., simple phenols, phenolic
acids, and flavonoids), are positively correlated with the reactive
Fe fractions, including Feo (Huang et al., 2018), Feo−p (Wen
et al., 2019), and SRO minerals (calculated as Alo−p + 1/2
Feo−p) (Kramer et al., 2012). Precipitation of reactive Fe
(oxyhydr)oxides following Fe(II) oxidation could also specifically
suppress decomposition of lignin (Hall et al., 2016), and the
biogeochemical cycles of Fe and aromatic compounds are thus
coupled, especially under repeated redox cycling conditions
(Riedel et al., 2013). As a result, the greater amounts of DOC
and aromatics that accumulate in organically amended soils could
exhibit a strong affinity for poorly crystalline Fe (oxyhydr)oxides,
and protect them from transformation to stable crystalline
phases, whilst at a same time further improving the SOC
sequestration potential in organically amended soils.
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FIGURE 1 | Fits of the Fe K edge XANES spectra of samples from the adsorption and co-precipitation experiments. The black lines represent spectra of samples
from the adsorption and co-precipitation experiment, the blue scattered circles represent the LCF results of the sample spectra, and the colored lines represent the
reference components for each best fit, i.e., ferrihydrite and insoluble Fe-OM complexes. This figure was adapted from Wen et al., unpublished data.

FIGURE 2 | Spectra of the fits of the Fe K edge XANES spectra of samples (B) and references used in the fitting processes (A) from a ferrihydrite aging incubation
experiments, soil colloids in the oxalic acid (C), and citric acid (D) stimulated studies. The black line in the (B) is the spectra of each sample, and the red scattered
circles represent the LCF results of Fe K-edge XANES normalized sample spectra. The colored lines in the (A) are the spectra of references, and smaller colored lines
in the (B) represent the reference components for each best fit in the LCF analysis. (C) Includes LCF results of Fe K-edge XANES normalized sample spectra
(scattered circles, a) and spectra of samples (black lines, a), Fe K-edge EXAFS (b), and radial structure function (RSFs, c) in oxalate simulated studies. In (D), the
scattered circles represent the LCF results of the sample Fe K-edge EXAFS spectra in the citric simulated studies, the black, and colored lines are the spectra of the
samples and references used in the LCF analysis, respectively. This figure was derived from Wen et al. unpublished data (A,B), Huang C. et al. (2016) (C), Yu et al.
(2017) (D), and more details can be found in the latter references.

Meanwhile, studies have also investigated the impact of root
exudates, (i.e., single low-molecular-weight (LMW) acids in
artificial root systems or real root exudates), on the chemistry of
Fe (oxyhydr)oxides (Colombo et al., 2013; Mimmo et al., 2014;
Keiluweit et al., 2015; Huang C. et al., 2016; Yu et al., 2017).

A simulation study was conducted by adding citric acid and the
colloidal suspensions derived from soils under 23 years’ long-
term organic amendments at the Qiyang station, Hunan, China,
and incubating for 1 day prior to analyzing the samples by the Fe
K-edge EXAFS (extended edge part of XAFS) technique and LCF

Frontiers in Earth Science | www.frontiersin.org 7 October 2019 | Volume 7 | Article 257

https://www.frontiersin.org/journals/earth-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-07-00257
O

ctober9,2019
Tim

e:17:37
#

8

W
en

etal.
O

rganic
A

m
endm

ents
E

nhance
A

m
orphous

Fe

TABLE 2 | Linear combination fitting (LCF) of the XANES models of the adsorbed Fe spectra of samples from the ferrihydrite aging incubation experiment, soil colloids in the citric acid, and oxalate acid stimulated
studies with the contributions (in%) of the various standard components required to achieve the best fit.

Experiment Treatment Ferrihydrite Goethite Lepidocrocite Magnetite Hematite Fe2(SO4)3 Ferric
oxalate

FeSO4 Ferrous
oxalate

R-factor
(∗10−3)

References

Ferrihydrite
aging studies

Ferrihydrite + KOH ND 12.1 ND 57.9 – ND 23.3 6.6 ND 0.5 Wen et al.,
unpublished dataFerrihydrite + H2O2 + KOH ND 58.1 ND 21.6 – ND 16.7 ND 3.5 0.3

Ferrihydrite + NPKM + H2O2 + KOH ND 60.1 ND 22.2 – ND 17.5 ND ND 0.5

Ferrihydrite + Control + KOH 59.6 29.9 ND 4.4 – ND 5 ND ND 0.3

Ferrihydrite + NPK + KOH 45.0 50.1 ND ND – ND 3.7 0.7 ND 0.2

Ferrihydrite + NPKM + KOH 72.0 ND ND 15.8 – ND 10.5 ND 0.9 0.2

Ferrihydrite + NPKM/5 + KOH 62.1 ND ND 35.1 – ND ND ND 2.7 0.3

Citric acid
simulated
studies

Soil colloids (NPKM) 39.4 27.6 – – 24.2 – 8.8 – – – Yu et al., 2017

Soil colloids (NPKM) + 10 mg L−1 citric
acid

49.9 13.0 – – 23.3 – 13.8 – – –

Soil colloids (NPKM) + 100 mg L−1

citric acid
74.6 5.1 – – 15.9 – 4.5 – – –

Soil colloids (Control) 27.3 29.8 – – 29.6 – 13.3 – – –

Soil colloids (Control) + 10 mg L−1

citric acid
37.3 21.2 – – 26.0 – 8.1 – – –

Soil colloids (Control) + 100 mg L−1

citric acid
45.2 15.4 – – 17.7 – 12.1 – – –

Oxalic acid
simulated
studies

Soil colloids (M) 23.0 64.3 – 5.4 – – ND ND – 0.05 Huang C. et al.,
2016Soil colloids (M) + 10 mg L−1 oxalic

acid
53.1 47.8 – ND – – 11.3 ND – 0.7

Soil colloids (M) + 100 mg L−1 oxalic
acid

49.7 40.9 – ND – – 14.4 ND – 0.6

Individual fractions normalized to a sum of 100% are reported, together with the effective sum of the fitted fractions. Reference and sample spectra and the LCF fits are shown in Figure 2. The fits were conducted based
on the spectra of corresponding references listed in this table. More details could be found in the corresponding references. ND represents that this component was not determined in the LCF analysis. –, represents
that this component was not used in the LCF analysis.
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analysis. The results showed that incubation of soil colloids with
citric acid at a concentration of 10 mg L−1 for 1 day decreased
the formation of goethite from 28 to 13%, and simultaneously
increased ferrihydrite from 39% to 50% of the total Fe; the
corresponding numbers for a 100 mg L−1 citric acid treatment
were 5% goethite and 75% ferrihydrite (Figure 2D from Yu
et al., 2017, Table 2). Similar results have also been reported for
simulation experiments based on oxalic acid addition [Figure 2C
from Huang C. et al., 2016, Table 2, and (Cheah et al., 2003)].
Therefore, LMW organic acids, could enhance the concentration
of poorly crystalline Fe (oxyhydr)oxides in soils, probably by
binding to their surfaces and inhibiting the transformation
to crystalline phases (Xu et al., 2010; Riedel et al., 2013).
Furthermore, the presence of actual roots has been reported to
double the release of Fe from soils with or without the application
of fertilizers. Besides, compared to inorganic fertilization, organic
amendments significantly decreased the mineral mobilization,
but markedly increased the concentration of SRO minerals
(>20%, p < 0.05) in the presence of roots (Yu et al., 2017).
Thus, plant roots, along with organic amendments, act a pivotal
part in the formation and maintenance of reactive Fe mineral
phases in soils. However, more work is needed to investigate any
differences in organic acids in root exudates between organic
and inorganic amended soils, and to provide direct evidence
as to whether organic acids in root exudates from soil with or
without organic amendments can have different effects on the
poorly crystalline Fe.

MICROBIALLY MEDIATED IRON REDOX
CYCLING

A variety of Fe (oxyhydr)oxide forms and crystallinities coexist
in soils and can be transformed to one another as a result of
Fe redox cycling driven by both abiotic and biotic processes
(Fortin and Langley, 2005; Kappler and Straub, 2005). The
biotic transformations of Fe (oxyhydr)oxides mediated by
microorganisms in most soils and sediments are often much
faster than the corresponding abiotic reactions (Weber et al.,
2006a). Fe has a central role in mediating electron-transfer
reactions within all living cells, and undergoes extracellular
redox transformations linked to microbial energy generation.
Fe(III) can act as a terminal electron acceptor for Fe-reducing
microorganisms (Weber et al., 2006a), and the reduced Fe(II)
can then be re-oxidized under anoxic conditions either by
phototrophic (Hegler et al., 2008) or nitrate-reducing bacteria
(Straub et al., 1996). Such reactions help produce the biogenic
reactive Fe(III) (oxyhydr)oxides that are then used by Fe(III)-
reducing bacteria to sustain Fe(II) production. Thus, Fe can be
rapidly recycled within a redox loop, and microbial communities
can engage in cyclic coupled iron oxidation and reduction along
transition zones (Roden, 2012).

A considerable diversity of microorganisms can reduce Fe(III)
using an assortment of electron donors, such as acetate, lactate
and H2 (Melton et al., 2014), with the most notable examples
being Geobacter (Lovley and Phillips, 1988; Lovley et al.,
2011), and Shewanella (Myers and Nealson, 1988). Geobacter

are among the first dissimilatory Fe(III) reducers that were
shown to be able to reduce Fe(III) minerals. Among Fe(II)
oxidizing bacteria, two reactions are potentially widespread
in neutral-pH anoxic habitats, anoxygenic photosynthesis and
Fe(II) oxidation coupled to NO3

− reduction (Miot et al., 2009a).
At the genus level, NO3

−-dependent Fe(II) oxidation has been
documented for Acidovorax, Dechloromonas (Chakraborty and
Picardal, 2013), and Psedumonas (Straub et al., 1996). Various
photoautotrophic Fe(II)-oxidizing microorganisms including
Chlorobium ferrooxidans and Thiodictyon, have been found in
natural environments (Croal et al., 2004). The Fe(III) that is
produced by microaerophilic Fe(II) oxidizers rapidly precipitates
as Fe(III) minerals, which are often referred to as biogenic Fe
minerals, and usually occur as nanocrystals. The mineralogy of
biogenic Fe(III) phases depends on the rate of Fe(II) oxidation,
solution chemistry, and the presence of pre-existing minerals
for seeding growth (Larese-Casanova et al., 2010; Posth et al.,
2010, 2014; Dippon et al., 2012). However, co-precipitation of
Fe and organic substances may disrupt mineral crystallinity,
whilst the initial Fe(III) (oxyhydr)oxide nucleation is influenced
by sorption of organic molecules, which then inhibit crystal
development. As a result, ferrihydrite is the main product from
Fe(II) oxidation when substantial quantities of organic matter are
present (Childs, 1992).

Long-term organic or inorganic amendments directly or
indirectly induce changes in soil physiochemical and biological
properties, including Fe redox cycling microbial communities.
However, there are only a few studies which address the
linkage between soil bacterial communities, microbial Fe
redox processes, and soil Fe mineralogy under different
long-term fertilization regimens in agricultural soils. Seasonal
alternation of wetting and drying serves as a driver of redox
cycling of Fe in paddy soils (Ginn et al., 2017), and it
has been demonstrated that 20 years’ long-term nitrogen
fertilization modulates communities of Fe(III) reducing bacteria,
and promotes Fe(III) reduction. Particularly, the well-known
Geobacter have been identified as active Fe-reducing bacteria
that use ferrihydrite and goethite as electron acceptors, and
their activities are greatly increased by long-term nitrogen
fertilization in paddy soils (Ding et al., 2015). In addition, by
enriching the Fe-redox microbial communities in an incubation
experiment, it was observed that the Fe redox processes
in upland soils can be strongly influenced by fertilization
treatments (Wen et al., 2018). Specifically, 23 years’ long-
term inorganic fertilization enhanced Fe(III)-reducing bacteria,
especially Geobacter (Figure 3), and resulted in increased
ferrihydrite consumption. In contrast, soils that experienced
long-term organic amendments contained more Fe(II) oxidizers,
most notably Anaerolinea, and these can oxidize Fe(II) when
NO3

− is present. Furthermore, Pseudononas, a NO3
− dependent

Fe(II) oxidizer (Straub et al., 1996), was also enriched in
organically treated soil incubations (Figure 3). Therefore,
in organic fertilization treatments, large amounts of poorly
crystalline ferrihydrite are produced at the end of the Fe(II)
oxidation stage of the microcosm incubation.

In upland soils, the occurrence of heavy rainfall creates
oscillations between reducing and oxidizing conditions, and
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FIGURE 3 | Relative abundance of putative dissimilatory Fe(III)-reducing bacterial (A) and Fe (II)-oxidizing bacterial (B) community structures at the genus level at the
initial incubation stage, the end of the Fe(III) reduction stage, and the end of the Fe(II) oxidation stage in each sample. Abundance is expressed as the average
percentage of targeted sequences out of the total high-quality bacterial sequences of samples from triplicate plots from each fertilization treatment. Error bars
indicate standard error of triplicates. This figure was adapted from Wen et al. (2018) and more details can be found in this reference.

anoxic micro-climate gradients can be created by interactions
between plant roots and soil aggregates. Long-term applications
of organic amendments increase the contents of macro-
aggregates (Tong et al., 2014). These then potentially create
more anoxic environments for Fe redox microbes, as well as
building up elevated SOC and DOC levels, and supporting greater
diversity and abundance of anaerobic Fe microbial communities.
In addition, microbial Fe-cycling communities that are present

and active in anoxic soil environments that are experiencing shifts
in organic C and NO3

− are likely to be analogous to those in
aerobic/anaerobic interfacial environments (Weber et al., 2006b;
Coby et al., 2011). In soils treated with organic amendments with
higher levels of organic C and NO3

− (Wen et al., 2018), and
larger amounts of aggregates, it could be inferred that initially
the inputs of organic C are relatively high compared with NO3

−,
and available NO3

− might be depleted by organotrophic NO3
−
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reduction, which then allows microbial Fe(III) reduction to occur
according to the thermodynamic sequence (Schlesinger, 2005).
During subsequent periods of reduced organic C loading, but
with sustained nitrification, the rates of NO3

− re-supply may
exceed the rates of organotrophic NO3

− reduction, and result in
the availability of NO3

− for NO3
−-dependent Fe(II) oxidation.

In NPK-fertilized soils with lower levels of organic C and NO3
−,

the absence of available NO3
− may result in the loss of Fe(II)

oxidation, and the production of relatively lower levels of poorly
crystalline ferrihydrite (Wen et al., 2018).

The above-mentioned results now show a basic understanding
of the linkage between microbially mediated Fe cycling, soil
Fe mineralogy, and long-term fertilization in agricultural soils,
but more work is still needed. For instance, the scenario
proposed above was deduced for a Ferralic Cambisol soil
(Wen et al., 2018), but a wider range of field experiments
is needed to provide a more general understanding of the
effects of different fertilization regimens on Fe redox cycling.
In addition, photoferrotrophs have been reported to produce
poorly crystalline Fe(III) (oxyhydr)oxides by oxidizing Fe(II)
using light energy (Kappler and Newman, 2004; Miot et al.,
2009b). Although they are common in numerous environments
(Hegler et al., 2012), the ecological roles of these phototrophic
Fe(II) oxidizers in Fe redox cycling are still unknown, particularly
in agricultural soils under long-term organic or inorganic
amendments (Melton et al., 2014). Furthermore, the quantitative
contributions of different types of Fe oxidizers to Fe cycling in
agricultural soils have not yet been reported. Moreover, the gene
families that encode proteins with a potential role in Fe cycling

within different microbial taxa are generally non-specific and
until now have low sequence identity (Melton et al., 2014). To
date few studies have investigated functional gene differences
in the microbial communities, which could better link Fe-redox
community structure to function, and there are currently no
reliable quantitative, direct methods to determine the rates of Fe
reduction, or oxidation.

Finally, other mechanisms might also be involved in
the Fe-OC dynamics in soils under different fertilization
treatments. For instance, in a rice-wheat cropping system,
seasonal shifts in redox conditions, coupled with corresponding
dynamic processes of soil aggregation, disaggregation and re-
aggregation, could be an important driver of the C cycle
(Huang et al., 2018). During seasonal dynamic redox cycling,
organic amendments could improve soil macro-aggregation,
and promote liberation of Fe (oxyhydr)oxides, and production
of SRO-Fe minerals. These could selectively adsorb aromatic
organic compounds by forming aromatic-Fe complexes, which
then co-precipitate at the aggregate interfaces for further SOC
protection (Huang et al., 2018).

CONCLUSION

This paper has synthesized information that is currently available
on the interactions between Fe (oxyhydr)oxides and SOC that
result from long-term application of organic amendments.
Poorly crystalline Fe minerals in long-term amended soils
were significantly increased by several mechanisms that might

FIGURE 4 | A simplified diagram indicates potential mechanisms on how organic amendments could improve poorly crystalline Fe in soils. The darker dash lines
represent a greater extent of the corresponding processes in organic amendments treated soils compared with inorganic fertilization.
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interfere with the so-called “aging-rejuvenation cycle” in soil
as proposed in Figure 4. First, DOM from the organically
amended soils is more likely to co-precipitate with poorly
crystalline Fe, and DOM from the inorganically amended
soils is to a larger extent adsorbed on poorly crystalline Fe.
The co-precipitated Fe-OM complexes are more resistant to
desorption than the adsorbed OM. Second, the DOM extracts
from organic amended soils contain higher concentration of
aromatic functional groups, and exhibit stronger inhibitory
effects on crystallization of poorly crystalline Fe compared
with inorganically amended soils. Furthermore, microbially
mediated Fe cycling is regulated by long-term inorganic/organic
inputs. A higher relative abundance of the Fe(III) reducer
Geobacter resultes in greater consumption of poorly crystalline
Fe in inorganically amended soils, conversely, Pseudomonas
and Anaerolinea are more abundant, and produce higher levels
of poorly crystalline Fe under organic amendments. Overall,
this work implies that continuous organic amendments to
soils could initialize a positive feedback loop for the presence
and maintenance of poorly crystalline Fe, which in turn helps
preserve SOC over longer time scales. Thus the development
of a comprehensive understanding of SOC-Fe associations
regulated by agricultural management practices might be of
crucial importance for enhancing soil carbon sequestration for
sustainable management of SOC in modern agroecosystems, and
for improving our understanding of C cycling processes under
the global environmental change scenarios.
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