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Two machine learning algorithms were applied to three multivariate datasets acquired

at Solfatara volcano. Our aim was to find an unbiased and coherent synthesis among

the large amount of data acquired within the crater and along two orthogonal vertical

NNE- and WNW-trending cross-sections. The first algorithm includes a new approach

for a soft K-means clustering based on the use of the silhouette index to control

the color palette of the clusters. The second algorithm which uses the self-organizing

maps incorporates an alternative method for choosing the number of nodes of the

neural network which aims to avoid the need for downstream clustering of the

results of the classification. Both methods achieved an objective characterization of

the shallow hydrothermal system of the volcano, enhancing and highlighting subtle

geophysical anomalies likely correlated to structural pathways of deep magmatic

degassing. Comparison between the results of K-means and self-organizing maps

on the datasets with the largest number of nodes confirms that, with respect to the

K-means, self-organizing maps compress the data in a way that better highlights

finer details of the original data. However, the choice of the coloring scheme of the

neurons is critical for an effective visualization of the results. Unsupervised integration

of the three multivariate datasets allowed us to spatially correlate, with a high-degree of

confidence, the geophysical anomalies recorded at the surface of the crater with those

recorded at the subsurface along the two cross-sections. it also allowed us to associate

those anomalies to different hydrothermal features such as shallow gas-saturated and

water-saturated zones and their underlying fractures/faults feeding system. Our results

suggest that the main shallow structural patterns, which influence the hydrothermal

dynamics at Solfatara volcano, remained substantially unchanged in the last 13 years.

Our approach shows that the use of clustering methods to interpret multivariate data

reduces interpretation uncertainties and achieves an improved understanding of the

complex dynamics occurring in volcanoes.

Keywords: Solfatara,machine learning, self-organizingmaps, K-means, Campi Flegrei, seismicmethods, potential

methods, hydrothermal systems
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INTRODUCTION

Solfatara crater is at present the most active area of Campi
Flegrei, a large, 13 km wide, nested caldera located within the
metropolitan area of Naples, Italy. Underneath this small (i.e.,
∼600 × 700m) but dynamic maar-diatreme structure (Isaia
et al., 2015; Bruno et al., 2017), deep magmatic CO2-rich fluids
mix with meteoric water and form a hydrothermal plume that
feeds fumaroles and mud pools (Caliro et al., 2007). Each day
∼3,350 t of water vapor is discharged and ∼1,500 t of CO2 is
released through soil diffuse degassing (Chiodini et al., 2001,
2005; Chiodini, 2009). Most of the water vapor condenses near
the surface, producing a thermal power flux of ∼100 MW,
and contributing notably to the total water input into the CF
hydrothermal system (Chiodini et al., 2005).

Hydrothermal manifestations at Solfatara are connected to the
deep structure of the volcano via a complex network of E-W,
NE and NW, sub-vertical faults/fractures (see Isaia et al., 2015),
which allow fluids to migrate from the deeper hydrothermal
reservoir (Bruno et al., 2007, 2017; De Siena et al., 2018). Both
ground deformations and seismicity occurring at Solfatara are
likely controlled by the pressure and temperature increase of
the hydrothermal system, due to repeated, impulsive transfers
of high amount of magmatic fluids from depth that exceed
the degassing capabilities of the geological medium (Chiodini
et al., 2017). It is therefore essential to obtain high resolution
images of the faults/fractures and to locate and monitor areas
of subsurface fluid accumulation. Active-source, geophysical
explorationmethods can be profitably used for this task, however,
in harsh volcanic environments they usually are not able to
achieve an acceptable signal-to-noise (S/N) ratio, which adds up
to their intrinsic interpretative non-uniqueness. Improvements
in both field data acquisition, processing and interpretation have
been tested to overcome these limits. A key role to reduce non-
uniqueness and improve the geological interpretation is played
by multivariate co-located geophysical data. A first attempt of
interpretation of co-located geophysical and geochemical data
aimed at imaging the subsurface and elucidate patterns in
the shallow subsurface degassing at Solfatara is provided by
Bruno et al. (2007). However, when visually comparing low-S/N
multivariate datasets biasmay be introduced by pre-existing ideas
and/or assumptions made by the interpreter.

Unsupervised learning, also known as machine learning,
can provide not only useful insights for unbiased geological
interpretation but also a feedback to cooperative inversion by
finding a statistically robust link between different geophysical
parameters. In the last decades, different machine learning
algorithms have been used for multivariate geophysical data
interpretation (Lary et al., 2016 and references therein,
Rodriguez-Galiano et al., 2015). Because of its conceptual
simplicity and robustness, the K-means clustering method
(Lloyd, 1982; Bock, 2007) is one of the most popular and widely
used clustering techniques. Partitioning techniques such as the K-
means clustering are known to be less susceptible to outliers and
to be computationally more efficient than hierarchical methods
(Tronicke et al., 2004). The recent literature provides several
examples of effective integration of low-dimensional (i.e., 2D

or 3D) multivariate geophysical datasets, based on K-means
algorithms (e.g., Tronicke et al., 2004; Bernardinetti et al., 2017).
On the other hands, artificial neural networks are known to be
more computationally efficient with higher-dimensional datasets
(e.g., Roden et al., 2015). Among these, self-organizing (or
Kohonen) maps (SOM: Kohonen, 2013) are clustering methods
based on a competitive learning approach. SOM are regarded as
one of the most important tools for unsupervised seismic facies
analysis (Taner et al., 2001; Coléou et al., 2003).

Hereinafter we show and discuss three examples of application
of K-means and SOM clustering on multivariate data acquired
in the recent past within the Solfatara tuff cone. In the first part
of our paper we show and discuss the K-means clustering of a
three-dimensional dataset (i.e., spatial variation of seismic noise,
Bouguer anomaly, CO2 flux) recorded at the surface of the crater
and discussed in Bruno et al. (2007).

The surface data was also used to plan for the optimal location
of the 2D and 3D seismic arrays used in the MED-SUV RICEN
project (see Bruno et al., 2017; De Landro et al., 2017; Amoroso
et al., 2018 among others). In particular, using the data form the
RICEN project Bruno et al. (2017), were able to provide for the
first time a high-resolution seismic image of the first 0.8 km of
Solfatara crater, while Gresse et al. (2017), estimated a detailed
three-dimensional electric resistivity model of Solfatara from the
inversion of several electric measurements overlapping to the
2D and 3D seismic arrays. In the second part of our paper, we
link, with K-means clustering, the tomographic P-wave velocity
profiles from Bruno et al. (2017), with the overlapping electric
resistivities estimated by Gresse et al. (2017). This analysis aims at
elucidating the near-surface saturation state (i.e., gas vs. fluid) of
Solfatara and compare it with the results of the spatial clustering
obtained at the surface of the crater.

In the third part of this paper wemerge three seismic attributes
(i.e., similarity, energy and dip), from the seismic reflection
profiles of Bruno et al. (2017), with an additional attribute
(GLCM texture: see Haralick et al., 1973) for a two-fold purpose:
(1) compare SOMvs. K-means clustering algorithms on this four-
dimensional dataset and (2) provide a detailed information about
the shallower hydrothermal features (i.e., 0–500m) beneath
the Solfatara.

GEOLOGICAL SETTING

Solfatara is one of the many monogenic volcanoes of Campi
Flegrei (Figure 1), an active resurgent caldera (Vitale and Isaia,
2014 and references therein) carved by two massive eruptions:
the Campanian Ignimbrite (40 ka, De Vivo et al., 2001) and the
Neapolitan Yellow Tuff (15 ka, Deino et al., 2004). CF caldera has
undergone recurring inflation/deflation episodes (e.g., De Natale
et al., 1991). Sea level measurements, made on ancient Roman
artifacts in Pozzuoli suggest a slow deflation occurring in the area.
In 1530 AD a 7-m inflation culminated with the Monte Nuovo
eruption in 1538 (Di Vito et al., 1987). After 1538, a new period of
deflation lasted until 1968, interrupted by two rapid inflations in
1969–1972 (+170 cm) and in 1982–1984 (+182 cm: Berrino et al.,
1984). Inflation is still ongoing there. A marked seismic activity
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FIGURE 1 | (A) Geological and structural map of Solfatara area (Isaia et al., 2015) overlain to a 2D image of the area (© 2019 Google); in red are the ring faults while in

green are the tectonic faults; buried faults are represented by dashed lines. The white dashed rectangle shows the locations of the surface geophysical and

geochemical measurements (see Figure 2). (B) DEM image showing the relationships of Solfatara (yellow-filled rectangle) with CF caldera and Somma-Vesuvius. The

structural framework of Campi Flegrei Caldera is from Orsi et al. (1996), Vitale and Isaia (2014). Regional faults are inferred by geophysical studies and morphological

structures (Florio et al., 1999; Milia et al., 2000; Bruno et al., 2003; Sacchi et al., 2009).

characterizes inflation periods: earthquakes mostly cluster at
Solfatara and within the bay of Pozzuoli; they remain contained
within the caldera margins and abruptly stop at ∼4 km deep,
suggesting a sharp brittle-to-ductile rock transition. Seismicity
is likely to be triggered by an upward migration of an excess
of fluid pressure front from magmatic intrusion, and by the
brittle readjustment of the inflated system occurring along some
lubricated structures (e.g., Gaeta et al., 1998; Bianco et al., 2004;
Saccorotti et al., 2007; Cusano et al., 2008).

Solfatara is located ∼1.2 km to the east of Pozzuoli town
(Figure 1). The volcano formed during the most recent epoch
of volcanic activity at Campi Flegrei at ca. 4200 yr B.P. (Isaia
et al., 2009; Smith et al., 2011), which was dominated by explosive

activity, mainly in the central-eastern caldera sector, climaxing
with the Plinian eruption of Agnano-Monte Spina (De Vita et al.,
1999) at ca. 4.5 ka. The Solfatara eruption was preceded and
followed by explosive eruptions from nearby centers (Astroni,
Mt. Olibano, S-M- Grazie, Agnano-Monte Spina, and pre-
Astroni) whose products are found in the area around the present
crater rims (Figure 1).

Geophysical, geochemical and geological data allow to infer,
with different resolution and degree of uncertainty, the structure
and stratigraphy of the upper part of the crater, together
with the main features of the upper part of its complex
hydrothermal system, made up of a mix of uprising magmatic
fluids and meteoric water. High-resolution seismic reflection
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profiles (Bruno et al., 2017), show a ∼400m deep asymmetrical
crater filled by volcanoclastic sediments and rocks and carved
within an overall non-reflective pre-eruptive basement pierced
by intrusive bodies: their seismic data clearly show several
steep and segmented collapse faults affecting the crater filling.
Faults generally have normal kinematics and dip toward the
crater center. Resistivity tomography surveys, combined with
mappings of diffuse CO2 flux, ground temperature and self-
potential (Byrdina et al., 2014; Gresse et al., 2017) delineate
three shallow plume structures: two liquid-dominated conductive
plumes below the Fangaia mud-pool and the Pisciarelli fumarole
and a gas-dominated plume below Bocca Grande fumarole. In
the shallow steam-heated part of Solfatara crater, a predominant
argillitic alteration occurs, where sulfuric acid is created at, or
above, the water table by the oxidation of H2S (Rye, 2005).
The hydrothermal activity at the surface is characterized by an
intense soil diffuse degassing, both inside and outside of the
crater (Cardellini et al., 2017 and reference therein). Acidic (pH
∼1.7) high-temperature (≥ 160◦C) fumaroles are mainly located
in the eastern part of the crater, whereas hot springs, steam-
heated pools (45–95◦C), and fumarolic vents are concentrated in
its center (Glamoclija et al., 2004; Valentino and Stanzione, 2004;
Chiodini et al., 2011). The absence of vegetation (Figure 1A) best
depicts the area of diffuse soil degassing.

MATERIALS AND METHODS

Datasets and Integration
As briefly outlined before, we use three different multivariate
datasets in this paper. The first is made of three co-
located spatial geophysical and geochemical data shown in
Supplementary Figure 1 and whose acquisition and processing
is discussed in detail in Bruno et al. (2007). Specifically, we had
four data available: (a) the high-resolution Bouguer anomaly;
(b) the log10 of the CO2 flux; (c): the soil temperature; and (d):
the mean environmental seismic noise level measured within
the 10–15Hz frequency window on the amplitude spectrum.
However, Supplementary Figure 1 shows that both the CO2 flux
and the soil temperature bear the same type of information:
i.e., temperature anomalies at Solfatara are generated by diffuse
degassing of hot CO2 gas through soil. Therefore, we decided
to remove one of the two datasets (i.e., soil temperature) before
clustering to avoid assigning a higher “a priori” weight to the
high-temperature degassing phenomenon with respect to the
other parameters.

The second, bi-variate, dataset is made by merging the shallow
P-wave velocities estimated by Bruno et al. (2017) from the
tomographic inversion of the first-arrival traveltimes (SRT) with
the electric resistivity (ERT) estimated by Gresse et al. (2017)
from the inversion of Wenner/Schlumberger profiles that are in
part overlapping with the two seismic arrays. For both ERT and
SRT images the co-located grid has the same progressive of the
seismic dataset (Figure 1). The tomographic and electric profiles
are shown in Supplementary Figures 2, 3. Electric resistivity and
p-wave velocity do not show evident correlations.

The third dataset is made of four seismic attributes
(Supplementary Figures 4, 5). Similarity, energy and dip

attributes are computed and described by Bruno et al. (2017),
on the depth-converted CRS stacks along the two profiles
of Figure 1. We merged them with a new attribute (GLCM
texture: see Haralick et al., 1973), computed with a step out
nr = 3 and using a GLCM size of 32 × 32. All four chosen
attributes were computed using a depth gate of 10m. The energy
attribute is a measure of reflectivity strength within the chosen
depth-gate, while similarity is a multi-trace attribute that returns
trace-to-trace similarity properties. It ranges between 0 and 1:
a similarity of 1 means that the trace segments are identical
in waveform and amplitude. Similarity is the best indicator of
structural discontinuity: faults and fractures are generally visible
as narrow low-similarity areas. The dip-angle attribute provides
the apparent angle of dip (in degree) of seismic features within
the profiles. The dip angle is computed from the dip-steering
process that produces a steering cube, i.e., a volume that stores
information about the seismic dip of coherent events at every
sample position. Finally, the entropy attribute is part of the
Texture-Directional attributes. This class of attributes uses
the gray level co-occurrence matrix (GLCM) and its derived
attributes are tools for image classification that were initially
described by Haralick et al. (1973). The GLCM entropy attribute
measures the disorderliness (or roughness) of the patch of
seismic amplitude values; maximum entropy occurs when all
probabilities of values are equal and therefore result in a random
distribution of values (Malleswar et al., 2010).

The four seismic attributes described above were chosen
among many possible others with the aid of Principal
Component Analysis (Abdi and Williams, 2010; Kassambara,
2017), a preliminary analysis needed, for assessing the most
representative attributes to use for the subsequent processing.
Principal component analysis represents a rotation of the
multi-dimensional point cloud so that the maximum variability
is projected onto the pair-wise combination of axes (Prasad
et al., 2005). The contribution of attributes and their quality
were evaluated in the correlation circle (Abdi and Williams,
2010), shown in Supplementary Figure 6. Energy and similarity
showed a better representation on the compared principal
component, while dip angle showed the lowest values. However,
the calculated values do not differ so much to justify the
exclusion of dip angle from the analysis. The variances for
the first two dimensions are respectively 34.7 and 29.1%
(Supplementary Figure 6), their ratio is equal to 1.19, and
following Kohonen (2014) these values were used to create the
neural networks.

All processing steps were performed using algorithms written
in MATLAB R© and R R©. As first preprocessing step, we removed
from the three dataset those measurements that were outside the
overlapping areas; then overlapping datasets were interpolated
and resampled over a common grid. Many different approaches
can be chosen for this step. For example, to avoid a loss of data to
preserve the information content of both models Bedrosian et al.
(2007), interpolated a 2D magnetotelluric and seismic dataset
using the grid dimension of the higher-resolution data. For the
tri-variate spatial dataset we followed a similar approach: we
obtained a 50× 50 square matrix (see Figure 1, dashed box) with
an individual cell-size of 10 × 8.6m. For the bi-variate (Vp, ρ)
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dataset, ERT and SRT were sampled with a uniform grid spacing
of 3 × 3m, a compromise between the more resolved SRT and
the less resolved ERT. The 4D seismic attributes were instead
exported fromOpenDtect with a common depth sampling of 1m
and spatial sampling of 1 CDP (i.e., 1m). Seismic attributes were
limited to a depth of 600m below the datum (i.e., 97m a.s.l.)
instead of the original 800m because very few seismic features
of interest are within the 600–800m depth range. We obtained
therefore two very dense four-dimensional matrices sampled
along grids of 372× 600 nodes for Profile 1 and 451× 600 nodes
for profile 2.

Since the geophysical and geochemical measurements have
different ranges and standard deviations, then one dataset
might dominate the distance used in clustering. Therefore,
some preliminary data standardization is necessary. We used a
technique known as “data sphering” (Koivunen and Kostinski,
1999), a linear transformation that converts a vector with known
covariance matrix into a set of new variables whose covariance
is the identity matrix, meaning that they are uncorrelated
and each one has a variance of 1. For each multidimensional
matrix discussed above, the p-dimensional sample mean x and
the covariance matrix S were computed, and finally, the data
were sphered using the following transformation (Martinez and
Martinez, 2005):

Zi = ∆
1
2QT (xi − x) ; (1)

where Q are the eigenvectors obtained from the covariance
matrix S, 1 is a diagonal matrix of corresponding eigenvalues,
xi is the i-th sample for any geophysical variable and xm is its
average value. Zi is the new scaled multivariate dataset suitable as
input for data mining processing.

K-Means Clustering
The K-means (Lloyd, 1982), is an unsupervised method used in
data exploratory analysis to find similar observations. K-means
is a partitional, non-hierarchical and unsupervised clustering
algorithm, which allows separating a dataset in “k” clusters
based on distances among points. The objective function of
the algorithm is to minimize the within-cluster variance and to
maximize it among different clusters. The within-class scatter
matrix, Sw, is defined as Martinez and Martinez (2005):

Sw =
1

n

∑m

j= 1

∑n

i= 1
Ii,j(xi − x) (xi − x)T; (2)

where Ii,j is one if xi belongs to group j and zero otherwise,
and m is the number of groups. The criterion that is minimized
in the K-means is the sum of the diagonal elements of SW .
Everitt and Dunn (2001) show that minimizing the sum of the
diagonal elements of SW is equivalent to minimizing the sum of
the squared Euclidean distances between the individual elements
xi and their group mean.

In general, the algorithm is initialized by randomly defining an
initial number “K” of centroids and assigning each observation
to its closest centroid using the Euclidean distance between the
observation and the cluster centroid. The second step of the
procedure is to calculate the new centroids (i.e., the new mean

values) using the assigned observations. These steps are repeated
until there are no changes in cluster membership or until the
centroids do not change (Späth, 1980).

Like many other types of numerical minimizations, the
algorithm may converge into a local minimum. This often
depends on the initial choice of the centroids. To choose the
initial centroids based on the data, we initialized the algorithm
performing a preliminary clustering on a random 10% subsample
of the entire dataset, with the option “start” and “cluster”.
Moreover, MATLAB’s “kmeans” function allows the use of
the parameter “Replicates” to overcome the above-mentioned
problem of falling into a local minima. Setting a parameter
higher than one in “Replicates” instructs the algorithm to
begin from a different set of initial centroids, therefore, even if
sometimes “kmeans” finds more than one local minimum, the
final solution that the function returns is the one with the lowest
total sum of distances, over all replicates. We used 20 replicates
for our analysis as it was the minimum number that returned the
same final results.

Another issue with the K-means algorithm is that the choice of
the number of clusters, K, is arbitrary, meaning that the optimal
number K has to be found using some statistical criterion. Many
tools have been used in assessing the quality and optimal number
of clustering as well as the degree with which a clustering scheme
fits a specific data set (Halkidi et al., 2001); each tool has its
own advantages and disadvantages. To assess both the optimal
number K and the degree with which our clustering scheme
fits our specific data sets, we used the Silhouette Index (SI:
Kaufman and Rousseeuw, 1990; Brock et al., 2008). The silhouette
index compares the distances of every i-th observation within a
cluster with the average extra-cluster distances. In other words,
the silhouette index measures the degree of confidence in the
clustering assignment of a given observation. For an observation
i, the silhouette index is defined as Rawashdeh and Ralescu
(2012):

SIi =
(bi − ai)

max(ai, bi)
; (3)

where: ai is the average dissimilarity of i to all other observations
in its own cluster and bi is the minimum value of all average
dissimilarity of i to all observations in any other cluster c.
The average silhouette index is found by averaging SIi over
all observations:

SI =
1

n

∑n

i= 1
SIi; (4)

The silhouette index in Equation 3 ranges from −1 to 1. Values
<0 and close to 1 mean that the observation is well-matched
to its own cluster, values near to 0 highlight observations with
unclear assignment (either to the current cluster or to the nearest
one), while values <0 are typical of misclustered observations.
Compared with the R-Squared index (Sharma, 1996), which
reveals the optimal clustering at the “knee,” the silhouette index
provides less chances to choose the wrong number of clusters:
this happens because finding the “knee” in noisy data is not as
obvious as it could appear. While using the silhouette index, the
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optimal number of clusters K is where the average silhouette
index (Equation 4) reaches its maximum value.

Therefore, not only the silhouette index allows evaluating the
optimal number of cluster but also it provides an assessment
of cluster membership. We used a hard-clustering technique
for our K-means analysis, meaning that each measurement can
belong only to one cluster. A hard-clustering representation
in the original space shows all observations belonging to
the same cluster with the same color. Therefore, transactions
among clusters are graphically represented by color changes.
However, to account for uncertainty in cluster membership
we merged the results of the silhouette index with the K-
means by saturating the color of each single measurement
according to its SI. This technique is similar in principle
to the technique applied by Paasche et al. (2010), where
the color saturation of their images is also based on a
membership function.

Self-Organizing Maps
Self-Organizing Maps (SOM) are a type of neural network
suitable for unsupervised learning (Kohonen, 1997), that uses
a competitive learning strategy. The SOM transforms a feature
vector of arbitrary dimension drawn from the given feature space
into a simplified, generally two-dimensional, discretemap (Klose,
2006). This is achieved in a manner that neurons physically
located close to each other in the output layer of the SOM
have similar input patterns (Kalteh et al., 2008). The SOM
network preserves the original topology and delivers an intuitive
visual representation of the clustering; the mapping produced
by SOM is usually of the type many-to-one, i.e., the projection
images on the SOM are local averages of the input data, which
is comparable to the K-means averages (Gersho, 1982; Gray,
1984).

A SOM neural network is structured in two layers: an input
layer and a Kohonen layer. In most applications the Kohonen
layer represents a structure with a single two-dimensional map
consisting of neurons arranged in rows and columns. Each
neuron of the Kohonen layer is fixed and is fully connected with
all source neurons in the input layer. The input variables, can be
represented as vectors of the type −→x = {x1, x2, x3, . . . xn}

T in
the space Rn where n is the dimension of the input space
(Wehrens and Buydens, 2007). In our case, the vector space n
has four-dimensions (i.e., the four seismic attributes used for our
analysis). The objective of the algorithm is to organize the input
seismic attributes into a geometric structure. If the map has q
neurons there are q prototype vectors, or weights, defined as:

−→
ω k =

{

ω(k,S),ω(k,E),ω(k,D ),ω(k,H),

}T
(5)

Where: S is the Similarity attribute, E is the Energy, D is the
Dip, H is the Entropy and K= 1,2,. . . ., q. The codebook vectors
are initialized as random values.−→ω k connects the n input layer
neurons to the total number of neurons q in the Kohonen layer.
Learning occurs during the self-organizing procedure as the
input vectors −→x = {S,E, D,H}T are presented to the input
layer of the network. The weights−→ω k are used to determine only

one stimulated neuron in the Kohonen layer after the “winner-
takes-all” principle that can be summarized as follows: for each
−→x , the Kohonen neurons compute their respective values of a
discriminant function (i.e., Euclidean distance (

∥

∥

−→xi − −→
ω k

∥

∥).
These values are used to define the winner neuron. That means
the network determines the index j of that neuron, whose weight
−→
ω k is the closest to vector

−→xi by:

j
(−→xi

)

= arg min
∥

∥

−→xi − −→
ω k

∥

∥ |k = 1, 2. . . , m, . . . q (6)

Afterwards, the learning procedure modifies the weights−→ω j of
the winner neuron and the winner neighborhood.

−→
ω k (t + 1) = −→

ω k (t) + η (t) · hk,j(−→xi ) (t) ·
[ −→xi (t)

− −→
ω k (t)

]

; (7)

where t denotes the iteration number, η (t) is the learning-
rate parameter during the calculation step t, and hk,j(−→xi ) is the

neighborhood function centered around the winning neuron
j
(−→xi

)

. The learning rate η (t) is usually a small value in the
order of 0.05, which decreases during the training so that
the map converges. The size of the neighborhood function
also decreases during training and eventually only the winning
units are modified (Wehrens and Buydens, 2007). Thus, the
codebook vectors are updated at each iteration and the algorithm
terminates after a predefined number of iterations.

The initialization parameters have their importance, because
also the SOM, as for the K-means, can get trapped in a local
minimum solution. As for the K-means, repeated training of a
SOM will lead sometimes to a rather different mapping, because
of the random initialization. However, the conclusions drawn
from the map remain remarkably consistent among different
initialization of the same data, which makes the SOM a very
useful tool in many circumstances (Wehrens and Buydens, 2007).

The initialization parameters (such as the grid size and
the number of iterations) are important to a successful SOM
analysis. As recommended by Vesanto and Alhoniemi (2000),
the grid should have a number of nodes well above the number
of real clusters in the dataset. One may have to test several
grid sizes to check if the cluster structures are shown with a
sufficient resolution and statistical accuracy (Kohonen, 2014).
To define the shape of the map we need to compute the first
two principal dimensions in which the variances of the input
dataset are. The ratio between the number of neurons in the two
directions of the grid is proportional to the ratio between the two
principal components (Kohonen, 2014). Here, following Abdi
andWilliams (2010), we assessed the quality of the representation
of the variables on the factor map by using the “square cosine,
squared coordinates” (i.e., cos2) method. A high cos2 highlights a
good representation of the variable on the principal component
(i.e., the variable is close to the circumference of the correlation
circle). A low cos2 suggests that the variable is not perfectly
represented by the principal components (i.e., it is close to the
center of the circle).

The nets sizes used by us were computed taking into account
the ratio of the number of neurons according to the following

Frontiers in Earth Science | www.frontiersin.org 6 November 2019 | Volume 7 | Article 286

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Bernardinetti and Bruno Machine Learning at Solfatara Volcano

formula (Kohonen, 2014):

R =
var1

var2
∼=

n1

n2
(8)

where var1 and var2 are the variance for the first and second
principal component respectively, while n1 and n2 are the
number of neurons along the x and y directions of the neural
network. The relationship between the neurons constituting the
two dimensions of the network is derived from the ratio of
variance between the first two principal components. Through
Equation 8 therefore, we determine the value of n1 by imposing
n2. Differently from the empiric approach proposed by several
authors (e.g., Céréghino and Park, 2009), where sizing of a neural
network is based on the number of observations constituting
the multivariate dataset, we prefer to use a smaller number of
neurons but significantly greater than the number of expected
seismic facies. The optimal size of the network is identified by
successive attempts, using Equation 8, and increasing the number
of neurons until we obtain a SOM image that best represents the
expected geophysical/geological features. Our approach allows
to represent all neurons in the network with a different color,
through a color map based on the position of the neurons as
discussed below. Differently from Céréghino and Park (2009),
our approach allows shorter computation times and preserve all
the details, avoiding a possible loss of information due to the need
(in order to have a coincise representation of the starting space)
of grouping together the high number of neurons, often resulting
from the empirical approach of Céréghino and Park (2009). In
fact, Unglert et al. (2016), show that the clustering process applied
to the SOM results may fail to regroup the neurons in a manner
that is consistent with the input dataset presented to the SOM.

With the aim to allow the neural network to replicate the
topological distribution of the dataset, we presented it to the SOM
9,000 times. We inspected the training progress by checking the
average distance of an object with the closest codebook vector
(Wehrens and Buydens, 2007). Moreover, for the neurons a
hexagonal connectivity was adopted resulting with a number of
six neighbors for the inner neurons, with a planar topology for
the lattice.

Displaying SOM Maps
Once the SOM algorithm has converged, the two-dimensional
feature maps of Kohonen neurons display the following
important statistical characteristics of the represented feature
space (Klose, 2006):

Approximation: A feature map represented by a set of
weights in the Kohonen layer provides a good approximation to
the input space. Topological ordering: The two-dimensional
feature map is topologically ordered in the sense that
similar Kohonen layer neurons correspond to similar
feature vectors of the higher dimensional input space.
Density matching: The feature map reflects variations in
the statistics of the distribution of the original feature space:
regions in the input space from which sample vectors are
drawn with a high probability of occurrence are mapped
onto larger domains in the Kohonen layer, and therefore
with better resolution than regions in the input space

where sample vectors are drawn with a low probability
of occurrence.

Since the SOM preserve the topological ordering of the
input space (i.e., similar input features are classified within the
same neuron or within adjacent neurons) it makes sense to
display the results using a color map based on the relative
position of neurons. The most used method to visualize the
cluster structure of a SOM is based on the unified distances
matrix (U-matrix; Ultsch, 1993). This is a visualization technique
that allows to represent the structural properties of the high
dimensional input space with a color scale based on the
relative distance between the prototype vectors and the winner
unit and it is conceptually similar to the gradational color
scales used to represent data from digital elevation models. A
synoptic view of the input multivariate dataset is also needed
for result interpretation, to identify features across the neurons
and highlight correlations that in our case could be interpreted
as signatures of hydrothermal features. Here we adopted the
“heatmaps” (see Pryke et al., 2007) as a way to represent
the average values of input observations classified into each
neuron. The heatmaps, computed by averaging the variables
classified into each neuron, are powerful ways to show the
distribution of the different variables (i.e., seismic attributes)
across the neural network, thus facilitating a visual interpretation
of the classification provided by the SOM. The variable range is
represented by a gradational color scale, in which we assign cold
colors to the lowest values and hot colors for the highest values
(Supplementary Figure 7).

The method we propose to graphically represent distances
between neurons uses a RGB color gradation based on both the
position of neurons and on the values of U-matrix, to consistently
image input seismic facies in the original space in the output 2D
lattice (Supplementary Figure 7A). The x,y neuron coordinates
in the 2D lattice provide the R and G values while the U-
matrix value provides the B value. All RGB values are scaled
to fit the range from 0–255. This RGB color map will show
similar colors for adjacent neurons, while the B U-matrix value
is useful to highlight distances of neurons, showing how far are
the observations. This method is analog to the coloring scheme
used by Langer et al. (2009) with the difference that Langer et al.
(2009) did not use the U-matrix value in coding the RGB colors.

RESULTS

Surface Data Integration
The results obtained by K-means on the tri-variate dataset
composed by the Bouguer anomaly, CO2 flux and seismic
noise are in Figure 2. The optimal cluster number, assessed
by the silhouette index is K = 4 (Figure 3). Light colored
pixels are those characterized by a low silhouette index and
therefore of uncertain collocation between adjacent clusters.
Misclustered pixels (i.e., SI < 0) are colored in white. The
clusters boundaries show a prevailing NE and WNW trend and
an excellent agreement with the patterns of the intracrateric
tectonic structures mapped by Isaia et al. (2015). This agreement
clearly demonstrates that the surface distribution of the analyzed
geophysical and geochemical data, which reflects the undergoing
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FIGURE 2 | 2D image of the Solfatara area (© 2019 Google) as in Figure 1 with results of surface dataset integration by means of K-means clustering overlaid with

the main faults from Isaia et al. (2015). Dots in light blue are the CDP metrics of Profile 1 while dots in orange are the CDP metrics of Profile 2.

FIGURE 3 | Validation of K-means clustering analysis of the surface dataset with the Silhouette index. (A) Silhouette index showing a maximum average value for k =

4; (B) graphical Silhouette values for each cluster of the k = 4.

hydrothermal activity at Solfatara, is mainly influenced by the
tectonic framework. This evidence is clearer on the outcomes
of the cluster analysis (Figure 2) rather than on the individual
measurements of Supplementary Figure 1.

Supplementary Figure 1 overlays the hard cluster
partitioning obtained by the K-means analysis to the spatial
distribution of the three variables used for the clustering (plus
the soil temperature, which was not included in the analysis). A
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FIGURE 4 | Results of integration based on the K-means analysis for the bi-variate dataset composed of ERT and SRT on Profile 1. (A) Integrated image with three

clusters and saturated with the Silhouette index. (B) Bi-variate dataset in the joint parameter space with colors saturated with the Silhouette index. (C) Optimal

clustering for k = 3 highlighted by the maximum value in k = 3.

qualitative assessment of the average value of each variable in
each of the four clusters is reported in the Table 1.

Cluster 2 (in blue in Figure 2) has the largest surface extension
and it is overall characterized by low values of the three analyzed
variables. It highlights the most stable sector of Solfatara not
much affected by the hydrothermal dynamics. Vice-versa the
most active areas (such as the “Fangaia” and the “Stufe di Nerone”
fumaroles) are highlighted by cluster 3 (green), which combines
high values of CO2 flow and seismic noise with low values of the
Bouguer anomaly. Cluster 3 most likely emphasizes the surface
location of the main degassing pathways.

Cluster 4 (red) alternates spatially with cluster 3 and is
characterized by low- to very-low values of Bouguer anomaly and
of CO2, which it is considered to be, together with the surface
temperature, the main indicator of magmatic degassing, and by
the highest values of seismic noise. In general, the high levels
of seismic noise characterizing both clusters 3 and 4 can be
associated with the intense vibrational activity connected with the
uprising fluxes.

Finally, cluster 1, characterized by very high values of Bouguer
anomaly and average values of the other two variables, has the
smallest extension and it is only found in the NE corner of
the investigated area, close to the Solfatara cryptodome and to
a volcanic pipe (Figure 1). The high bouguer anomaly within
cluster 4 can be therefore by explained by a higher rock density of
the crater rims with respect to the volcanoclastic material filling
the crater.

Near-Surface Resistivity and P-Wave
Velocity Integration
The clustering of the electrical resistivity and the P-wave seismic
tomography along the two profiles shown in Figure 1 was done
with the purpose of assessing the hydrological properties (i.e.,
gas-saturated vs. water saturated porous media and degree of
saturation) of the near surface, since both the electrical resistivity
and the P-wave velocity are sensitive to changes of water/gas
saturation. The analysis of the silhouette index revealed that
the optimal number clusters is consistently 3 for both Profile 1
(Figure 4) and Profile 2 (Figure 5). Moreover, both the cross-
plots in Figures 4B, 5B show that three clusters are well-
separated. As for the previous analysis we report in the Table 2
a qualitative assessment of the average value of each variable in
each of the three clusters.

In both cross-plots, cluster 1 (in a green color) combines
low values of P-wave velocity with fair to very high values of
electric resistivity. These values are typical of loose, unsaturated
to partly saturated tephra affected by diffuse CO2 degassing
therefore confirming the findings of Chiodini et al. (2001), Bruno
et al. (2007, 2017), and Gresse et al. (2017). As it can be seen in
both Figures 4A, 5A, cluster 1 occupies the topmost part of both
profiles for an average thickness of 10–30m. Clusters 2 (orange)
and cluster 3 (blue) are both characterized by a fair-to-very high
P-wave velocity (higher for cluster 2) but while cluster 3 has
very low values of resistivity, cluster 2 is instead characterized
by a higher resistivity. We tentatively associate cluster 2 with
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FIGURE 5 | Results of integration based on the K-means analysis for the bi-variate dataset composed of ERT and SRT on Profile 2. (A) Integrated image with three

clusters and saturated with the Silhouette index. (B) Bi-variate dataset in the joint parameter space with colors saturated with the Silhouette index. (C) Optimal

clustering for k = 3 highlighted by the maximum value in k = 3.

predominantly gas-saturated porous media and cluster 3 with
predominantly water-saturated porous media. P-wave velocity
should decrease in the presence of gas: therefore, high-values of
P-wave velocity in cluster 2 are a bit odd and can be explained
hypothesizing an overall high-water saturation (i.e., presence of a
two-phase fluid) even in the predominantly gas-saturated area.
Both clusters are found at depths <10–30m in the integrated
images in Figures 4A, 5A.

Seismic Attribute Integration
Seismic attributes were integrated using both the K-means
and SOM techniques. For the K-means clustering, the mean
Silhouette Index indicates an optimal value of 7 clusters
(Figure 6), for which we qualitatively assess the average ranges
of each of the four seismic attributes in Table 3. The subsurface
7-cluster distribution can be observed in Figures 7, 8, where
we can also compare the results between SOM and K-means.
For example, on both profiles (Figures 7, 8) and on the depth
range 250–450m cluster 1 (red) highlights elongated features

characterized by high to very high entropy, dip and similarity
that can be interpreted as intrusive bodies (dikes). Instead,
only on profile 1 and in a shallower (100–300m) depth range,
cluster 5 (beige) and to a lesser extent cluster 4 (yellow) and
1, show some peculiar sub-vertical thin patterns that cross-
cut or are found below areas belonging to cluster 2. These
features are not evident with the same clearness on Profile 2
(Figure 8) because, as discussed in Bruno et al. (2017), this profile
is characterized by a lower S/N ratio possibly correlated to a
higher structural complexity of the Solfatara along the WNW-
ESE direction (Isaia et al., 2015). In both profiles, clusters 2
(dk green) and 7 (purple) highlight sub-horizontal structures
with high energy and similarity. Cluster 3 (green) features areas
overall characterized by high-reflectivity in profile 1 while it
is not discriminant of any facies in profile 2, due to lower
S/N ratio. Cluster 3 and 6 (lt. green) have similar average
values, however in profile 1 cluster 3 has a spatial distribution
that highlights the upper filling of the crater down to a depth
of∼350 m.
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FIGURE 6 | (A) Mean silhouette index obtained after K-means clustering of the seismic attributes varying the number of clusters from 2 to 10. The optimal clustering

was found at the maximum value for k = 7; (B) graphical Silhouette values for each cluster of the k = 7.

TABLE 1 | Qualitative average values of Bouguer anomaly, CO2 flow and Seismic

noise amplitude in each of the four clusters.

Cluster 1 (Yellow) 2 (Blue) 3 (Green) 4 (Red)

Bouguer anomaly Very high Fair/low Low/very low Very low

CO2 flow (log10) Fair to low Fair High/very high Low/very low

Seismic noise amp. Fair/high Low/very low High Very high

Uncertain Stable Unstable (high) Unstable

TABLE 2 | Qualitative average values of electric resistivity and P-wave velocity in

each of the three clusters.

Cluster 1 (Green) 2 (Orange) 3 (Blue)

Electric resistivity Fair/very high Fair/high Low/very low

P-wave velocity Very low/low High/very high Fair/very high

Unsaturated Water-saturated Gas-saturated

As discussed above, we also performed the SOM analysis on
the seismic attribute datasets using different neural networks
with increasing size (6 × 5, 8 × 7 and 12 × 10 nodes).
The 12 × 10-node network provided the best details in the
integrated images for both profiles 1 and 2. Those node
maps are also shown in Figures 7, 8 and overall display more
consistent results and better details than the corresponding
K-means images. As explained before, in order to reflect the
distribution of attributes across the lattice, the SOM results
are displayed by using an RGB colormap based on the
geometry of the neural network and on the U-matrix values.
By matching the SOM and K-means images and by a synoptic
comparison of RGB colormap (Supplementary Figure 7A),
heatmaps (Supplementary Figures 7C–F) and K-means clusters

of the two integrated profiles (Figures 7, 8) five main
volcanic/hydrothermal facies could be inferred. These facies
include all the 120 SOM neurons of Supplementary Figure 7A.

Facies 1 groups neurons 1–4, 13–16, 25–27, 37–39, 49–50 in
Supplementary Figure 7A, and roughly corresponds to cluster
2 (i.e., dark green) and 7 (i.e., purple) of the K-means analysis.
Such facies is characterized by fair to very high energy, very high
similarity, very low values of entropy and by sub-horizontal dips
(see Supplementary Figures 4, 5) and is visible on Profiles 1–2
as sub-horizontal to slightly dipping, dark-colored zones in the
depth range 50–300m on the two profiles (Figures 7, 8). We
interpret them as sub-horizontal areas of fluid (both gas and
water) accumulation within the crater.

Neurons n. 57–59, 69–72, 82–84, 96, 106–108 in
Supplementary Figure 7A, with high dip, very low energy,
high entropy and low similarity, are instead grouped into Facies
2. Such facies includes cluster 5 and in part 1 and 4 of the
K-means analysis. Neurons here show characteristic sub-vertical
thin patterns and are interpreted as narrow, faults/fractures
filled with fluids of hydrothermal origin. They are extremely well
evident at CDP 100–300 and at depths of 100–500 on the image
of profile 1 (Figure 7A).

Facies 3 groups neurons 81, 94, and 95 that have fair to
low energy, high right-dip and entropy and fair similarity and
are mainly present on the left side of the section from the
depth of about 50m up to 300m, creating an asymmetric zone
labeled as AZ (i.e., asymmetric zone) on the section of Profile
1 (Figure 7A). These features, which are comparable in part
to cluster 4 (i.e., yellow) in Table 3 may represent old, low
permeability faults/fractures or other dipping bodies (intrusions).

Neurons 22, 23, 33–35, 46, 47 are grouped in Facies 4,
overall characterized by high dip, mainly left-dipping, fair to
low similarity, low energy and fair to high entropy. This facies
roughly corresponds to cluster 1 of the K-means analysis. We
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TABLE 3 | Qualitative average values of similarity, abs(dip), energy, and entropy in each of the seven clusters.

Cluster 1

(Red)

2

(dk green)

3

(Green)

4

(Yellow)

5

(Beige)

6

(lt. green)

7

(Purple)

Similarity High Very high High Fair/low Low/very low High Very high

abs(dip) High/very high Very low Fair High/very high High/very high Low Very low

Energy Low Fair/high Low/fair Very low Very low Very low Very high

Entropy Very high Low/fair Very high High High/very high High Low/fair

Fault or

intrusion

Fluid

accumulation

High reflectivity

zone

Low reflectivity

zone

Fault or

fracture

Non- reflective

zone

Bright spot

FIGURE 7 | Seismic attribute integration along profile 1. Left image obtained with SOM. Right image obtained with K-means. In the right image the seven clusters

labeled by numbers: 1, red; 2, dark green; 3, green; 4, yellow; 5, beige; 6, light green; 7, purple 3. Symbol explanations. AZ, asymmetric zone; F, fault/fracture (also

highlighted by vertical arrows); FA, fluid accumulation; IB, intrusive body.

associate it to intrusions with high-dip angle (dykes) visible
mainly in the 300–600m depth range.

Finally, facies 5 groups instead all remaining neurons in
Supplementary Figure 7A, which, in lack of well logs and other
geological constraint we were unable to associate to any peculiar
seismic feature. It correspond roughly to clusters 4 and 6 of the
K-means analysis. In general observations colored with a light
green-yellow in Figures 7, 8 have very low energy, variable dip,
fair similarity and entropy and are distributed at the borders of
the images.

DISCUSSION

Results Comparison
Figures 9, 10 show two three-dimensional cross-sections of
Solfatara crater along the NNE and WNW direction (i.e.,
profiles 1–2). With these figures we compare: (1) the K-means

clustering of the surface data with (2) the K-means clustering of
resistivity and P-wave velocity and (3) with the SOM analysis on
seismic attributes. For the last dataset we choose to display the
SOM results and not the K-means clustering because, as better
explained in the following sections, the SOM results are far more
informative than the corresponding K-means images, especially
along profile 2.

The SOM images show, at 50–350m deep, well-definite areas
of fluid accumulation (Facies 1, labeled as FA in Figures 9, 10).
Bruno et al. (2017) interpret these zones as stratigraphic traps

in which uprising hydrothermal fluids (both gas and water)

accumulate, fed by an underlying sub-vertical network of faults
and fractures (i.e., Facies 2). These faults are evident in our SOM

results as narrow sub-vertical features (i.e., Facies 2) starting at
depths of ∼100m (i.e., 0m a.s.l.) and intersecting the deeper
areas of fluid accumulation (e.g., FA in Figure 9). The overlain K-
means analysis of resistivity/P-wave velocity allows us to discern,
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FIGURE 8 | Seismic attribute integration along profile 21. Left: image obtained with SOM. Right: image obtained with K-means. In the right image the seven clusters

labeled by numbers: 1, red; 2, dark green; 3, green; 4, yellow; 5, beige; 6, light green; 7, purple 3. Symbol explanations. F, fault/fracture (also highlighted by vertical

arrows); FA, fluid accumulation; IB, intrusive body.

within the upper areas of fluid accumulation, predominantly
gas-saturated media (i.e., cluster 2) and predominantly water-
saturatedmedia (i.e., cluster 3).We note that in both profiles, gas-
saturated (i.e., orange) areas are found below the water-saturated
(i.e., blue) zones. Overall, three main lateral heterogeneities
are visible at a distance of ∼60m and ∼170m on NNE
trending profile 1 of Figure 9 and at a distance of ∼175–
200m on the WNW trending profile 2 of Figure 10. We argue
that these lateral variations in the distribution of clusters 2–
3, are controlled by fault/fractures affecting the very shallow
hydrothermal circulation, Vice-versa cluster 1 (in green) which
marks the unsaturated medium, does not show any significant
lateral variation along the two cross-sections.

Next, we correlate the variations in the K-means clustering
along the two profiles with the pattern of the surface K-means
clusters within the crater (Figure 2), which we recall show an
excellent agreement with the distribution of the intracrateric
tectonic structures mapped by Isaia et al. (2015). In doing this
comparison we need to keep in mind that the two datasets
were acquired in different periods and are made of entirely
different geophysical parameters (i.e., Bouguer anomaly, CO2

flux and seismic noise amplitude vs. resistivity and P-wave
velocity). Despite these facts, on profile 1 (Figure 9) we observe
an overall good agreement between the patterns of subsurface
and surface cluster boundaries. This agreement worsens on
profile 2, probably because of its lower-S/N ratio. However, we
can still notice on this latter profile that the boundary between

surface clusters 3–4 (which highlight the most unstable areas
of the crater) and cluster 2 (i.e., the most stable) occurs at a
distance of∼200m, above the aforementioned lateral transaction
between cross-sectional cluster [2 (i.e., gas saturated) and 3
(i.e., water-saturated].

It is worth noting that the surface datasets were acquired
between in 2000 and 2004 and the subsurface geophysical (i.e.,
seismic and geoelectrical) data were acquired on in 2014–2015.
A minor lack of correlation, noticeable among the different
datasets, can be therefore associated to the high dynamism of the
Solfatara volcano. Anyway, the overall good agreement between
the three sets of geophysical data examined with the twomachine
learning techniques whiteness the fact that the main shallow
structural patterns, which influence the hydrothermal dynamics
at Solfatara volcano, remained mainly unchanged in the last 15
years. This is not a minor outcome of this work.

K-Means vs. Self-Organizing Maps
One of the purposes of this paper was compare the performance
of two machine-learning algorithms in integrating the
four seismic attributes computed from the orthogonal
seismic reflection profiles of Bruno et al. (2017) which are
macroscopically characterized by a different S/N ratio. The
two datasets have a high number of nodes (372 × 600 for
profile 1 and 451 × 600 for profile 2). The process of reducing
the dimensionality of the vectors, which is essentially a data
compression technique, was done through SOM and K-means
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FIGURE 9 | Three-dimensional cross-section of Solfatara crater along profile 1

showing the spatial relationships between the results of the surface data

integration, overlain to the 3D topography of the Solfatara with the results of

the near-surface resistivity and P-wave velocity integration and with the results

of the SOM analysis on seismic attributes. Symbols explanations are as in

Figure 7.

FIGURE 10 | Three-dimensional cross-section of Solfatara crater along profile

2 showing the spatial relationships between the results of the surface data

integration, overlain to the 3D topography of the Solfatara with the results of

the near-surface resistivity and P-wave velocity integration and with the results

of the SOM analysis on seismic attributes. Symbols explanations are as in

Figure 7.

clustering. The idea behind both algorithms is to map high-
dimensional vectors onto a smaller dimensional (typically a 2D)
space (Klose, 2006). In addition to data compression, a SOM,
however, creates a network that stores information in such a way
that any topological relationships within the training datasets is

maintained (Kalteh et al., 2008). At a more intuitive level, both
K-means and SOM are moving nodes toward denser areas of the
high-dimensional space. With K-means, the nodes move freely,
with no direct relationship to each other. With SOM, when a
node moves toward the data, it pulls neighboring nodes in the
2D lattice along with it. This naturally maintains a topology
embedded in the data space. Therefore, unlike the K-means,
with the SOM, vectors that are close in the high-dimensional
space also end up being mapped to nodes that are close in 2D
space. SOM, therefore, preserve the topology of the original
data because the distances among neurons in 2D space reflect
those in the high-dimensional space. However, in the case of
a low number of nodes (such as our surface and near-surface
data) K-means provides results very similar to SOM because
it forces every vector to match an existing node, acting as a
prototype/centroid, without any room for divergence. In the case
of a high number of nodes, with SOM there is instead a margin
for showing transitioning zones, which mimic the space among
prototypes/centroids, thus modeling the transformed topological
space among samples. In this way, the relative distances are
“preserved” at expenses of a larger iteration time. This is a
desirable feature, especially when dealing with data characterized
by low S/N ratios.

Preservation of the original topological space translates into
preservation of subtle features; this is evident when we compare
the results of K-means and SOM with the seismic attribute
datasets in Figures 7, 8 or Figures 9, 10. On profile 1, which
holds a better S/N ratio, the comparison between SOM and
K-means (Figure 7) shows an overall good agreement and
conveys the same type of information. Therefore, even if the
SOM image is more complex and detailed, when geological
constraints are not available, such as in our case, the colormap
simplification provided by K-means might actually help in
synthesizing a simple geological interpretation. However, on
profile 2 (Figure 8), which is characterized instead by a much
lower S/N ratio, the preservation of the original topological
space provided by the SOM results in an image that is far
more informative than the K-means image. For instance, hints
of possible sub-vertical faults (labeled as “F” in Figure 8),
highlighted by subtle color changes on the SOM image, are
totally missing on the K-means image (see the corresponding
labels pointing at the exact locations in Figure 8). Therefore,
in this latter profile the color map simplification provided by
K-means is a flaw and SOM results hold more potential for
geological interpretation.

As stated above, the coloring scheme of the SOM neural
network must reflect the distribution of variables (i.e., seismic
attributes) across the lattice. With our coloring scheme, based
on the position of neurons and the neighborhood distances
of neurons (i.e., U-matrix), nearby features have similar color
gradations. One of the limits of this approach is the absence of a
quantitative criteria to assess the validity of the results (de Matos
et al., 2006; Roden et al., 2015); moreover, when dealing with a
high number of neurons only subtle color differences characterize
neighboring neurons (i.e., similar classified observation). The
lack of a sharp color change in some cases makes it hard to reveal
differences among observations (see again Figure 8).
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Soft K-Means Clustering by the Silhouette
Index
Both the tri-variate geophysical dataset measured at the surface
of the crater and the bivariate tomographic dataset estimated
along the two profiles are characterized by a low number of
nodes. As discussed above, SOM maps with a small number
of nodes are expected to behave in a way that is similar to
K-means, therefore we chose the latter and faster method to
analyze the above datasets. For these analyses we employed
a hard-clustering algorithm but we modified the colormap of
each observation by linking the Silhouette Index to the pixel
color saturation as shown in Figures 2, 4A, 5A. As discussed
above, the Silhouette Index ranges from −1 to 1. In our color
maps light color saturations reveal clusters with values of the
Silhouette Index near to 0, which highlights observations with
unclear assignment. Values <0, which are typical of misclustered
observations are colored in white. Our approach is therefore
similar to a soft clustering (Paasche et al., 2010) and helps in
reducing well-known limits of the K-means with clustering data
at the edges of the clusters. Moreover, a Silhouette Index-based
color map can be helpful in highlighting intra-cluster zones
where geophysical parameters are changing. This improvement
can provide more complete and realistic results with respect to
the typical hard clustering algorithms since it allows to locate
areas were observations are well/poorly clustered, spot local
dissimilarities and transition zones.

CONCLUSIONS

In this work we tested the K-means and the SOM methods,
widely used in multivariate clustering analysis, for the
integration of different geophysical surveys acquired within
Solfatara, on different scales and with different sensitivities,
with the aim of providing robust geophysical models of the
shallow hydrothermal system and processes. In applying these
techniques, we explored two innovative approaches: for the
K-means we propose to modify the color intensity of the clusters
based on the Silhouette Index in order to graphically locate the
membership uncertainty of the individual observations. This
is useful to account for differences between observations who
might be proximal or distant from their relative centroids and
consequently allows us to go beyond a rigid classification which
is typical of K-means clustering. This approach, detailed in the
previous section, allows to visualize graphically the uncertainty
of cluster assignment, which is not possible for K-means, this
being a hard-clustering method. It also allows to highlight
intra-cluster dissimilarities, which might indicate variability of
geophysical characteristics within the same cluster number.

For the Self-Organizing Maps, we propose an alternative
method for choosing the number of nodes of the neural network
which aims to avoid the need for downstream clustering of
the results of the classification. Our approach is based on the
dimensioning of a neural network with a limited number of
neurons but much greater than the dimensions of the expected
seismic facies. In this way a possible loss of information is
minimized with respect to larger number of nodes who have

necessarily to be grouped after SOM analysis, through classic
clustering techniques. Moreover, our approach makes it possible
to represent all the neurons on the original space of the dataset
(in our case CDPs vs. depth), by means of a color map based on:
(1) the position of the neurons and (2) on the U-matrix values,
maintaining all the details of the individual neurons.

Overall, our results show that both methods hold a great
potential to aid an unbiased interpretation of geophysical
data in complex geological settings. Similarly to other active
volcanic areas, Solfatara hydrothermal dynamics leaves subtle
but detectable footprints in each investigated geophysical
dataset. While these hints are not easy to spot by classical
interpretation schemes based on a single-method approach, their
detection is highlighted by merging and compressing the vast
amount of geophysical information with both the unsupervised
learning methods analyzed in this paper. This is evident in
Supplementary Figures 1–3 where we show the hard-cluster
classification from the K-means overlain on each of the original
data used for the analysis. This type of plot is very useful
for post-analysis qualitative assessment of results. For instance,
Supplementary Figure 1 allows us to understand that each of the
three-surface datasets used provided an important contribution
to clusters classification, even if the main contribution was
delivered by the CO2 flux. Similarly, Supplementary Figures 2, 3

show that the ERT data were dominant in the subsurface K-
means clustering, while P-wave tomography provided a smaller
contribution. Nevertheless, from a thorough analysis of those
figures it is evident that unsupervised learning techniques
were highly successful in synthesizing the complex geophysical
information provided by each single dataset in a simpler, more
meaningful model of the surface and of the shallow subsurface
of the volcano. A proof of this can be found in Figure 2 that
show us how well the patterns of the surface clusters correlate
with the strike of intracrateric tectonic structures mapped by
Isaia et al. (2015).

Another important point worth highlighting is that generally
color maps used to represent the individual datasets, such as
the ERT or the P-wave tomography, are subjective; i.e., their
choice does influence our interpretation. In other words, by
changing the colormap the resulting image changes slightly
and the interpretation is affected by this change. For instance,
the colormap used to represent our P-wave velocities in
Supplementary Figures 2, 3 does not enhance subtle lateral
variations while the colormap used to represent ERT data well-
enhances them: however, by changing those color maps we
could influence the interpretation of lateral and or vertical
heterogeneities. This is clear by comparing the ERT and P-wave
images with the overlain K-means clusters: it is impossible to
determine the exact position of the cluster boundaries in an
objective manner only from the ERT and P-wave images.

To further highlight the improvement in achieving objective
characterization of the shallow hydrothermal system of
the volcano, we use Supplementary Figures 8, 9 to show a
comparison performed, across the two profiles, between the
results obtained from K-means and SOM algorithms and
the original seismic reflection and ERT data: it is evident the
great aid provided by the unsupervised learning methods for
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detection of the subsurface areas of fluid accumulation and
their structural pathways underneath Solfatara. For instance,
while the classical interpretation schemes, based on the analysis
of reflection offset and reflection strength can profitably be
used on the seismic reflection data of Supplementary Figure 8

to pinpoint the location of sub-vertical faults and bright
spots associated to fluids, the details provided by SOM and
K-means images allows to increase our confidence in the
interpretation. This support is particularly valuable when the
interpreter has to deal with data at low S/N ratio, such as
those shown in Supplementary Figure 9, where the results
provided by machine learning algorithms on multivariate
dataset can provide important constraints in minimizing the
interpretation risk.

Considering that Solfatara and the neighboring areas are
experiencing an new period of volcanic unrest and considering
the vast amount of diverse geophysical, geochemical and
geological data acquired in these area in the recent years,
we hope that our case study will further promote the
use of unsupervised learning techniques with the purpose
of minimizing the interpretation risk and of achieving an
improved understanding of the complex dynamics occurring
in volcanoes.
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