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A Bayesian approach to estimate bias and uncertainty in snowfall precipitation
from MERRA-2 and other precipitation products was applied over High Mountain
Asia (HMA), using a newly developed snow reanalysis method. Starting from an
“uninformed” prior probability distribution, a posterior scaling factor applied to MERRA-
2 snowfall was derived by constraining model-based estimates of seasonal snow
accumulation and ablation over the water year (WY) with fractional snow covered area
(fSCA) measurements derived from Landsat and MODIS (MODSCAG). Several sub-
domains (nine representative 1◦ by 1◦ tiles) across HMA were examined over the
period WYs 2001–2015 and compiled into an uncertainty parameterization where a
lognormal distribution was fitted to the empirical posterior distribution with a mean
of 1.54 (median of 1.19) and coefficient of variation (CV) of 0.83, indicating that
MERRA-2 underestimates snowfall on average by ∼54% with sizeable uncertainty. For
reference, the uncertainties in snowfall precipitation from the ERA5 and APHRODITE-
2 precipitation products were also evaluated, and these products were found to
underestimate snowfall, on average by a factor around 1.78 and 3.34 (with median
scaling factors of 1.42 and 2.51), respectively. The results indicate that snowfall
precipitation at high-elevations dominated by snowfall is underestimated in most existing
products, especially in the gauge-based APHRODITE-2 product, where the biases
were also found to exhibit geographical variations with the largest underestimation in
monsoon-influenced high-elevation tiles. The derived MERRA-2 uncertainty model is
being used to develop a full domain-wide HMA snow reanalysis, which will shed further
light onto the space-time variations in snowfall biases in these products.

Keywords: snowfall, precipitation, bias, data assimilation, High Mountain Asia

INTRODUCTION

Accurate snowfall information is vital for hydrological modeling in snow-dominated regions, as
it directly affects the estimation of snow water equivalent (SWE), and also influences streamflow
prediction fed by snowmelt. This is especially important in High Mountain Asia (HMA), where a
significant amount of precipitation falls as snow, resulting in large contributions of snowmelt to
streamflow in many of its river basins (Bookhagen and Burbank, 2010).

Snowfall is highly uncertain in HMA due to the large spatial variability in precipitation, limited
ground observations, and uncertainty in satellite measured precipitation (Andermann et al., 2011;
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Bolch et al., 2012; Palazzi et al., 2013; Maussion et al., 2014).
Meteorological stations are sparsely located in this region,
generally located at lower elevations, and therefore data from
these stations can lack representativeness of precipitation at
unmonitored locations, most notably higher elevations (Winiger
et al., 2005; Palazzi et al., 2013). Satellite observations such as
TRMM (Tropical Rainfall Measuring Mission; Huffman et al.,
2007) can provide spatially continuous precipitation estimates,
but have been found to be uncertain and potentially biased
in the HMA region (Anders et al., 2006; Bookhagen and
Burbank, 2006; Andermann et al., 2011; Hussain et al., 2017;
Khan and Koch, 2018; Khan et al., 2018). In addition, both
remote sensing and in situ data sources generally perform
worse at characterizing snowfall compared to rainfall, often
with significant underestimates of snowfall rates, because their
instruments are mainly designed to measure liquid rainfall rather
than snow or ice (Anders et al., 2006; Viste and Sorteberg, 2015).

Precipitation can also be obtained from gridded datasets over
the HMA region, including those derived from atmospheric
reanalysis such as MERRA-2 (Modern-Era Retrospective analysis
for Research and Applications, version 2; Gelaro et al.,
2017), and those that leverage interpolated rain-gauge data
such as APHRODITE (Asian Precipitation Highly Resolved
Observational Data Integration Toward Evaluation; Yatagai et al.,
2012). Due to their coarse resolution, these gridded datasets often
do not fully capture orographic precipitation in complex terrain
(Palazzi et al., 2013) and those reliant on interpolated gauge
data will suffer from the same representativeness issues at high
elevations. Previous studies have investigated the uncertainty
and bias in precipitation datasets, where significant variability
among precipitation products was found over the Hindu-
Kush Karakoram Himalayas region, in both total precipitation
(Andermann et al., 2011; Palazzi et al., 2013) and snowfall
estimates (Viste and Sorteberg, 2015).

Recent studies, using a variety of methods, suggest that
most gridded precipitation datasets underestimate high-altitude
precipitation in HMA. Tahir et al. (2011) found total annual
precipitation estimates in APHRODITE to be lower than
precipitation observed in high-altitude stations in the Hunza
River Basin over the Karakoram range. Immerzeel et al. (2015)
showed, by inversely inferring precipitation from glacier mass
balance, that high-elevation precipitation in the upper Indus
basin is underestimated in APHRODITE, ERA-Interim, and
TRMM, where ERA-Interim is a global atmospheric reanalysis
from the European Centre for Medium-Range Weather Forecasts
(ECMWF; Dee et al., 2011). Similarly, through evaluating
runoff from glacio-hydrological modeling against observations,
Wortmann et al. (2018) showed APHRODITE underestimates
precipitation by a factor of 1.5–4.4 in Tarim headwater
catchments. The information gleaned from these previous
studies generally provides bulk bias estimates through inferring
precipitation from spatially integrated variables like streamflow
or glacier mass balance. Moreover, most of the studies to
date have focused on the upper Indus basin or other small-
scale catchments and on total precipitation, but provide less
information over the broad HMA domain, and have not
quantified the biases in snowfall.

In this work, we used a Bayesian approach to estimate biases
and uncertainties in MERRA-2 snowfall precipitation using a
newly developed snow reanalysis method (Margulis et al., 2019)
that can indirectly infer precipitation estimates, by constraining
prior model estimates with remotely sensed fSCA images over the
HMA region. The specific motivation for this study is to generate
reasonable uncertainty estimates for snowfall precipitation in
order to apply the same Bayesian approach over the full HMA
domain as part of the NASA HMA project. However, the goal
of providing an accurate accounting of precipitation uncertainty
is relevant to any hydrologic modeling study in the region
and therefore should be of interest beyond generating a new
snow reanalysis dataset. Herein we aim to primarily characterize
the uncertainty in MERRA-2 snowfall precipitation at several
sub-domains within HMA. Based on that characterization and
inter-comparison with other products (e.g., APHRODITE-2 and
ERA5) we address the following questions: Is MERRA-2 snowfall
biased over HMA and how can its bias and uncertainty be
parameterized? Is snowfall biased in other gridded precipitation
products and to what extent? How do the snowfall biases vary
spatially for these products and what is the spatial-temporal
distribution of snowfall?

METHOD AND DATASET

Test Tiles and Years
The goal of this research is to characterize the uncertainty
(including bias) in snowfall precipitation over HMA, which
is critical for snow modeling in this region. We selected 9
representative tiles (1◦ longitude by 1◦ latitude) in our study
domain to perform the analysis (Figure 1). These 9 test tiles
were chosen to sample across variations in physiography and
climate in the HMA region in order to assess the snowfall bias
in different regimes. Four tiles are located in the western part
of the domain, three tiles are located in southern part of the
domain, and two tiles are located in the central/northeastern part
of the domain (Figure 1). The expectation is that the precipitation
regime of the first four tiles are dominated by winter westerlies,
the southern three are influenced heavily by the Indian summer
monsoon, and the remaining two are relatively dry locations
forced by a mix of these and other synoptic drivers. Most of the
selected tiles have a mean elevation above 3000 m, with limited
glacier and forest cover (Table 1). The test years were chosen
as water years (WYs) 2001 to 2015, where both Landsat and
MODIS observations are used in the reanalysis method described
below. The WY spans October 1st through September 30th of the
following year, where the WY label corresponds to the calendar
year in which the WY ends.

Deriving the Bias and Uncertainty in
MERRA-2 Snowfall Precipitation
In this paper, we used the ensemble-based snow reanalysis
method (Margulis et al., 2019) as a tool for estimating unknown
precipitation biases and general uncertainty. The method is
designed to acknowledge the typically large prior uncertainty
in precipitation in high mountain regions and use a data
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FIGURE 1 | Elevation map of the HMA domain (middle) with locations of test tiles marked with red boxes. Major watersheds are delineated and labeled on the map,
using the watershed boundaries from HydroSHEDS (Lehner et al., 2006). Corresponding to each test tile, the left panel shows the monthly climatology of
precipitation (gray bars), snowfall (blue bars) and air temperature (red line), diagnosed by MERRA-2 data; the right panel shows the climatological mean fractional
snow covered area (fSCA) map.

TABLE 1 | Glaciation, climatological, and physiographic characteristics for the 9 test tiles.

Tile coordinates Sub-domain Mountain Mean elevation Glacial coverage Mean forest Annual precipitation Average annual air

range (km) (%) fraction (%) (mm) temperature (◦C)

(41◦N, 77◦E) Syr Darya Tien Shan 3.8 13.3 1.1 719 −5.5

(38◦N, 70◦E) Amu Darya Pamirs 2.6 1.0 2.8 1223 5.6

(34◦N, 66◦E) Hindu Kush Hindu Kush 3.1 0.0 0.0 486 3.9

(34◦N, 75◦E) Indus Karakorum 4.1 4.2 3.8 1542 −0.8

(29◦N, 82◦E) Ganges/Brahmaputra Himalayas 4.2 8.9 11.1 3376 −0.2

(27◦N, 90◦E) Ganges/Brahmaputra Himalayas 3.2 1.0 49.4 5566 7.7

(29◦N, 97◦E) Salween Hengduan 4.5 5.0 7.1 1183 −0.1

(36◦N, 85◦E) Tarim Kunlun 4.9 0.5 0.0 387 −6.9

(38◦N, 98◦E) Yellow Qilian 4.1 1.1 1.5 723 −4.6

The tile coordinates in the table refer to the lower left corner of each tile. Annual temperature and precipitation are based on MERRA-2 data.

assimilation approach to derive a posterior estimate that is
constrained by the remotely sensed fSCA depletion time series.
Specifically, a scaling factor b for precipitation is employed for
representing the prior uncertainty associated with the nominal
precipitation estimate and its downscaling:

Pj(xr, t) = bj,nom(xr)∗Pnom(xnom, t), for j = 1, . . . , N (1)

where j is the replicate (individual realization) index and N is the
total number of replicates in the ensemble. Pj(xr, t) is the snow

reanalysis precipitation in replicate j at snow reanalysis pixel and
time t. In this application, the model resolution (xr) is ∼480 m
(16 arcseconds). Pnom(xnom, t) is the nominal precipitation input
from any precipitation data (e.g., MERRA-2 used in this study) at
the nominal precipitation pixel xnom and time t. bj,nom(xr) is the
scaling factor in replicate j at snow reanalysis pixel xr , with respect
to the nominal precipitation input Pnom. Typically, a specific
distribution for b has been used in previous snow reanalysis
applications (e.g., Durand et al., 2008; Girotto et al., 2014a,b;
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Margulis et al., 2015, 2016; Cortés et al., 2016; Cortés and
Margulis, 2017) with variations across different domains and/or
with different precipitation products. For example, in the Sierra
Nevada range in California (United States), b was postulated as
lognormally distributed with a mean of 2.25 and CV of 0.25
when applied with NLDAS-2 (Xia et al., 2012) precipitation
(Margulis et al., 2015, 2016). While in the Andes range in Central
Chile, b was postulated as lognormally distributed with a mean
of 1.75 and CV of 0.95 when used with MERRA (Rienecker
et al., 2011) precipitation (Cortés et al., 2016; Cortés and
Margulis, 2017). The b distributional parameters can be derived
from in situ observation data (where available), and provide
a mechanism for performing precipitation downscaling, first-
order bias correction and prior uncertainty perturbation, where
the snow reanalysis framework provides posterior estimates for
these parameters through conditioning (a Bayesian update) on
fSCA measurements.

In data scarce domains like HMA, there may be insufficient
data to even postulate a prior uncertainty model for precipitation.
Hence, in contrast to previous applications, herein we take
the approach that we know almost nothing about the prior
uncertainty in MERRA-2 precipitation (and how it should be
downscaled) beyond a range of values seen in the literature. In
this “uninformed” approach, the prior b distribution is specified
as uniformly distributed (i.e., with equal probability) between 0.1
and 5 to reflect the wide range of biases seen in the literature as
well as the potential for sub-grid heterogeneity in precipitation.
Using such a distribution allows for the prior ensemble to reflect

both under- and overestimation by the nominal precipitation
dataset (i.e., MERRA-2), where those realizations that are most
consistent with independent (fSCA) data will be determined by
the Bayesian update. We used 50 replicates for the ensemble size
in this study, which was deemed sufficient based on preliminary
sensitivity tests.

Characterization of the uncertainty in snowfall precipitation
from MERRA-2 (including bias) is derived via the reanalysis step
in the particle batch smoother (PBS) approach (Margulis et al.,
2019), which is achieved through the conditioning of the prior
ensemble of b on independent fSCA observations to derive a
posterior distribution. A schematic illustration of the method
used for updating the b distribution at a particular modeling
pixel in a particular WY is presented in Figure 2, which is
elaborated on below.

In the PBS approach, all replicates in the ensemble are
initialized with equal prior weights, where the weights are
interpreted as the discrete probability for b and other variables
in the corresponding replicate:

Prior : b−j,nom (xr) , with w−j (xr) =
1
N

(2)

where b−j,nom (xr) is the prior scaling factor with respect to Pnom
and w−j (xr) is the prior weight in replicate j at snow reanalysis
pixel xr . In this application a uniform distribution (between 0.1
and 5) is used to draw random prior samples of b−j,nom (Figure 2).
The uncertainty in b is propagated to prior predictions of fSCA

FIGURE 2 | Flow chart highlighting how the reanalysis framework method is used to estimate uncertainty in snowfall precipitation at a particular modeling pixel in a
particular water year (WY), with red indicating prior, and blue indicating posterior. In the time series plots, the shaded area shows the ensemble spread (inter-quartile
range) and the solid line shows the ensemble median. Satellite retrieved fSCA from Landsat and MODSCAG are displayed in the posterior fSCA plot, and serve as
the constraint that is used to infer snowfall precipitation.
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(fSCA−pred,j) via the ensemble LSM-SDC modeling framework
(Margulis et al., 2019). Modeling variables are updated through
conditioning on the collection of satellite observed fSCA over the
WY (fSCAmeas):

Posterior : b+j,nom (xr) = b−j,nom (xr) ,

with w+j (xr) =
c0

N
pV

[
(fSCAmeas (xr)− fSCA−pred,j(xr)),CV

]
(3)

where b+j,nom (xr) is the posterior scaling factor with respect
to Pnom and w+j (xr) is the posterior weight in replicate j at
snow reanalysis pixel xr , and pv is the likelihood function of
measurement error (with specified covariance CV ), and c0 is a
normalization constant through which the posterior weights sum
up to one (Margulis et al., 2019).

Through conditioning on fSCA observations using the PBS
approach, the modeling results are preserved in each replicate,
but their corresponding weights are changed. Replicates with
modeled fSCA closer to observations are assigned higher weights,
and vice versa. The distribution of modeled variables (e.g., SWE,
fSCA, etc.) and the b distribution at each pixel are therefore
implicitly updated, due to the update in their posterior weights
(Figure 2). It should be noted that, while the b scaling factor is
applied to the total precipitation, since its posterior distribution is
based on fSCA depletion, we would expect the posterior estimates
should be most valid in snow-dominated pixels, i.e., where a
sufficient fraction of annual precipitation falls as snow such that
there is a clear seasonal snowpack with fSCA depletion that can be
captured by the Landsat and MODSCAG measurements. It is also
possible that in some instances the b scaling factor is correcting
for the fact that some storms through the year were misclassified
as rain or snow based on the air temperature. This would be
expected to occur in transition zones where air temperature is
near-freezing during snowfall events.

In order to better interpret the posterior b distribution in
terms of its probability rather than its posterior weights, we
used a sequential importance resampling (SIR) algorithm (Zhou
et al., 2006) to resample the b values, where we obtained a set
of b values with the same posterior distribution but with equal
weights. At each pixel, N samples (where N is the total number
of replicates) are randomly drawn from the discrete (posterior) b
distribution through a Monte-Carlo method, with the posterior
weight w+j (xr) interpreted as the discrete probability to obtain
the corresponding b+j,nom (xr). This generates a new sample set
{bRj,nom (xr) | j = 1, . . . , N} (where the superscript R indicates
“resampled”) at each pixel with N samples, and assign equal
weights (wR

j (xr) = 1
N ) to each sample. This intermediate step

is done for convenience in order to merge individual pixel
distributions together to derive the distribution across the tile(s)
as described below.

We grouped the resampled scaling factor ensemble bRj,nom (xr)
from all N samples and from all the pixels within each (1◦ by 1◦)
test tile into an ensemble to assess its tile-specific distribution,
and also merged the bRtile,nom samples from all the test tiles into
a larger ensemble bRglobal,nom to assess its “global” distribution

over the HMA region, with respect to the nominal precipitation
Pnom. Furthermore, both bRtile,nom and bRglobal,nom are fitted with
a lognormal probability function so as to parameterize the
distributions. It should be noted that MERRA-2 is used as the
nominal precipitation herein, such that the reanalysis application
yields bnom = bMERRA2 .

When merging the bRj,nom from different pixels into a large
sample such as bRtile,nom and bRglobal,nom, careful screening is
performed so as to exclude the non-updated pixels from
contaminating the distribution. Three types of pixels are excluded
from the large sample, namely pixels with water bodies, pixels
that are non-snowy at low elevations, and pixels with glaciers or
persistent snow at high elevations. The water bodies are identified
from the land cover types, and the non-snowy pixels are identified
when there is insignificant change in the posterior weights from
the prior. The glaciers or persistent snow pixels are identified
when there is significant carry-over-snow that do not fully melt
out in the melting season. Specifically, if, for a given pixel and
year, the minimum SWE exceeds 1% of the maximum SWE, that
pixel is considered to have significant carry-over-snow in that
year, and that pixel-year is excluded in the large sample. It should
be acknowledged that we found the posterior b distribution to
be somewhat sensitive to the screening, especially for the carry-
over-snow pixels at the high elevations (i.e., glacier pixels), hence
the screening is meant to conservatively focus on seasonal snow
pixels for the posterior b estimation.

Other Gridded Precipitation Datasets
To put the characterized MERRA-2 uncertainty results in larger
context, we chose to also investigate the implicit uncertainty in
two other gridded precipitation products, namely ERA5 (the fifth
generation of ECMWF reanalysis product) and APHRODITE-
2 (Asian Precipitation Highly Resolved Observational Data
Integration Toward Evaluation; Yatagai et al., 2012).

ERA5 is the latest reanalysis dataset produced by ECMWF,
which provides global estimates of atmosphere, land and ocean
variables. The dataset is currently available from 1979 to present
at an hourly step, gridded to a spatial resolution of 0.25◦. We
used its hourly total precipitation from Copernicus Climate
Change Service (2017)1 to obtain surface precipitation estimates.
APHRODITE-2 is produced by the Research Institute for
Humanity and Nature (RIHN) and the Meteorological Research
Institute of Japan Metrological Agency (MRI/JMA) and provides
daily precipitation estimates regionally over Asia based on a
dense gauge network, gridded to spatial resolutions of 0.25◦
and 0.5◦. We used the latest version APHRO_MA V1801_R1
Monsoon Asia Area Daily precipitation2, which covers the period
from 1998 to 2015.

Similar to MERRA-2, ERA5 is a reanalysis product that
assimilates both ground and satellite observations, while
APHRODITE-2 is a station-based product that derives its
estimate by interpolating precipitation gauges. These datasets are
recently released, but their previous versions (e.g., ERA-Interim

1https://cds.climate.copernicus.eu/cdsapp#!/home
2http://aphrodite.st.hirosaki-u.ac.jp/download/
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and APHRODITE) have been commonly used in studies over
HMA, and many studies have assessed their performance of
precipitation estimates in this region (e.g., Palazzi et al., 2013;
Immerzeel et al., 2015; Song et al., 2016; Hussain et al., 2017).
Therefore, they are representative of an additional reanalysis
product and gauge-based product, respectively.

We used 0.25◦ gridded resolution for ERA5 and 0.5◦ for
APHRODITE-2, so as to best approximate the MERRA-2
resolution. The period chosen for analysis was WYs 2001–
2015, which was the shared common period across all three
precipitation products and MODIS snow products. The annual
precipitation climatology maps (over WYs 2001–2015) are shown
in Figure 3. While some of the large scale precipitation features
are similar, it is evident there are, in some cases, large differences
between products.

Deriving the Bias and Uncertainty in
Snowfall Precipitation From Other
Products
The primary goal of this paper is the derivation of bias
and uncertainty estimates for the MERRA-2 product, which
is accomplished by performing the snow reanalysis using the
methodology described above. For context, bias and uncertainty
estimates for the other gridded products were obtained by
comparing them to the reanalysis estimates, i.e., whereby the
posterior reanalysis estimates derived from MERRA-2 provide
the reference. Specifically, note that the scaling factor bnom
that is derived for each WY using the nominal MERRA-2
precipitation inputs (i.e., bMERRA2), can be thought of as follows
by rearranging Eq. (1):

bRj,MERRA2 (xr) =
P̄Rj (xr)

P̄MERRA2(xr)
=

SPRj (xr)

SPMERRA2(xr)
(4)

where P̄Rj represents the cumulative annual snow reanalysis
precipitation for replicate j and P̄MERRA2 represents the
cumulative annual MERRA-2 precipitation. Since the scaling
factor bRj,MERRA2 is conditioned on fSCA observations,
and therefore primarily provides information on snowfall

precipitation (SP), it is essentially the ratio between cumulative
annual snowfall precipitation from the snow reanalysis (SPRj ) for
replicate j and that from MERRA2 (SPMERRA2).

Using the same notion we can derive scaling parameters for
the other products, i.e:

bRj,ERA5 (xr) =
SPRj (xr)

SPERA5(xr)
(5)

bRj,APHRODITE2 (xr) =
SPRj (xr)

SPAPHRODITE2(xr)
(6)

To avoid large scaling factors due to very small cumulative
snowfall values in the denominator of Eqs. (5) and (6), any cases
with less than 5 cm of cumulative annual snowfall were excluded
from the analysis. Given the derived scaling factors for each
product at the pixel scale, they were then aggregated to tile-based
and global distributions in the same manner as described above
for comparison with MERRA-2 and the snow reanalysis.

In addition to precipitation itself, snowfall is dependent on
air temperature. In the HMA snow reanalysis with MERRA-
2 as the nominal forcing input, air temperature uncertainty is
characterized with a normal distribution of N(−0.9◦C, 1.2◦C)
based on the comparison to in situ observations (Margulis et al.,
2019). This means that the raw MERRA-2 air temperature was
found to be 0.9◦C higher than in situ on average, and this
warm bias is corrected before performing the snow reanalysis.
Similar bias-correction should also be performed in the ERA5
and APHRODITE-2 air temperature before computing snowfall,
so as to eliminate the effect of air temperature biases in the scaling
factors. For consistency, we choose to commonly apply the snow
reanalysis air temperature over all three products to obtain their
snowfall estimates, which is essentially derived from the bias-
corrected MERRA-2 air temperature. A threshold of 2◦C daily
mean air temperature is applied to classify snowfall vs. rain over
the daily precipitation, where daily precipitation is still obtained
from their original product. The obtained snowfall in ERA5 and
APHRODITE-2 is further used in Eqs. (5) and (6) to derive the
snowfall bias estimates.

FIGURE 3 | Annual total precipitation (in mm) climatology (WYs 2001-2015) for raw ERA5, raw APHRODITE-2, and raw MERRA-2 over the HMA region.
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It should be noted that snowfall biases in ERA5 and
APHRODITE-2 are obtained herein by comparing to snowfall
estimates from the snow reanalysis (i.e., “bias-corrected”
MERRA-2 data). This necessarily ties the baseline most closely to
MERRA-2 rather than the other products, although the posterior
corrects the raw MERRA-2 to values that are most consistent
with the independent fSCA observations. This choice was made
primarily because (1) the focus of this paper is on deriving
an uncertainty parameterization for MERRA-2 and (2) due to
the higher computational expense of running the reanalysis
with each precipitation product. We leave a more thorough
multi-product reanalysis for future work, and herein use the
methods described above to provide a first-order comparison
of the MERRA-2 biases relative to those from ERA5 and
APHRODITE-2. Potential additional uncertainties introduced
using our simplified comparison method come primarily from
the diagnosis of MERRA-2 snowfall (i.e., using the 2◦C air
temperature threshold) at the hourly time step, while for ERA5
and APHRODITE-2 we diagnose snowfall using the same
threshold but at the daily time scale.

RESULTS AND DISCUSSION

The snow reanalysis framework provides posterior pixel-wise
estimates of the scaling factor bMERRA2 and the resulting seasonal
precipitation time series. In the sections below, for each of
the test tiles we present the resulting spatial distributions
of climatological posterior precipitation and MERRA-2 tile-
specific distributions for the scaling factor bRtile,MERRA2, and
the distribution across all of the tiles examined herein
as bRglobal,MERRA2. We then compare the derived snowfall
uncertainty relative to the other precipitation products examined
and compare how the posterior snowfall distribution varies
with time and elevation in comparison to MERRA-2 and
the other products.

Snowfall Biases and Uncertainties in
MERRA-2
The climatology (i.e., average over WYs 2001–2015) maps of the
interpolated MERRA-2 precipitation, the downscaled MERRA-
2 snowfall, the posterior snowfall from the snow reanalysis
(hereafter referred to as “snow reanalysis snowfall”) and the
posterior b from the snow reanalysis at each of the test tiles are
shown in Figure 4 (along with the respective elevation maps for
reference). The snow reanalysis derived maps (posterior snowfall
and posterior b) represent the climatology of the ensemble
median fields. It should be noted that the conditioning of
posterior b is most effective in seasonally snow-covered regions,
so non-snowy or glacierized regions are masked out in Figure 4
and all results that follow. In terms of the spatial distribution,
the MERRA-2 precipitation is bilinearly interpolated to the
model grid (this is what the prior model uses as nominal
input), but still retains the characteristics of the raw fields, and
shows a smooth (coarse) representation of the precipitation
field within a given 1 degree tile. The same smoothness is
propagated to the downscaled MERRA-2 snowfall, which shows

a mixed pattern of precipitation gradients and terrain variation,
where the latter is due to the dependence on air temperature
(which is downscaled to the model resolution). In contrast, the
snow reanalysis effectively downscales the coarse-scale MERRA-
2 by leveraging information in the set of higher-resolution
(∼480 m) fSCA images over each WY and in other model-
based fields (i.e., terrain). For example, the 34◦N 66◦E tile in
the Hindu Kush (Figure 4, third row) is characterized by a
general elevation gradient from southwest to northeast, with
the highest mountains in the northeast and lower lying valleys
elsewhere. Due to its coarse resolution in the raw MERRA-
2 fields, the spatial pattern of the interpolated MERRA-2
precipitation is nearly uniform in this tile (∼500 mm/year)
and clearly does not reflect the expected heterogeneity for such
complex terrain. The downscaled MERRA-2 snowfall also has
a smooth field (where the heteroegeneity is introduced through
air temperature dependence on elevation), with snowfall ranging
between 200 and 500 mm in this tile. The snow reanalysis
snowfall is significantly more heterogeneous, without preserving
the continuous and smooth features from precipitation or
elevation as in the downscaled MERRA-2 data. It also exhibits
high snowfall estimates at high elevations in the mountains and
low snowfall in the valleys, but with more dramatic gradients
across elevation. The snow reanalysis snowfall is greatly enhanced
in the highest elevation mountain chain on its windward side,
where the orographic precipitation would be expected, and
it is greatly reduced in the northeastern most valley on its
leeward side, where a rain shadow would be expected. Similar
heterogeneity in the snow reanalysis snowfall is seen across the
other test tiles (Figure 4, fourth column), which are attributed to
the heterogeneity in the fSCA data and the effects of topography
on snowfall. Beyond the heterogeneity (downscaling), the snow
reanalysis snowfall also contains bias correction, where most tiles
(fourth column) show tile-average differences with the MERRA-2
data (third column).

The spatial distribution of snow reanalysis snowfall (Figure 4,
column 4) is a function of the spatial patterns in the posterior b
maps (Figure 4, column 5), i.e., Eq (1), which are conditioned
on fSCA data. The posterior b estimates are expected to be most
robust in regions where there is a strong seasonal cycle in snow
accumulation and ablation that is captured by the fSCA data.
It shows complex patterns that reflect the combined effect of
two possible corrections to the coarse scale MERRA-2 data: (i)
downscaling of MERRA-2 data that is accurate in a tile-averaged
sense but does not reflect the high-resolution patterns due to
orography and other factors and (ii) bias-correction of large-scale
errors in MERRA-2 data. For example, in tile 38◦N 70◦E, the
posterior b (ensemble median) is generally between 1.0 and 2.0,
indicating that the MERRA-2 snowfall is underestimated, and
the snow reanalysis performs a bias-correction that effectively
increases snowfall in this tile. However, the posterior b is also
lower (and below 1.0) in certain pixels corresponding to the
valleys in this tile, indicative of snowfall being overestimated in
the downscaled MERRA-2 at those locations. Similar patterns
are observed in other tiles, where the ensemble median of the
posterior b is generally found to be between 1.0 and 2.0, but
also exhibits values below 1.0 mostly in the valleys. Furthermore,
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FIGURE 4 | DEM (first column), climatology (WY 2001-2015) for the: interpolated MERRA-2 precipitation (second column), downscaled MERRA-2 snowfall (third
column), posterior snow reanalysis snowfall (ensemble median) (fourth column), and posterior snow reanalysis b (ensemble median) (fifth column) in each of the
test tiles. Tile labels in blue and orange text represent their locations in the western domain or central-eastern domain, respectively.

the posterior median b is also found to be above 2.0 at a few
locations in these tiles, and is most apparent in tiles 27◦N
90◦E, 36◦N 85◦E, and 38◦N 98◦E. We hypothesize that the

higher posterior b observed in 36◦N 85◦E (over the southern
side mountains) is primarily due to capturing orographically
enhanced precipitation, while that observed in tile 27◦N 90◦E
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(at the foot of the mountain on the southern side) is primarily due
to the misclassification of snow as rain. For tile 38◦N 98◦E where
the posterior b is found highest in the valleys, we hypothesize that
it is primarily due to the non-effective updates in the intermittent
snow. This tile is characterized by more intermittent snow that
in some cases lasts only for several days at a time, where the
accumulation or ablation of snow is more difficult to capture
in the fSCA measurement time series. As discussed earlier, the
update in posterior b is most effective for seasonal snow pixels,
which feature a distinct snow accumulation and ablation cycle
that is reflected in fSCA observations.

To provide a bulk assessment of the uncertainties, the
posterior b distribution climatology across each tile (bRtile,MERRA2)
is shown in Figure 5 (blue bars). Note for reference that the prior
distribution was uniform (dashed line) across the range so that
the posterior distribution reflects the update in knowledge based
on the assimilated fSCA measurements. The common feature
seen in the empirical bRtile,MERRA2 distributions is that they all
are skewed to the right, and most tiles are distinctly unimodal.
To parameterize the empirical distributions, we chose to use a
lognormal distribution. The lognormal distribution is commonly
used in the literature to characterize the uncertainty distribution
in precipitation, because it ensures non-negative precipitation,
and the logarithm is suitable to characterize the extremely high
precipitation amounts occurring at a low frequency. The fitted
lognormal functions (using maximum likelihood estimation) are

shown in Figure 5 (red curves), which match the empirical
distributions well in most of the tiles (with the exception of 38◦N
98◦E) For example, in tile 38◦N 70◦E, the posterior bRtile,MERRA2
is highly right skewed with a mean of ∼1.3 with most samples
falling within a range of 0 to 2.5. In terms of the reanalysis
procedure, this is indicative that replicates with values above 2.5
essentially have zero posterior weight and those near the mode
have higher weights than the equal weights implicit in the prior
uniform distribution. The other tiles in the western part of the
domain (41◦N 77◦E, 34◦N 66◦E, 34◦N 75◦E), those in the south
and east (29◦N 82◦E, 27◦N 90◦E, 29◦N 97◦E), and one in the
northern Tibetan Plateau (36◦N 85◦E) similarly show unimodal
skewed distributions with mean values ranging from 1.0 to 1.9
and CVs ranging from 0.5 to 1.2. The tile in the northeastern
Tibetan Plateau (38◦N 98◦E, Figure 1) is an exception in that,
while right skewed, the peak is not as distinctive and has much
heavier tails on the right. As a result, it has a higher mean value
of ∼2.5. From the empirical distribution it is clear that many of
the higher prior values remain in the posterior distribution with
non-negligible weights, where we hypothesize that the posterior
b update may not be as effective in this tile due to intermittent
snow, so that the bRtile,MERRA2 distribution still retains some of the
features of the prior uniform distribution.

For the purposes of applying the snow reanalysis (or for
other modeling applications) over the full HMA domain, it
is useful to derive a single “global” distribution for b that

FIGURE 5 | Distribution of bR
tile,MERRA2 obtained from the snow reanalysis. The blue bars represent the empirical (posterior) distribution, the solid line is the fitted

lognormal distribution, and the dashed line shows the prior uniform distribution for reference. The fitted lognormal parameters are displayed in each panel. Tile labels
in blue and orange text represent their locations in the western domain or central-eastern domain, respectively.
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could serve as a prior estimate of uncertainty in MERRA-2
precipitation (snowfall). The global distribution of MERRA-2,
i.e., bRglobal,MERRA2, is presented in Figure 6 (left). It is the
composite of the tile-specific distributions and therefore is also
highly right skewed with a single mode around 1, with most of
the values between 0.1 and 3. We again fit a lognormal function
to the empirical global distribution, where it fits reasonably well
but with a slightly higher and narrower peak than the empirical
distribution (mostly due to the one tile described above). The
lognormal distribution exhibits a mean value of 1.54 (median
value of 1.19) and CV of 0.83 for the bRglobal,MERRA2 distribution.
This implies that, on average, the magnitude of raw MERRA-
2 snowfall is 54% too low compared to the snowfall diagnosed
from the snow reanalysis over the HMA region. Moreover, the
CV implies that there is significant uncertainty that should be
considered when using MERRA-2 data for snow modeling in
HMA. In other words, using MERRA-2 deterministically in snow
modeling over HMA is likely to underestimate the snowfall
distribution in terms of both the mean and its uncertainty. This
global distribution is currently being used as the prior uncertainty
model for precipitation inputs in applying the snow reanalysis
over the full HMA domain shown in Figure 1. The posterior
estimates from that application will ultimately yield additional
insight into the snowfall distribution over HMA that could be
used to derive a more robust estimate of snowfall uncertainty and
how it depends on physiographic, climatological, or other factors.

Snowfall Biases and Uncertainties in
Other Gridded Precipitation Products
The posterior snowfall biases and uncertainties provide a
mechanism (i.e., reference baseline) to also provide a first-order
characterization of uncertainty in other gridded precipitation
products (ERA5 and APHRODITE-2) using Eqs. (5) and (6).
For clarity it should be noted that posterior b values represent a
bias-correction relative to the nominal product such that b values
larger than 1.0 represent a negative bias (underestimate) by the
product and vice versa. The equivalent global uncertainty (i.e.,
resampled across all nine tiles) in snowfall precipitation in the

other gridded products is shown in Figure 6 (middle and right).
Based on the fitted lognormal distributions, we found that ERA5
has a comparable mean value of ∼1.78 (median of 1.42), while
APHRODITE-2 has a much higher mean value of∼3.34 (median
of 2.51). This indicates that ERA5 is ∼80% too low compared
to the snowfall from the snow reanalysis, while APHRODITE-
2 underestimates snowfall precipitation by more than a factor
of 3. The CV values across all three products are comparable
(∼0.74–0.87), but the higher mean values in APHRODITE-2
imply a larger range of uncertainty. The large mean value for
APHRODITE-2 is influenced in part by geographic differences
across the domain. In particular, in the tiles east of 82◦E (i.e.,
those most influenced by the Indian monsoon), the biases
are generally above 4. Previous studies have pointed out that
MERRA-2 snowfall is much greater than CRU TS (Climatic
Research Unit Time series; Harris et al., 2014), TRMM and
APHRODITE snowfall in the HMA region (Viste and Sorteberg,
2015), which is therefore consistent with larger underestimates
in APHRODITE-2 compared to MERRA-2. The underestimation
of snowfall in the gauge-based APHRODITE-2 product, may
be caused by not only the interpolation of gauges at lower
elevations, but also the undercatch of snow and ice by traditional
instruments in those gauges (Palazzi et al., 2013; Viste and
Sorteberg, 2015). It should be noted that the analysis herein, by
construct focuses on snowfall (not rainfall) by selecting high-
elevation/snow-covered pixels, so that biases in APHRODITE-2
precipitation in lower elevation/rain-dominated (i.e., monsoon
influenced) regions might be substantially lower.

The geographic variation in the (tile-specific) biases across
products is illustrated in Figure 7, where the biases are generally
greater than 1 across all tiles in all datasets. It is apparent that the
implied snowfall bias corrections in all datasets are smallest (less
than∼2) in the three western tiles (38◦N 70◦E, 34◦N 66◦E, 34◦N
75◦E) and the southwestern tile (29◦N 82◦E) of the domain. The
snowfall biases in all datasets are relatively larger (greater than
∼2) in the northwestern tile (41◦N 77◦E) and the northeastern
tile (38◦N 98◦E). For the remaining three tiles in the southern
(27◦N 90◦E, 29◦N 97◦E) and central-northern (36◦N 85◦E) part
of the domain, it is only APHRODITE-2 that show significantly

FIGURE 6 | Derived distributions of the global precipitation scaling factor for (bR
global,MERRA2, left), ERA5 (bR

global,ERA5, middle), and APHRODITE-2

(bR
global, APHRODITE2, right). The blue bars represent the empirical (posterior) distribution, the solid line is the fitted lognormal distribution, and the dashed line shows

the prior uniform distribution for reference. The fitted lognormal parameters are displayed in each panel [note the Bayesian reanalysis approach is used to directly
derive the scaling factors for MERRA-2 precipitation, while those for ERA5, and APHRODITE-2 are derived through comparing to posterior snow reanalysis results
using Eqs. (5) and (6)].

Frontiers in Earth Science | www.frontiersin.org 10 November 2019 | Volume 7 | Article 280

https://www.frontiersin.org/journals/earth-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-07-00280 October 30, 2019 Time: 17:48 # 11

Liu and Margulis Snowfall Precipitation Uncertainty in HMA

FIGURE 7 | Geographic distribution of the snowfall bias correction (mean of bR
tile) at each tile location across all precipitation datasets, including ERA5 (bR

tile, ERA5,

green), APHRODITE-2 (bR
tile,APHRODITE2, black), and MERRA-2 (bR

tile, MERRA2, red). The size of the circle is proportional to the value of the bias correction in each
dataset, where a larger circle means greater bias (snowfall is more heavily underestimated in that dataset) and vice versa.

large biases greater than 3. In contrast, the snowfall biases in
MERRA-2 and ERA5 are relatively small (less than 2) in these tiles
and are comparable to the other tiles. For the one tile (38◦N 98◦E)
with more intermittent snow, where we hypothesize this leads
to less robust posterior estimates, the biases are generally largest
across products as shown in Figure 7. Whether these high biases
are meaningful still needs further investigation. However, larger
bias correction factors in areas like these tiles, where snowfall
is very low, may not be as impactful as in other areas where
snowfall is large.

In summary, when compared to the posterior snow reanalysis,
the MERRA-2 is less biased than the other products in most tiles
(7 out of 9 tiles) followed by ERA5 (2 out of 9 tiles) (Figure 7).
In contrast, APHRODITE-2 shows the highest bias in all of the
tiles, which is consistent with the global distributions shown in
Figure 6. The magnitudes of snowfall biases in all three products
are more consistent in the western part of the domain, but
less consistent in the central and eastern part of the domain.
The most obvious differences are seen in the central part of
the domain (36◦N 85◦E, 27◦N 90◦E), where the snowfall biases
from MERRA-2 and ERA5 are comparable and lower, while the
snowfall biases from APHRODITE-2 are higher.

Annual Snowfall Time Series Among
Different Products
The posterior snowfall in the snow reanalysis was compared to
the other precipitation products over the period of WYs 2001–
2015 at each test tile (Figure 8). We found that the overall
snowfall magnitude in the downscaled MERRA-2 is lower than
that in snow reanalysis estimates at most tiles. Taking the tile
34◦N 66◦E as an example, the snow reanalysis (blue line) snowfall
is generally between 300 and 600 mm, while the MERRA-2

snowfall (red line) is between 200 and 500 mm, and around
100 mm lower than the snow reanalysis. Similar patterns between
MERRA-2 and the snow reanalysis snowfall can be observed in
the other tiles, where MERRA-2 is generally lower than reanalysis
snowfall in overall magnitude, which is consistent with the tile-
specific and global distributions discussed above. The differences
in snowfall between MERRA-2 and snow reanalysis is smallest in
the two southern tiles (29◦N 82◦E, 27◦N 90◦E), where MERRA-
2 shows a comparable magnitude of snowfall relative to the
snow reanalysis. The largest differences are observed in the
northeastern tile (38◦N 98◦E), where snowfall in MERRA-2 is
around 200 mm smaller than that in snow reanalysis. Since we
hypothesize the posterior estimates are less robust in this 38◦N
98◦E tile with more intermittent snow, the posterior snowfall
from snow reanalysis may be less reliable in this tile, explaining
the large discrepancy between snow reanalysis and MERRA-
2 in this tile.

Snowfall time series estimates from other gridded products
(ERA5 and APHRODITE-2) are also generally lower than
the snow reanalysis. The magnitude of snowfall in ERA5 is
comparable and slightly lower than MERRA-2, while that in
APHRODITE-2 is significantly lower than all the products,
which is consistent with the snowfall biases discussed above
(Figure 6). ERA5 snowfall is lower than both MERRA-2 and
snow reanalysis in the western tiles, while in the central-
eastern domain it is sometimes comparable to MERRA-2 but
lower than snow reanalysis (36◦N 85◦E and 38◦N 98◦E), or
comparable to the snow reanalysis (27◦N 90◦E) and higher
than MERRA-2. APHRODITE-2 shows the minimum snowfall
across all products, and the differences between APHRODITE-2
and other products are most apparent in the two southern
tiles (27◦N 90◦E, 29◦N 97◦E) and one central-northern tile
(36◦N 85◦E), which is also consistent with the tile specific

Frontiers in Earth Science | www.frontiersin.org 11 November 2019 | Volume 7 | Article 280

https://www.frontiersin.org/journals/earth-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-07-00280 October 30, 2019 Time: 17:48 # 12

Liu and Margulis Snowfall Precipitation Uncertainty in HMA

FIGURE 8 | Tile-averaged annual total snowfall time series from downscaled ERA5, downscaled APHRODITE-2, and downscaled MERRA-2 vs. the snow reanalysis
(ensemble median and interquartile range). Tile labels in blue and orange text represent their locations in the western domain or central-eastern domain, respectively.

snowfall biases shown in Figure 7. Our results suggest that
snowfall at these high-altitude tiles is generally underestimated
in the gauge-based products over HMA, which is consistent
with Immerzeel et al. (2015) and Wortmann et al. (2018), where
high-altitude precipitation was found to be underestimated in
many existing products. Since the gauge-based products derive
their estimates primarily by interpolating rain-gauges located
at lower elevations, it is possible that those gauges undercatch
precipitation and do not capture orographic effects, which
consequently underestimates snowfall.

The ensemble uncertainty in snowfall estimated from the
snow reanalysis varies across the tiles (Figure 8). In general,
the ensemble spread is relatively low in the western tiles,
corresponding to the lower CV values in the bRtile,MERRA2 (∼0.4–
0.8 in Figure 5), and relatively high in the central and eastern
tiles, corresponding to the higher CV values in the bRtile,MERRA2
(∼0.9–1.2 in Figure 5). As discussed earlier, the conditioning of
the posterior b is most effective for seasonal snow. The western
tiles are dominated by westerlies, and therefore receive most
snowfall in winter when precipitation occurs; while the central-
eastern tiles are more affected by monsoons, and receive less
snowfall in winter but more in spring or summer (Figure 1). As a
result, there is a strong seasonal cycle in the fSCA observations
over the western tiles, resulting in better conditioning of the

posterior b and lower uncertainties in snowfall. In the central-
eastern tiles, the fSCA observations are less seasonal, resulting
in less effective conditioning of the posterior b and higher
uncertainties in snowfall.

In terms of the temporal correlations, snowfall in the gridded
precipitation products are almost all positively correlated with
snowfall from the snow reanalysis (Table 2). One exception is
the correlation between APHRODITE-2 and the snow reanalysis,
where a negative correlation coefficient of −0.13 exist in tile
(34◦N 75◦E). Looking at individual tiles, the highest correlation
coefficient averaged across all products is 0.76 for tile 34◦N
66◦E. The lowest average correlation coefficient is 0.31 for
tile 34◦N 75◦E, mainly due to the negative coefficient from
APHRODITE-2. On average, the correlation coefficient with the
snow reanalysis annual time series is highest for ERA5 (0.63),
followed by MERRA-2 (0.57), and APHRODITE-2 (0.42). These
averaged coefficient values, indicate that snowfall variability
from the reanalysis is not fully explained by snowfall from
the input products. This is not surprising, and not necessarily
a drawback, because the reanalysis snowfall is conditioned
on independent fSCA observations; therefore its variations
should reflect the temporal variation in fSCA, which are
more directly connected to snow dynamics than any of the
precipitation products.
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TABLE 2 | Correlation coefficient of annual total snowfall between the snow
reanalysis snowfall (ensemble median) and snowfall from other precipitation
products (ERA5, APHRODITE-2, and MERRA-2).

Tile coordinates ERA5 APHRODITE-2 MERRA-2 Average

(41◦N, 77◦E) 0.87 0.45 0.71 0.68

(38◦N, 70◦E) 0.59 0.20 0.52 0.44

(34◦N, 66◦E) 0.87 0.55 0.84 0.76

(34◦N, 75◦E) 0.54 −0.13 0.51 0.31

(29◦N, 82◦E) 0.76 0.80 0.58 0.71

(27◦N, 90◦E) 0.18 0.28 0.69 0.38

(29◦N, 97◦E) 0.73 0.86 0.33 0.64

(36◦N, 85◦E) 0.75 0.21 0.54 0.50

(38◦N, 98◦E) 0.35 0.59 0.37 0.43

Average 0.63 0.42 0.57 0.54

The tile coordinates in the table refer to the lower left corner of each tile.

Snowfall Distribution With Elevation
Finally, we investigated the snowfall distribution with elevation in
each tile. All the coarse gridded precipitation products (MERRA-
2, ERA5, and APHRODITE-2) were bilinearly interpolated to
the reanalysis model grid, and downscaled with the reanalysis-
derived air temperature to obtain snowfall estimates in each
elevation bin (Figure 9). The solid lines represent the snowfall
distribution from the downscaled MERRA-2 (red) and snow
reanalysis (ensemble median, blue), respectively, and the two
dashed lines represent the snowfall distribution from the
downscaled ERA5 (green), and APHRODITE-2 (black). It should

be acknowledged that none of the coarse products are expected
to accurately resolve elevational snowfall distributions (beyond
large-scale precipitation variations resolved by the coarse grids);
the comparison herein is mainly to identify differences in
localized elevational snowfall gradients within a tile.

As expected, the snowfall exhibits positive elevational
gradients across all products, where the gradient is highest for
the snow reanalysis compared to other products (Figure 9).
Taking tile 41◦N 77◦E as an example, snowfall from the snow
reanalysis is 0 mm at the lowest elevations, but rapidly increased
to around 1300 mm at the highest elevations (5000 m). For the
other products in the same tile, while starting from 0 mm at the
lowest elevations, snowfall at the highest elevations only ends up
around 500 mm for MERRA-2, 400 mm for ERA5 and 250 mm
for APHRODITE-2. The most notable differences in snowfall is
observed in the elevation range between 4000 and 5000 m, where
the magnitude of snowfall is comparable at 4000 m, but almost
2∼3 times higher in the snow reanalysis than other products at
5000 m. A similar feature is observed in other tiles, where the
snow reanalysis shows the largest amount of snowfall in most
elevation bins, followed by MERRA-2, ERA5, and APHRODITE-
2. The magnitude of snowfall across all products are comparable
at low-mid elevations, but diverge at high elevations, with a mild
slope observed in MERRA-2, ERA5, and APHRODITE-2, with a
steeper slope observed in the snow reanalysis. Exceptions are two
southern tiles (27◦N 90◦E, 29◦N 97◦E) that snowfall estimates are
consistent among snow reanalysis, MERRA-2 and ERA5 across
all elevation bins, and a steep slope is also observed in the latter
two products at the highest elevation ranges. This indicates the

FIGURE 9 | Elevational distribution of annual total snowfall climatology (WY 2001–2015) from downscaled ERA5, downscaled APHRODITE-2, and downscaled
MERRA-2 vs. the snow reanalysis (ensemble median). Tile labels in blue and orange text represent their locations in the western domain or central-eastern domain,
respectively.
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TABLE 3 | Snowfall gradients with elevation (mm/km) from the snow reanalysis
(ensemble median) and other precipitation products (ERA5, APHRODITE-2, and
MERRA-2) fitted with a linear regression.

Tile ERA5 APHRODITE-2 MERRA-2 Snow Average

coordinates reanalysis

(41◦N, 77◦E) 92 54 112 284 136

(38◦N, 70◦E) 268 106 258 637 317

(34◦N, 66◦E) 75 91 98 272 134

(34◦N, 75◦E) 131 109 186 412 210

(29◦N, 82◦E) 120 84 363 692 315

(27◦N, 90◦E) 340 108 587 506 385

(29◦N, 97◦E) 231 109 342 394 269

(36◦N, 85◦E) 61 11 67 156 74

(38◦N, 98◦E) 244 150 259 709 340

Average 174 91 252 451 242

The tile coordinates in the table refer to the lower left corner of each tile.

potential of bias-correction in snowfall from the snow reanalysis
especially at high elevations, where fSCA information exist, but
precipitation gauges do not.

Fitted with a linear regression (Table 3), the gradient of
snowfall against elevation is highest in the snow reanalysis
(451 mm/km), followed by MERRA-2 (252 mm/km), ERA5
(174 mm/km), and APHRODITE-2 (91 mm/km) on average.
Overall, the snowfall gradients are highest (>300 mm/km) in one
western tile (38◦N 70◦E), two southern tiles (29◦N 82◦E, 27◦N
90◦E), and one north-eastern tile (38◦N 98◦E). Specifically, the
two southern tiles are strongly affected by the Indian monsoon
thereby receiving significant amounts of precipitation in the
summer. The phase of summer precipitation is therefore more
sensitive to elevation, as lower elevations receive more rainfall
and higher elevations receive more snowfall. In the other tiles
that are affected by winter westerlies, the phase of winter
precipitation may not be as dependent on elevation because
of colder winter temperatures. In addition, the magnitude of
precipitation brought by the Indian monsoon is much greater
than the westerlies (Figure 3). Therefore, the southern tiles may
still receive significant amounts of snowfall even in summer at
the very high elevations, which accounts for the large snowfall
gradients in these tiles.

CONCLUSION

Using an “uninformed” prior estimate in a Bayesian snow
reanalysis method, we parameterized the snowfall biases and
uncertainties in MERRA-2 precipitation over the HMA region.
The method was applied over 9 test tiles and spanned the WYs
2001–2015. The posterior scaling factor associated with using
MERRA-2 as the nominal precipitation input (bRtile,MERRA2) is
effectively updated (from the prior uniform distribution) in most
tiles featuring seasonal snow, which yields unimodal skewed
uncertainty distributions that when fitted using lognormal
distributions, exhibited tile-specific mean values ranging from
1.0 to 1.9 and tile-specific CV values ranging from 0.5 to 1.2.

One tile in the northeastern Tibetan Plateau is an exception
with mean values around 2.5, which is likely indicative of a
less robust parameterization due to the fact that intermittent
snow plays a more significant role in that tile. By merging the
results across tiles, we were able to quantify a global uncertainty
model in snowfall using a lognormal distribution with a mean
of 1.54 (median of 1.19) and a CV of 0.83. The parameterized
distribution indicates that MERRA-2 underestimates snowfall
precipitation by ∼54% on average (when compared to the
posterior reanalysis estimates) with significant uncertainty.

Estimates of the biases and uncertainty in snowfall from
other gridded products (ERA5 and APHRODITE-2) were also
derived in this study. Compared to the reanalysis snowfall,
we found ERA5 and APHRODITE-2 generally, on average,
underestimate snowfall by a factor of ∼1.78 (with a median
scaling factor of 1.42) and ∼3.34 (with a median scaling factor
of 2.51), respectively, over the HMA domain. The snowfall
biases in MERRA-2 and ERA5 have similar magnitudes (where
ERA5 is slightly larger), while that in APHRODITE-2 are much
larger than the other two products, especially in the monsoon-
influenced tiles. The biases in all datasets are generally lower in
the western tiles compared to those in the central and eastern
part of the domain.

In addition to the biases and uncertainties in b, we
also examined the spatial-temporal distribution of snowfall in
the snow reanalysis and other products used in this study.
Significant heterogeneity is observed in the snow reanalysis
snowfall compared to the downscaled MERRA-2, showing the
snow reanalysis effectively downscales the coarse MERRA-2
by leveraging information in the higher-resolution fSCA data
observed in each WY and in other model-based fields (i.e.,
terrain). In terms of annual snowfall time series, snowfall
from the snow reanalysis is generally greater than that from
MERRA-2, where ERA5 shows similar magnitudes as MERRA-
2 and APHRODITE-2 significantly smaller than other products.
The temporal correlation of snowfall between snow reanalysis
and other products are mostly positive, and the averaged
correlation coefficient across all tiles are between 0.42 and
0.63 for these products. The fact that the correlation is not
higher is likely indicative of the impact of other factors (i.e.,
fSCA measurements) in the temporal variations in the posterior
reanalysis estimates. Based on examination of the elevational
distribution of snowfall, we found the snowfall gradients
largest in the snow reanalysis followed by MERRA-2, ERA5,
and APHRODITE-2.

Overall, this study shows the potential for using satellite
snow observations as a constraint on models to infer biases and
uncertainties in snowfall precipitation in remote regions and
complex terrain where in situ stations are very scarce. The results
indicate that snowfall precipitation is underestimated in most
precipitation products, and the biases are higher in the gauge-
based precipitation product. One limitation in this study is that
the method relies on the seasonal cycle of snow accumulation and
ablation captured by fSCA observations to condition snowfall.
Therefore, it is expected that the Bayesian update will be more
effective in snow-dominated regions that feature a clear seasonal
signal, but less effective in regions with intermittent snow.
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The approach is best suited to estimating high elevation
precipitation where snowfall dominates, but likely not very
informative of low elevation precipitation where rainfall
dominates. In this sense, this effort is complementary to gauge-
based estimates, which are expected to perform best in lower
elevations where the gauges reside, but may have difficulty
extrapolating precipitation information to higher elevations.
Results from this work are being used in the development of
a snow reanalysis dataset over the full HMA domain. That
effort should lead to a more complete picture of snowfall
biases and space-time variations across the domain and could
be used to further inter-compare products more broadly.
Additionally, while this work focused on using MERRA-2 as the
baseline input to the snow reanalysis scheme, future work could
examine the usage of ERA5 and/or products in combination
to more thoroughly represent the uncertainty in precipitation
in such domains.
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