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Using observations and reanalysis, we develop a linear regression model to predict April
precipitation in the northwestern United States (PNWUS) with a 1-month lead. Not only
does this model reproduce April PNWUS for the training period, but also its predictions
are robust and reliable for the independent test period. Two independent factors, Arctic
stratospheric ozone (ASO) and geopotential height in western North America at 700 hPa
(H700WNA), are used to construct the linear regression model. Based on observations,
the possible mechanism by which ASO and H700WNA affect PNWUS is as follows. April
circulation anomalies over the North Pacific related to March ASO changes can extend
eastward to the western United States, causing April PNWUS anomalies. When the April
H700WNA is abnormally high, there will be an anti-cyclonic circulation anomaly over the
northwestern United States, which not only inhibits water-vapor transport from the North
Pacific to the northwestern United States but also suppresses convective activity. This
process also influences the April PNWUS. A transient experiment using a climate model
with a longer period also agrees with the above result from observations. Using the
predicted April H700WNA from the climate forecast system (CFS) of the National Centers
for Environmental Prediction (NCEP) based on March data and the observed March
ASO, the April PNWUS predicted by this statistical model is closer to observations than
the April PNWUS predicted directly by the CFS using March data.

Keywords: Arctic stratospheric ozone, local circulation, regression model, prediction, precipitation

INTRODUCTION

Precipitation variability throughout the United States has been the subject of recent research, as
precipitation above or below normal has the potential to incur significant regional economic and
environmental damage (Pielke and Downton, 2000; Andreadis et al., 2005; Manuel, 2008; Seager
et al., 2009). Spring precipitation in the United States is not only crucial to agriculture, affecting the
sowing and growth of crops, but also affects the natural environment. Excessive spring rainfall can
result in nearly saturated soil moisture, causing floods, and mudslides (Wang et al., 2015). Thus, the
variations and predictability of spring precipitation in the United States are worthy of attention.

Many studies have investigated the factors and mechanisms responsible for spring
precipitation in the United States (Ropelewski and Halpert, 1986, 1987; Trenberth et al., 1988;
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Trenberth and Branstator, 1992; Trenberth and Guillemot, 1996;
Lee et al., 2014; Wang et al., 2015; Steinschneider and Lall, 2016;
Li et al., 2018). Wang et al. (2015) analyzed spring precipitation
over the southern United States and attributed the precipitation
to synergistic effects from an intensified Great Plains low-
level jet and an anomalous upper tropospheric trough over
the southwest United States, which can create a baroclinically
unstable environment over the southern United States that is
conducive to the maintenance of heavy precipitation (Wang
and Chen, 2009; Harding and Snyder, 2015). Subsequently, Li
et al. (2018) found that spring precipitation over the southern
United States is closely related to the subtropical North Atlantic
water cycle. They demonstrated that positive spring precipitation
anomalies are associated with an increase in water-vapor fluxes
from the subtropical North Atlantic and that their relationship
has recently become stronger. In addition, some studies have
reported that the El Niño–Southern Oscillation (ENSO), the most
significant mode of variation in SST and the atmosphere, is
also closely related to spring precipitation in the United States
(e.g., Trenberth et al., 1988; Trenberth and Branstator, 1992;
Trenberth and Guillemot, 1996). Both the onset and persistence
of El Niño can increase spring precipitation in the southern Great
Plains and at the same time reduce precipitation in the southeast
United States (e.g., Ropelewski and Halpert, 1986, 1987; Lee et al.,
2014; Wang et al., 2015). Specifically, Lee et al. (2014) found
that in the early spring of a decaying El Niño, the atmospheric
jet stream and storm track shift southward and that in the late
spring of a developing El Niño southwesterly low-level winds
shift westward. Zhang et al. (2015) found that ENSO events
can affect the upper tropospheric local circulations over North
America through exciting Rossby-wave trains. These circulation
anomalies cause spring precipitation anomalies in the southern
United States and the Ohio Valley. Furthermore, Wang et al.
(2015) pointed out that a developing El Niño tends to increase
late-spring precipitation in the southern Great Plains and that
this effect has intensified since 1980.

Precipitation prediction is the most practical and useful
reference for the development of agricultural and economic
governance strategy. However, quantitative precipitation
forecasting remains one of the greatest challenges in weather
forecasting. Currently, most predictions use global circulation
models (GCMs), but GCMs are not suitable for surface
parameters in specific regions and at sub-grid scales (Risbey and
Stone, 1996). To solve this problem, many statistical models
have been developed based on physical connections between
regional factors and other variables (e.g., Hughes and Guttorp,
1994; Wilby and Wigley, 1997; Goodess and Palutikof, 1998;
Salathe, 2003; Hewitson and Crane, 2006; Fowler et al., 2007;
Chu et al., 2008; Li and Smith, 2009; Huang et al., 2011; Ruan
et al., 2015). For example, Li and Smith (2009) linked the
mean sea-level pressure with rainfall over southern Australia
during winter and developed a statistical model to predict
future regional precipitation. Ruan et al. (2015) successfully
developed a model to forecast late-winter precipitation over
southwest China based on sea-level pressure in Western Europe
and sea-surface temperature in the Western Pacific. Moreover,
Li et al. (2016) found that springtime sea-surface salinity over

the northwestern portion of the subtropical North Atlantic
is closely correlated with summertime precipitation over the
United States Midwest. Thus, they regarded springtime sea-
surface salinity in the subtropical North Atlantic as a predictor
of local summertime precipitation. Recently, Wang et al. (2017)
proposed a multiple linear regression model based on autumn
conditions of sea-ice concentration, stratospheric circulation,
and sea-surface temperature that can provide skillful seasonal
outlooks of winter precipitation over many regions of Eurasia
and eastern North America.

The United States is located in the westerly belt, and the west
wind brings considerable water vapor from the Pacific Ocean to
the land. The blocking effect of the Rocky Mountains increases
precipitation in the northwest United States. Wheat, which is
very sensitive to precipitation (Hatfield and Dold, 2018), is the
main crop in this area. Therefore, climate change in this region,
and particularly precipitation change, is a subject worthy of
study. Figure 1A shows correlation coefficients between April
precipitation predicted by the climate forecast system (CFS)
developed by the National Centers for Environmental Prediction
(NCEP) using March data and observed April precipitation from
the Global Precipitation Climatology Project (GPCP). Figure 1B
shows the standardized time series of April precipitation in the
northwestern United States (PNWUS) based on observation and
on CFS prediction, with a correlation coefficient of 0.25. It is
found that the CFS has a weak ability to predict April PNWUS with
a lead time of 1 month. Therefore, it is necessary to continue to
develop methods to predict PNWUS.

A

B

FIGURE 1 | (A) Correlation coefficients between April precipitation predicted
by the CFS using March data and April precipitation from the GPCP for
2012–2018. Dots indicate that correlations are significant at the 95%
confidence level. The seasonal cycle and linear trend were removed from the
original datasets before calculating correlation coefficients. (B) Standardized
time series of April precipitation in the northwestern United States from the
CFS using March data (red line) and April precipitation from the GPCP (black
line) for 2012–2018. Data are averaged over 39◦–50◦N, 115◦–126◦W.
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In addition, tropospheric weather and climate are closely
linked to stratospheric processes (e.g., Hu and Guan, 2018; Hu
et al., 2019; Zhao et al., 2019; He et al., 2020). Stratospheric
signals generated by ozone depletion may propagate down to the
troposphere and influence the tropospheric weather significantly
(Bai et al., 2015; Hu et al., 2015; Manatsa and Mukwada, 2019;
Wang et al., 2019; Zhang et al., 2019), including the tropospheric
jet streams (Huang et al., 2017), surface temperature (Zhang
et al., 2016, 2018; Huang et al., 2017; Hu et al., 2018; Huang and
Tian, 2019), and precipitation (e.g., Luo et al., 2013; Ma et al.,
2019). In particular, Ma et al. (2019) revealed that April PNWUS
can be modulated by March Arctic stratospheric ozone (ASO).
They found that circulation anomalies associated with March
ASO variations can propagate to the northwestern United States,
leading to local circulation and water-vapor flux anomalies that
can affect April PNWUS. This motivates us to investigate whether
the March ASO, which has a leading influence on the surface
climate in the Northern Hemisphere (Smith and Polvani, 2014;
Calvo et al., 2015; Xie et al., 2016, 2017a,b, 2018; Ivy et al., 2017;
Ma et al., 2019), can be used along with other factors as a predictor
of April PNWUS in a statistical model. Results from this new
statistical model will be compared with those of the CFS to assess
improvements in the predictability of April PNWUS.

In this paper, we develop a linear regression model using
the observed March ASO and regional circulation signals to
predict the April PNWUS. The remainder of the paper is organized
as follows. The data, simulations, and methods used in this
study are described in section “Data.” The predictors and
underlying mechanism are presented in section “Selecting Factors
for April PNWUS Predictions.” Section “Development of a Linear
Regression Model to Predict April PNWUS” describes the linear
regression model used for April PNWUS predictions and validates
the model using observations and simulations. Results and
conclusions are presented in section “Conclusion.”

DATA

Data
The monthly mean partial ozone column averaged for the latitude
of 60◦–90◦N at an altitude of 100–50 hPa after removing the
linear trend and seasonal cycle is defined as the ASO index in
this paper. The ozone values used in this study are from the
Stratospheric Water and OzOne Satellite Homogenized database
(SWOOSH, Davis et al., 2016) for 1985–2018. The monthly mean
zonal-mean dataset is at 2.5◦ × 2.5◦ spatial resolution and has
31 vertical levels (316–1 hPa). Xie et al. (2018) showed that the
ASO from SWOOSH is in good agreement with that from the
Global Ozone Chemistry and Related trace gas Data Records for
the Stratosphere (GOZCARDS, 1985–2013) project (Froidevaux
et al., 2015), with horizontal resolution of 10◦ × 10◦, extending
from the surface to 0.1 hPa (25 levels).

Monthly precipitation employed in this study is taken from
two sources: the GPCP monthly precipitation dataset provided
by the NOAA/OAR/ESRL PSD, Boulder, CO, United States with
a horizontal resolution of 2.5◦ × 2.5◦ (Adler et al., 2003) and
the Global Precipitation Climatology Centre (GPCC) with a

horizontal resolution of 1.0◦ × 1.0◦ (Schneider et al., 2008).
Geopotential height and winds are obtained from the National
Centers for Environmental Prediction-Department of Energy
(NCEP-DOE) dataset.

Following Ma et al. (2019) who found that March ASO
can significantly influence the April PNWUS, the PNWUS is
defined as the area of 39◦–50◦N and 115◦–126◦W in this
paper. To understand the characteristics of precipitation
in the studied area, Figures 2A,B show the climatology
of April PNWUS. It is evident that the spring PNWUS is
increasing from the southeast to the northwest and that
the primary mode of precipitation variability in this area
shows a unified change (Figures 2C,D), indicating that the
PNWUS changes can be investigated as a whole. In addition,
the April PNWUS exhibits evident interannual changes, and
the two sets of precipitation data show a high degree of
consistency (Figure 2E).

The output from the CFS developed by the NCEP is also used
in this paper. The CFS is a fully coupled operational dynamical
seasonal prediction system (Saha et al., 2006). Its atmospheric
component is the NCEP Global Forecast System model used for
operational weather forecasting (Moorthi et al., 2001) except at
a coarser horizontal resolution. Its oceanic component is the
NOAA Geophysical Fluid Dynamics Laboratory Modular Ocean
Model V3.0 (Pacanowski and Griffies, 1998). It adopts a spectral
triangular truncation of 62 waves (T62) in the horizontal and
64 sigma layers in the vertical. The zonal resolution of the
model is 1.0◦, and its meridional resolution is 1/3◦ between 10◦S
and 10◦N, increasing gradually with latitude before becoming
1◦ poleward of 30◦S and 30◦N. We used the monthly data
of CFS from 1985 to 2018, including the reforecast (1985–
2010) and the forecast period (2011–2018), both of which
are a 9-month integration, and we adopted the data starting
integration from 00 UTC.

Simulations
The National Center for Atmospheric Research’s Community
Earth System Model (CESM) version 1.0.6 has been applied in
this study to demonstrate the relationship between April PNWUS
and the predictors. CESM is a fully coupled global climate model
that incorporates interactive atmospheric (CAM/WACCM),
ocean (POP2), land (CLM4), and sea ice (CICE) components.
The atmospheric component used in this study is the Whole
Atmosphere Community Climate Model (WACCM), version
4 (Marsh et al., 2013). WACCM4, as a climate model, has
a detailed middle-atmosphere chemistry and a finite-volume
dynamical core, extending from the surface to ∼140 km with 66
vertical levels. The interactive chemistry employed in this paper
is disabled. The horizontal resolution of the model is 1.9◦ × 2.5◦
(latitude× longitude) for the atmosphere and approximately the
same for the ocean.

We conducted a transient experiment (1955–2005) using
CESM incorporating both natural and anthropogenic external
forcings, including spectrally resolved solar variability (Lean
et al., 2005), transient greenhouse gases (GHGs) (from
scenario A1B of IPCC 2001), volcanic aerosols (from the
Stratospheric Processes and their Role in Climate (SPARC)
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A B
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FIGURE 2 | (A,B) Climatological values for April precipitation (mm/month) in the northwestern United States for 1985–2018 from the (A) GPCP and (B) GPCC. Black
rectangles denote the study area (northwestern United States). (C,D) First leading EOF of April precipitation anomalies in the study area for the period 1985–2018
from the (C) GPCP and (D) GPCC. (E) Time series of April precipitation (mm/month) over the northwestern United States (PNWUS) averaged over the region
39◦–50◦N, 115◦–126◦W from the GPCP (black line) and GPCC (red line).

Chemistry–Climate Model Validation (CCMVal) REF-B2
scenario recommendations), a nudged quasi-biennial oscillation
(QBO) (the time-series in CESM is based on the observed
climatology over the period 1955–2005), and ozone taken from
the CMIP5 ensemble mean ozone output. All of the forcing data
used in this study can be obtained from the CESM model input
data repository.

Methods
Holdout Method
The holdout method, sometimes called test sample estimation,
relies on a single partitioning of the data. For example, the whole
time series is divided into two parts: the period from 1985 to 2007
is the training period, and the period from 2008 to 2018 is the
hindcasting period.

Running Holdout Method
This method only differs from the holdout method in its use of a
variable-length training period that changes with the hindcasting
time point. That is, the required set of regression coefficients and

constants are based on the time series before each hindcasting
target point. The base period is the shortest training period.

Anomaly Sign Consistency
The anomaly sign consistency (P) is used to compare the
observed and fitted April PNWUS (Ruan et al., 2015), as shown
in the following equation:

P =
Nc

N
, (1)

where Nc represents the number of cases when the observed and
fitted PNWUS are both in positive or negative anomalies at the
same time, and N represents the sample size.

Root-Mean-Squared Errors
The root-mean-squared errors (RMSEs) proposed in this paper
are calculated based on a leave−1−year-out method. During
1985–2018 (34 years), 34 consecutive empirical models are
produced after each one data point is left out. The remaining 33
data points are used to establish the linear regression model to
forecast the 1 year that is left out. The RMSEs are calculated based
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A B
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FIGURE 3 | (A) Correlation coefficients between the March ASO index from SWOOSH and April precipitation anomalies from the GPCP during 1985–2018. Dots
indicate areas that are statistically significant at the 95% confidence level. The linear trend was removed from the original datasets before calculating correlation
coefficients. (C) Time series of March ASO (× –1) from SWOOSH (DU; black line) and April PNWUS (mm/month; red line) anomalies from the GPCP after removing the
linear trend for 1985–2018. The correlation coefficient between the two time series is shown in the upper right corner. (B,D) As in panels (A,C), but for precipitation
from the GPCC. (E) Correlation coefficients between the March ASO index from SWOOSH and April zonal wind anomalies (m/s) from NCEP2 at 200 hPa for
1985–2018. Dots indicate areas that are statistically significant at the 95% confidence level. (F) Differences in composite April wind from NCEP2 (vectors; m/s)
between positive and negative March ASO anomaly events at 700 hPa for 1985–2018 significant at the 90% (light yellow shading) and 95% (dark yellow shading)
confidence levels, respectively. See Table 1 for specific March ASO anomaly events. The green rectangle indicates the study area (northwestern United States).

on the observed and the predicted precipitation. More details can
be found in Xie et al. (2019).

SELECTING FACTORS FOR APRIL
PNWUS PREDICTIONS

Figure 3A presents correlation coefficients between the March
ASO index and April precipitation anomalies in the western
United States. A strong negative relationship between March
ASO and April precipitation variations is found in the
northwestern United States. The time series of the March ASO
index and April PNWUS are shown in Figure 3C, indicating a
significant correlation (95% confidence level) with a correlation
coefficient of −0.44 between the two time series. It suggests that
March ASO is linked to April PNWUS variations with a lead time

of 1 month. This delayed effect can be explained by the process
involved in ASO circulation effects; i.e., stratospheric circulation
anomalies caused by ASO need a month to propagate to the
troposphere in the Northern Hemisphere middle latitudes (Smith
and Polvani, 2014; Calvo et al., 2015; Xie et al., 2016; Ivy et al.,
2017). Results from the GPCC (Figures 3B,D) agree with those
from the GPCP (Figures 3A,C).

As the physical mechanisms linking March ASO and April
PNWUS have been explored by Ma et al. (2019) in detail
using observations and model verification based on time-slice
and transient experiments, here we only briefly describe the
physical connection between March ASO and April PNWUS. The
correlation coefficients between March ASO and April zonal wind
at 200 hPa are shown in Figure 3E. The intensity of April zonal
wind over the North Pacific is noticeably affected by variations
in March ASO, showing a triple mode with a zonal distribution.
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TABLE 1 | Selected positive and negative March ASO and April H700WNA anomaly events during 1985–2018 identified according to their standard deviations.

Positive anomaly events (>1 STD) Negative anomaly events (<–1 STD)

March ASO 1999, 2004, 2010 1993, 1995, 1996, 2000, 2005, 2007, 2011

April H700WNA 1990, 2002, 2004, 2013, 2016 1993, 2003, 2006, 2010, 2012, 2017

This means that when March ASO increases, zonal wind in the
higher and lower latitudes of the North Pacific displays a positive
anomaly, whereas zonal wind in the mid-latitude North Pacific
demonstrates a negative anomaly (Figure 3E). These circulation
anomalies can extend eastward to the western United States,
influencing regional circulation and climate (Xie et al., 2018;
Ma et al., 2019). Specific wind anomalies related to March ASO
variations in the troposphere are shown in Figure 3F. Wind
anomalies in the northwestern United States are dominated by
the northeast wind when the March ASO is abnormally high.
These conditions suppress local precipitation. Opposite results
are found when March ASO is abnormally low. Given this
relationship between March ASO and April PNWUS, we select
March ASO as the first factor in our model for predicting PNWUS.

The correlation coefficients in Figure 3 suggest that the
ASO only partially explains variations in PNWUS. Therefore,
other factors that affect PNWUS must be identified. First, we
divide the variations of PNWUS into two parts: the ASO-
related part (PNWUS_ASO) and the remainder (PNWUS_NOASO).
The PNWUS_ASO is obtained by regressing PNWUS variations onto
ASO, and PNWUS_NOASO = PNWUS – PNWUS_ASO. PNWUS_NOASO
describes PNWUS variations with the effects of ASO removed.

To simplify the problem, we investigate the circulation
factors that directly affect precipitation. To find a factor
for PNWUS_NOASO, correlation coefficients between April
PNWUS_NOASO variations and simultaneous geopotential height
anomalies (after removing the signals of March ASO from
the geopotential height) at 200, 500, and 700 hPa are shown
in Figure 4. There are 17 regions with significant correlation
identified in Figure 4. The circulation anomalies in these
regions may be factors involved in the remaining precipitation
(PNWUS_NOASO) variations. RMSEs are calculated for each
potential factor to find the best factor in the model. The three
factors with the smallest RMSE are shown in the row labeled
“Step 1” in Table 2. The factor H700WNA (geopotential height
in western North America at 700 hPa) has the lowest RMSE
(14.09 mm), and the correlation coefficient between this factor
and PNWUS_NOASO is the largest and is significant at the 95%
confidence level. This factor also passes the T and F tests.
Therefore, April H700WNA is provisionally selected as the second
factor in the model for predicting PNWUS.

Next, we discuss the physical processes involved in the effects
of April H700WNA on simultaneous PNWUS_NOASO. Figure 5A
shows climatological values for April wind, which indicate
that the northwestern United States is dominated by the west
wind. Figure 5B presents differences in composite April wind
between positive and negative April H700WNA anomaly events
at 700 hPa. Circulation anomalies related to April H700WNA are
anti-cyclonic in western North America when April H700WNA
is abnormally high. This corresponds to a divergence of the

A

B

C

FIGURE 4 | Correlation coefficients between April PNWUS_NOASO and
simultaneous geopotential height at (A) 200, (B) 500, and (C) 700 hPa during
1985–2018. The ASO signals were removed from the geopotential height
before calculating the correlation coefficient. Boxes are the regions of the
potential factors. Shaded areas indicate statistically significant correlation at
(at least) the 90, 95, and 99% confidence levels.

airflow, which is unfavorable for water-vapor transport from
the North Pacific to this area and strengthens dry, cold air
transport from the north. Because anti-cyclonic circulation
tends to suppress convective activity, a pressure–longitude cross-
section of the differences in composite April vertical-longitude
wind between positive and negative H700WNA anomaly events
is shown in Figure 5C. The northwestern United States is
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TABLE 2 | The three potential forcing factors with the lowest root-mean-squared errors (RMSEs) in each step.

Potential forcing factors Latitude Longitude R RMSE

Step 1 H700 (Western North America) 32◦–56◦N 106◦–145◦W −0.69** 14.09

H500 (Western North America) 34◦–54◦N 112◦–148◦W −0.64** 15.52

H200 (Western North America) 34◦–54◦N 114◦–142◦W −0.60** 16.11

Step 2 H700 (North Pacific) 54◦–74◦N 124◦E–148◦W 0.40* 10.72

H500 (North Africa) 18◦–38◦N 12◦W–14◦E −0.40* 10.74

H500 (North Pacific) 22◦–46◦N 164◦E–155◦W −0.37* 10.85

R represents the correlation coefficients between potential forcing factors and April PNWS. *Significant at the 95% level. **Significant at the 99% level.

A

B

C

FIGURE 5 | (A) Climatological values of April wind from NCEP2 (vectors; m/s)
at 700 hPa for 1985–2018. Green rectangles indicate the study area.
(B) Differences in composite April wind from NCEP2 (vectors; m/s) between
positive and negative April H700WNA anomaly events at 700 hPa during
1985–2018 significant at the 90% (light yellow shading) and 95% (dark yellow
shading) confidence levels. (C) Differences in composite April wind (vectors;
m/s) between positive and negative April H700WNA anomaly events for
1985–2018. Colored regions represent the differences in the composite
meridional wind. Vectors represent the composite zonal and vertical winds,
where the vertical velocity has been converted to the magnitude of zonal
wind. See Table 1 for specific April H700WNA anomaly events.

covered by an anomalous downwelling airflow during positive
H700WNA events, suppressing convective activity. This less water-
vapor and downwelling airflow anomaly results in a decrease in
April PNWUS during positive H700WNA anomaly events, with the
opposite occurring during negative H700WNA anomaly events.

The above analysis demonstrates that circulation
anomalies (H700WNA anomalies) can modulate simultaneous
PNWUS_NOASO and supports our selection of H700WNA as
a factor in the statistical model. Other factors contributing
to PNWUS_NOASO are investigated next. First, we divide the
variations of PNWUS_NOASO into two parts: the H700WNA-
related part (PNWUS_NOASO_H700) and the remainder
(PNWUS_NOASO_NOH700). PNWUS_NOASO_H700 is obtained
by regressing PNWUS_NOASO variations onto H700WNA, and
PNWUS_NOASO_NOH700 = PNWUS_NOASO – PNWUS_NOASO_H700.
PNWUS_NOASO_NOH700 describes PNWUS variations with the effects
of ASO and H700WNA removed.

Figure 6 shows the correlation coefficients between April
PNWUS_NOASO_NOH700 and simultaneous geopotential height
anomalies (after removing the signals of March ASO and April
H700WNA from the geopotential height). Thirty-two potential
factors are identified. The three factors with the smallest RMSE
are shown in the row labeled “Step 2” in Table 2. The factor
with the lowest RMSE is the geopotential field located in the
North Pacific at 700 hPa. Although the correlation coefficient
between this factor and PNWUS_NOASO_NOH700 is significant at
the 95% confidence level, it passes neither the t-test nor the
F-test. This suggests that, in terms of the circulation field,
there are no remaining factors that can explain variations of
PNWUS_NOASO_NOH700 better. Thus, only ASO and H700WNA are
selected as predictors in the model, and no additional factors
are investigated.

DEVELOPMENT OF A LINEAR
REGRESSION MODEL TO PREDICT
APRIL PNWUS

Local precipitation may be affected by both linear and non-
linear climate forcing factors. However, Zorita and Von Storch
(1999) pointed out that linear models offer a clearer physical
interpretation. Guo et al. (2012) indicated that linear models
perform well on monthly mean seasonal time scales. Thus, we
construct a linear regression model to predict April PNWUS.
Two factors, March ASO and April H700WNA, are selected for
use in the model.

The ASO leads PNWUS variations by about 1 month and can
thus be considered as a predictor. However, the H700WNA and
PNWUS correlation is simultaneous (April), so April H700WNA
cannot be used in a statistical model for predicting April PNWUS.
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A

B

C

FIGURE 6 | Correlation coefficients between April PNWUS_NOASO_NOH700 and
simultaneous geopotential height at (A) 200, (B) 500, and (C) 700 hPa during
1985–2018. The ASO and H700WNA signals were removed from the
geopotential height before calculating the correlation coefficient. Boxes are the
regions of the potential factors. Shaded areas indicate statistically significant
correlation at (at least) the 90, 95, and 99% confidence levels.

The CFS developed by NCEP is suitable for evaluating circulation
variations in the northwestern United States; i.e., April H700WNA
predicted by the CFS using March data is significantly correlated
(95% confidence level) with April H700WNA from NCEP2 with a
correlation coefficient of 0.33 (Figure 7A). Thus, we use observed
March ASO and April H700WNA predicted by the CFS using
March data as the two predictors in the linear regression model.
Note from the standardized time series of the two predictors
(Figure 7B) that they undergo significant interannual variations
and are independent of each other (r = 0.02, not significant at the
95% confidence level).

According to the holdout method, we use these two predictors
and PNWUS to establish a linear regression model for the training
period (1985–2007) as follows:

PNWUS = 3086.26− 1.09× ASO− 1.00×H700WNA, (2)

A

B

FIGURE 7 | (A) Observed (green line) and predicted (blue line) April H700WNA

variations for 1985–2018. The observed April H700WNA is from NCEP2, and
the predicted April H700WNA is from the CFS using March data.
(B) Standardized time-series of March ASO (black line) and April H700WNA

predicted by the CFS using March data (blue line) for 1985–2018.

where the units of April PNWUS, March ASO, and April H700WNA
are mm, DU, and m, respectively.

The time series of observed, fitted, and predicted PNWUS
according to the above linear regression model are shown
in Figure 8A. During the training period (1985–2007), the
correlation coefficient and anomaly sign consistency rate between
the observed and fitted PNWUS are 0.44 (significant at the
95% confidence level) and 48%, respectively. During the test
period (2008–2018), these values between the observed and
predicted PNWUS are 0.50 (significant at the 90% confidence level)
and 46%, which are similar to the values during the training
period. To further examine the stability and predictability of
the linear regression model, we re-predict April PNWUS during
the test period (2008–2018) using the running holdout model
(see section “Data”) – i.e., we train the linear regression model
on a different period. The results are shown in Figure 8B.
During the test period (2008–2018), the correlation coefficient
and anomaly sign consistency rate between the observed and
predicted PNWUS are 0.53 (significant at the 90% confidence
level) and 46%, respectively. This is consistent with the results
shown in Figure 8A, indicating that the linear regression model
is stable and reliable.

To further test the robustness of the linear regression model
with a longer time series, a transient experiment is implemented
next. Details of the model and experiment are provided in section
“Data.” The results are shown in Figure 9. Significant correlations
are found between the CESM-simulated and fitted April PNWUS
during the training period with a correlation coefficient of
0.63 (significant at the 99% confidence level) and between the
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A

B

FIGURE 8 | (A) Observed April PNWUS (black line) and fitted (solid red line) and
predicted (dashed red line) April PNWUS variations from the linear regression
model using observed March ASO and April H700WNA predicted by the CFS
using March data for 1985–2018. The training period is 1985–2007, and the
independent test period is 2008–2018. (B) As in panel (A), except that the
predicted April PNWUS during 2008–2018 is based on the running holdout
model.

FIGURE 9 | Simulated (black line), fitted (solid red line) and predicted (dashed
red line) April PNWUS variations. The fitted and predicted PNWUS is calculated
based on the linear regression model using CESM-specified March ASO and
CESM-simulated H700WNA. The training period is 1955–1985, and the test
period is 1986–2005.

CESM-simulated and predicted April PNWUS with a correlation
coefficient of 0.75 (significant at the 99% confidence level) during
the test period. The transient experiment illustrates that a strong
connection exists among March ASO, April H700WNA, and April
PNWUS and that the linear regression model is stable and reliable,
supporting the results from observations described above.

Note that the magnitude of the fitted and predicted
precipitation variations is larger than that in the observations
(Figure 8). This may be because the April H700WNA predicted
by the CFS using March data is smaller than that observed
(Figure 7A). To address this issue, we correct the April H700WNA

A

B

FIGURE 10 | (A) Is the same as Figure 7A and (B) is the same as Figure 8A,
except that the CFS-predicted April H700WNA using March data has been
corrected by adding a constant value of 19.26.

predicted by the CFS using March data by adding a constant
value of 19.26 (Figure 10A, the difference between the average
of observed April H700WNA and April H700WNA predicted by
the CFS in March for the period 1985–2018). Then, we use
March ASO and the corrected April H700WNA to build the linear
regression model for predicting April PNWUS. The new model is
shown as follows:

PNWUS = 3105.52− 1.09× ASO− 1.00×H700WNA (3)

The results shown in Figure 10B are similar to those shown
in Figure 8A. Note that the magnitude of the fitted and
predicted precipitation variations is closer to that of observations.
This suggests that the agreement of the predicted PNWUS with
observations was improved.

In addition, the correlation coefficients among observed
PNWUS, ASO, H700WNA, and fitted PNWUS variations are also
significant at the 95% confidence level based on the Monte Carlo
test (not shown), which supports the conclusions based on the
Student’s t-test.

CONCLUSION

The March ASO can be used as a predictor for April PNWUS
because its anomalies significantly influence April tropospheric
winds over the North Pacific with a triple mode. Circulation
anomalies can extend eastward to western North America,
causing wind anomalies in the northwestern United States in
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the troposphere. For example, the northwestern United States is
dominated by northeast wind anomalies when there is an increase
in March ASO. These conditions weaken local precipitation.
When the April H700WNA is abnormally high, circulation
anomalies are anti-cyclonic in the western United States, which
is unfavorable for water-vapor transport from the North Pacific
to this region. Furthermore, the northwestern United States
is covered by an anomalous downwelling airflow suppressing
convective activity. This leads to less PNWUS.

Based on observed March ASO and April H700WNA predicted
by the CFS using March data, we developed a linear regression
model to predict the April PNWUS with a 1-month lead. Results
show that the linear regression model not only reproduces
the historical April PNWUS during the training period, but its
predictions are also robust and reliable for the independent test
period. Results from WACCM4 also support conclusions drawn
from the analysis of observations.

Finally, we compare the April PNWUS directly predicted by
the CFS using March data to that predicted by the statistical
model in March described here. The correlation coefficient
between the observed April PNWUS and that predicted by the
CFS using March data is 0.25 during 2012–2018 (before 2011,
no CFS-predicted April PNWUS data are available), whereas
the correlation coefficient between the observed April PNWUS
and that predicted by the linear regression model is 0.53.
This indicates that, at this stage, the linear regression model
is better able to predict April PNWUS than CFS at a lead
time of 1 month. In summary, the linear regression model
described here can be used to improve predictions of April
PNWUS variations.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

XM and FX designed the study, contributed to the data analysis
and interpretation, and manuscript writing.

FUNDING

This work was supported by the National Natural Science
Foundation of China (91837311 and 41975047) and Natural
Science Basic Research Plan in Shaanxi Province of China
(2019JQ-278).

ACKNOWLEDGMENTS

We acknowledge the ozone datasets from the SWOOSH,
precipitation data from the GPCC, GPCP, and CFS, and
meteorological fields from NCEP2. We thank NCAR for
providing the CESM model. This research was supported by
Super Computing Center of Beijing Normal University, user
name is xiefei.

REFERENCES
Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P. P., Janowiak, J., et al.

(2003). The version-2 global precipitation climatology project (GPCP) monthly
precipitation analysis (1979–present). J. Hydrometeorol. 4, 1147–1167. doi:
10.1175/1525-7541(2003)004<1147:tvgpcp>2.0.co;2

Andreadis, K. M., Clark, E. A., Wood, A. W., Hamlet, A. F., and Lettenmaier,
D. P. (2005). Twentieth-century drought in the conterminous United States.
J. Hydrometeorol. 6, 985–1001. doi: 10.1175/jhm450.1

Bai, K., Liu, C., Shi, R., and Gao, W. (2015). Comparison of Suomi-NPP
OMPS total column ozone with Brewer and Dobson spectrophotometers
measurements. Front. Earth Sci. 9:369. doi: 10.1007/s11707-014-
0480-5

Calvo, N., Polvani, L. M., and Solomon, S. (2015). On the surface impact of Arctic
stratospheric ozone extremes. Environ. Res. Lett. 10:094003. doi: 10.1088/1748-
9326/10/9/094003

Chu, J. T., Xia, J., and Xu, C. Y. (2008). Statistical downscaling the daily
precipitation for climate change scenarios in Haihe River basin of China. J. Nat.
Res. 23, 1068–1077.

Davis, S. M., Rosenlof, K. H., Hassler, B., Hurst, D. F., Read, W. G., Vomel, H., et al.
(2016). The stratospheric water and ozone satellite homogenized (SWOOSH)
database: a long-term database for climate studies. Earth Syst. Sci. Data 8,
461–490. doi: 10.5194/essd-8-461-2016

Fowler, H. J., Blenkinsop, S., and Tebaldi, C. (2007). Linking climate change
modelling to impacts studies: recent advances in downscaling techniques for
hydrological modelling. Int. J. Climatol. 27, 1547–1578. doi: 10.1002/joc.
1556

Froidevaux, L., Anderson, J., Wang, H. J., Fuller, R. A., Schwartz, M. J., Santee,
M. L., et al. (2015). Global OZone Chemistry And Related trace gas Data
records for the Stratosphere (GOZCARDS): methodology and sample results

with a focus on HCl, H2O, and O-3. Atmos. Chem. Phys. 15, 10471–10507.
doi: 10.5194/acp-15-10471-2015

Goodess, C. M., and Palutikof, J. P. (1998). Development of daily rainfall scenarios
for southeast Spain using a circulation-type approach to downscaling. Int. J.
Climatol. 18, 1051–1083. doi: 10.1002/(sici)1097-0088(199808)18:10<1051::
aid-joc304>3.0.co;2-1

Guo, Y., Li, J., and Li, Y. (2012). A time-scale decomposition approach to
statistically downscale summer rainfall over North China. J. Clim. 25, 572–591.
doi: 10.1175/jcli-d-11-00014.1

Harding, K. J., and Snyder, P. K. (2015). The relationship between the Pacific-North
American teleconnection pattern, the Great Plains low-level jet, and North
Central US heavy rainfall events. J. Clim. 28, 6729–6742. doi: 10.1175/jcli-d-
14-00657.1

Hatfield, J. L., and Dold, C. (2018). Agroclimatology and wheat production: coping
with climate change. Front. Plant Sci. 9:224. doi: 10.3389/fpls.2018.00224

He, Y., Sheng, Z., and He, M. (2020). Spectral analysis of gravity waves from near
space high-resolution balloon data in Northwest China. Atmosphere 11:133.
doi: 10.3390/atmos11020133

Hewitson, B. C., and Crane, R. G. (2006). Consensus between GCM climate
change projections with empirical downscaling: precipitation downscaling over
South Africa. Int. J. Climatol. 26, 1315–1337. doi: 10.1002/joc.1314

Hu, D., and Guan, Z. (2018). Decadal relationship between the stratospheric Arctic
vortex and Pacific decadal oscillation. J. Clim. 31, 3371–3386. doi: 10.1175/jcli-
d-17-0266.1

Hu, D., Guan, Z., Tian, W., and Ren, R. (2018). Recent strengthening of the
stratospheric Arctic vortex response to warming in the central North Pacific.
Nat. Commun. 9:1697. doi: 10.1038/s41467-018-04138-3

Hu, D., Guo, Y., and Guan, Z. (2019). Recent weakening in the stratospheric
planetary wave intensity in early winter. Geophys. Res. Lett. 46, 3953–3962.
doi: 10.1029/2019gl082113

Frontiers in Earth Science | www.frontiersin.org 10 March 2020 | Volume 8 | Article 56

https://doi.org/10.1175/1525-7541(2003)004<1147:tvgpcp>2.0.co;2
https://doi.org/10.1175/1525-7541(2003)004<1147:tvgpcp>2.0.co;2
https://doi.org/10.1175/jhm450.1
https://doi.org/10.1007/s11707-014-0480-5
https://doi.org/10.1007/s11707-014-0480-5
https://doi.org/10.1088/1748-9326/10/9/094003
https://doi.org/10.1088/1748-9326/10/9/094003
https://doi.org/10.5194/essd-8-461-2016
https://doi.org/10.1002/joc.1556
https://doi.org/10.1002/joc.1556
https://doi.org/10.5194/acp-15-10471-2015
https://doi.org/10.1002/(sici)1097-0088(199808)18:10<1051::aid-joc304>3.0.co;2-1
https://doi.org/10.1002/(sici)1097-0088(199808)18:10<1051::aid-joc304>3.0.co;2-1
https://doi.org/10.1175/jcli-d-11-00014.1
https://doi.org/10.1175/jcli-d-14-00657.1
https://doi.org/10.1175/jcli-d-14-00657.1
https://doi.org/10.3389/fpls.2018.00224
https://doi.org/10.3390/atmos11020133
https://doi.org/10.1002/joc.1314
https://doi.org/10.1175/jcli-d-17-0266.1
https://doi.org/10.1175/jcli-d-17-0266.1
https://doi.org/10.1038/s41467-018-04138-3
https://doi.org/10.1029/2019gl082113
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-08-00056 March 16, 2020 Time: 15:29 # 11

Ma and Xie Predicting Precipitation in the United States

Hu, D., Tian, W., Xie, F., Wang, C., and Zhang, J. (2015). Impacts of
stratospheric ozone depletion and recovery on wave propagation in the boreal
winter stratosphere. J. Geophys. Res. Atmos. 120, 8299–8317. doi: 10.1002/
2014jd022855

Huang, J., and Tian, W. (2019). Eurasian Cold Air Outbreaks Under Different
Arctic stratospheric polar vortex strengths. J. Atmos. Sci. 76, 1245–1264. doi:
10.1175/jas-d-18-0285.1

Huang, J., Zhang, J. C., Zhang, Z. X., Xu, C. Y., Wang, B. L., and Yao, J. (2011).
Estimation of future precipitation change in the Yangtze River basin by using
statistical downscaling method. Stoch. Environ. Res. Risk Assess. 25, 781–792.
doi: 10.1007/s00477-010-0441-9

Huang, J. L., Tian, W. S., Zhang, J. K., Huang, Q., Tian, H. Y., and Luo, J. L.
(2017). The connection between extreme stratospheric polar vortex events and
tropospheric blockings. Q. J. R. Meteorol. Soc. 143, 1148–1164. doi: 10.1002/qj.
3001

Hughes, J. P., and Guttorp, P. (1994). A class of stochastic-models for relating
synoptic atmospheric patterns to regional hydrologic phenomena. Water
Resour. Res. 30, 1535–1546. doi: 10.1029/93wr02983

Ivy, D. J., Solomon, S., Calvo, N., and Thompson, D. W. J. (2017). Observed
connections of Arctic stratospheric ozone extremes to Northern Hemisphere
surface climate. Environ. Res. Lett. 12:024004. doi: 10.1088/1748-9326/aa57a4

Lean, J., Rottman, G., Harder, J., and Kopp, G. (2005). SORCE contributions to
new understanding of global change and solar variability. Sol. Phys. 230, 27–53.
doi: 10.1007/0-387-37625-9_3

Lee, S. K., Mapes, B. E., Wang, C. Z., Enfield, D. B., and Weaver, S. J. (2014).
Springtime ENSO phase evolution and its relation to rainfall in the continental
U.S. Geophys. Res. Lett. 41, 1673–1680. doi: 10.1002/2013gl059137

Li, L. F., Schmitt, R. W., and Ummenhofer, C. C. (2018). The role of the subtropical
North Atlantic water cycle in recent US extreme precipitation events. Clim.
Dyn. 50, 1291–1305. doi: 10.1007/s00382-017-3685-y

Li, L. F., Schmitt, R. W., Ummenhofer, C. C., and Karnauskas, K. B. (2016).
Implications of North Atlantic sea surface salinity for summer precipitation
over the US midwest: mechanisms and predictive value. J. Clim. 29, 3143–3159.
doi: 10.1175/jcli-d-15-0520.1

Li, Y., and Smith, I. (2009). A statistical downscaling model for Southern Australia
winter rainfall. J. Clim. 22, 1142–1158. doi: 10.1175/2008jcli2160.1

Luo, J., Tian, W., Pu, Z., Zhang, P., Shang, L., Zhang, M., et al. (2013).
Characteristics of stratosphere troposphere exchange during the Meiyu
season. J. Geophys. Res. Atmos. 118, 2058–2072. doi: 10.1029/2012jd01
8124

Ma, X., Xie, F., Li, J., Zheng, X., Tian, W., Ding, R., et al. (2019). Effects of
Arctic stratospheric ozone changes on spring precipitation in the Northwestern
United States. Atmos. Chem. Phys. 19, 861–875.

Manatsa, D., and Mukwada, G. (2019). Spring ozone’s connection to South Africa’s
temperature and rainfall. Front. Earth Sci. 7:27. doi: 10.3389/feart.2019.00027

Manuel, J. (2008). Drought in the southeast: lessons for water management.
Environ. Health Perspect. 116, A168–A171.

Marsh, D. R., Mills, M. J., Kinnison, D. E., Lamarque, J. F., Calvo, N., and
Polvani, L. M. (2013). Climate change from 1850 to 2005 simulated in
CESM1(WACCM). J. Clim. 26, 7372–7391. doi: 10.1175/jcli-d-12-00558.1

Moorthi, S., Pan, H., and Caplan, P. (2001). Changes to the 2001 NCEP Operational
MRF/AVNGlobal Analysis/Forecast System. NWS Technical Procedures Bulletin,
Vol. 484. Silver Spring, MD: National Weather Service.

Pacanowski, R., and Griffies, S. (1998). MOM 3.0 Manual. Princeton, NJ:
NOAA/Geophysical Fluid Dynamics Laboratory.

Pielke, R. A., and Downton, M. W. (2000). Precipitation and damaging floods:
trends in the United States, 1932–97. J. Clim. 13, 3625–3637. doi: 10.1175/1520-
0442(2000)013<3625:padfti>2.0.co;2

Risbey, J. S., and Stone, P. H. (1996). A case study of the adequacy of GCM
simulations for input to regional climate change assessments. J. Clim. 9,
1441–1467. doi: 10.1175/1520-0442(1996)009<1441:acsota>2.0.co;2

Ropelewski, C. F., and Halpert, M. S. (1986). North-American precipitation and
temperature patterns associated with the Elnino southern oscillation (Enso).
Mon. Weather Rev. 114, 2352–2362. doi: 10.1175/JCLI-D-16-0766.1

Ropelewski, C. F., and Halpert, M. S. (1987). Global and regional scale precipitation
patterns associated with the El-Nino southern oscillation. Mon. Weather Rev.
115, 1606–1626. doi: 10.1175/1520-0493(1987)115<1606:garspp>2.0.co;2

Ruan, C. Q., Li, J. P., and Feng, J. (2015). Statistical downscaling model for late-
winter rainfall over Southwest China. Sci. China Earth Sci. 58, 1827–1839.
doi: 10.1007/s11430-015-5104-8

Saha, S., Nadiga, S., Thiaw, C., Wang, J., Wang, W., Zhang, Q., et al. (2006). The
NCEP climate forecast system. J. Clim. 19, 3483–3517.

Salathe, E. P. (2003). Comparison of various precipitation downscaling methods
for the simulation of streamflow in a rainshadow river basin. Int. J. Climatol.
23, 887–901. doi: 10.1002/joc.922

Schneider, U., Fuchs, T., Meyer-Christoffer, A., and Rudolf, B. (2008). Global
Precipitation Analysis Products of the GPCC, Global Precipitation Climatology
Centre (GPCC). Offenbach: Deutscher Wetterdienst.

Seager, R., Tzanova, A., and Nakamura, J. (2009). Drought in the Southeastern
United States: causes, variability over the last millennium, and the potential
for future hydroclimate change. J. Clim. 22, 5021–5045. doi: 10.1175/2009jcli
2683.1

Smith, K. L., and Polvani, L. M. (2014). The surface impacts of Arctic stratospheric
ozone anomalies. Environ. Res. Lett. 9:074015. doi: 10.1088/1748-9326/9/7/
074015

Steinschneider, S., and Lall, U. (2016). El Nino and the US precipitation and floods:
what was expected for the January-March 2016 winter hydroclimate that is now
unfolding? Water Resour. Res. 52, 1498–1501. doi: 10.1002/2015wr018470

Trenberth, K. E., and Branstator, G. W. (1992). Issues in establishing causes of
the 1988 drought over North-America. J. Clim. 5, 159–172. doi: 10.1175/1520-
0442(1992)005<0159:iiecot>2.0.co;2

Trenberth, K. E., Branstator, G. W., and Arkin, P. A. (1988). Origins of the 1988
North-American drought. Science 242, 1640–1645. doi: 10.1126/science.242.
4886.1640

Trenberth, K. E., and Guillemot, C. J. (1996). Physical processes involved in the
1988 drought and 1993 floods in North America. J. Clim. 9, 1288–1298. doi:
10.1175/1520-0442(1996)009<1288:ppiitd>2.0.co;2

Wang, L., Ting, M., and Kushner, P. J. (2017). A robust empirical seasonal
prediction of winter NAO and surface climate. Sci. Rep. 7:279. doi: 10.1038/
s41598-017-00353-y

Wang, S. Y., and Chen, T. C. (2009). The late-spring maximum of rainfall over
the US central plains and the role of the low-level jet. J. Clim. 22, 4696–4709.
doi: 10.1175/2009jcli2719.1

Wang, S. Y. S., Huang, W. R., Hsu, H. H., and Gillies, R. R. (2015). Role of
the strengthened El Nino teleconnection in the May 2015 floods over the
southern Great Plains. Geophys. Res. Lett. 42, 8140–8146. doi: 10.1002/2015gl0
65211

Wang, W., Matthes, K., Tian, W., Park, W., Shangguan, M., and Ding, A. (2019).
Solar impacts on decadal variability of tropopause temperature and lower
stratospheric (LS) water vapour: a mechanism through ocean-atmosphere
coupling. Clim. Dyn. 52, 5585–5604. doi: 10.1007/s00382-018-4464-0

Wilby, R. L., and Wigley, T. M. L. (1997). Downscaling general circulation model
output: a review of methods and limitations. Prog. Phys. Geogr. 21, 530–548.
doi: 10.1177/030913339702100403

Xie, F., Li, J. P., Tian, W. S., Fu, Q., Jin, F. F., Hu, Y. Y., et al. (2016). A connection
from Arctic stratospheric ozone to El Nino-southern oscillation. Environ. Res.
Lett. 11:124026. doi: 10.1038/s41598-017-05111-8

Xie, F., Li, J. P., Zhang, J. K., Tian, W. S., Hu, Y. Y., Zhao, S., et al. (2017a). Variations
in North Pacific sea surface temperature caused by Arctic stratospheric
ozone anomalies. Environ. Res. Lett. 12:114023. doi: 10.1088/1748-9326/
aa9005

Xie, F., Ma, X., Li, J. P., Huang, J. L., Tian, W. S., Zhang, J. K., et al. (2018). An
advanced impact of Arctic stratospheric ozone changes on spring precipitation
in China. Clim. Dyn. 51, 4029–4041. doi: 10.1007/s00382-018-4402-1

Xie, F., Ma, X., Li, J. P., Tian, W. S., Ruan, C. Q., Sun, C., et al. (2019). Using
observed signals from the Arctic stratosphere and Indian ocean to predict
April–May precipitation in Central China. J. Clim. 33, 131–143. doi: 10.1175/
jcli-d-18-0512.1

Xie, F., Zhang, J. K., Sang, W. J., Li, Y., Qi, Y. L., Sun, C., et al. (2017b). Delayed
effect of Arctic stratospheric ozone on tropical rainfall. Atmos. Sci. Lett. 18,
409–416. doi: 10.1002/asl.783

Zhang, J., Tian, W., Chipperfield, M. P., Xie, F., and Huang, J. (2016). Persistent
shift of the Arctic polar vortex towards the Eurasian continent in recent decades.
Nat. Clim. Chang. 6:1094. doi: 10.1038/nclimate3136

Frontiers in Earth Science | www.frontiersin.org 11 March 2020 | Volume 8 | Article 56

https://doi.org/10.1002/2014jd022855
https://doi.org/10.1002/2014jd022855
https://doi.org/10.1175/jas-d-18-0285.1
https://doi.org/10.1175/jas-d-18-0285.1
https://doi.org/10.1007/s00477-010-0441-9
https://doi.org/10.1002/qj.3001
https://doi.org/10.1002/qj.3001
https://doi.org/10.1029/93wr02983
https://doi.org/10.1088/1748-9326/aa57a4
https://doi.org/10.1007/0-387-37625-9_3
https://doi.org/10.1002/2013gl059137
https://doi.org/10.1007/s00382-017-3685-y
https://doi.org/10.1175/jcli-d-15-0520.1
https://doi.org/10.1175/2008jcli2160.1
https://doi.org/10.1029/2012jd018124
https://doi.org/10.1029/2012jd018124
https://doi.org/10.3389/feart.2019.00027
https://doi.org/10.1175/jcli-d-12-00558.1
https://doi.org/10.1175/1520-0442(2000)013<3625:padfti>2.0.co;2
https://doi.org/10.1175/1520-0442(2000)013<3625:padfti>2.0.co;2
https://doi.org/10.1175/1520-0442(1996)009<1441:acsota>2.0.co;2
https://doi.org/10.1175/JCLI-D-16-0766.1
https://doi.org/10.1175/1520-0493(1987)115<1606:garspp>2.0.co;2
https://doi.org/10.1007/s11430-015-5104-8
https://doi.org/10.1002/joc.922
https://doi.org/10.1175/2009jcli2683.1
https://doi.org/10.1175/2009jcli2683.1
https://doi.org/10.1088/1748-9326/9/7/074015
https://doi.org/10.1088/1748-9326/9/7/074015
https://doi.org/10.1002/2015wr018470
https://doi.org/10.1175/1520-0442(1992)005<0159:iiecot>2.0.co;2
https://doi.org/10.1175/1520-0442(1992)005<0159:iiecot>2.0.co;2
https://doi.org/10.1126/science.242.4886.1640
https://doi.org/10.1126/science.242.4886.1640
https://doi.org/10.1175/1520-0442(1996)009<1288:ppiitd>2.0.co;2
https://doi.org/10.1175/1520-0442(1996)009<1288:ppiitd>2.0.co;2
https://doi.org/10.1038/s41598-017-00353-y
https://doi.org/10.1038/s41598-017-00353-y
https://doi.org/10.1175/2009jcli2719.1
https://doi.org/10.1002/2015gl065211
https://doi.org/10.1002/2015gl065211
https://doi.org/10.1007/s00382-018-4464-0
https://doi.org/10.1177/030913339702100403
https://doi.org/10.1038/s41598-017-05111-8
https://doi.org/10.1088/1748-9326/aa9005
https://doi.org/10.1088/1748-9326/aa9005
https://doi.org/10.1007/s00382-018-4402-1
https://doi.org/10.1175/jcli-d-18-0512.1
https://doi.org/10.1175/jcli-d-18-0512.1
https://doi.org/10.1002/asl.783
https://doi.org/10.1038/nclimate3136
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-08-00056 March 16, 2020 Time: 15:29 # 12

Ma and Xie Predicting Precipitation in the United States

Zhang, J., Tian, W., Wang, Z., Xie, F., and Wang, F. (2015). The influence of ENSO
on northern midlatitude ozone during the winter to spring transition. J. Clim.
28, 4774–4793. doi: 10.1175/jcli-d-14-00615.1

Zhang, J., Tian, W., Xie, F., Chipperfield, M. P., Feng, W., Son, S. W.,
et al. (2018). Stratospheric ozone loss over the Eurasian continent induced
by the polar vortex shift. Nat. Commun. 9:206. doi: 10.1038/s41467-017-
02565-2

Zhang, R. H., Tian, W. S., Zhang, J. K., Huang, J. L., Xie, F., and Xu, M. (2019).
The corresponding tropospheric environments during downward-extending
and nondownward-extending events of stratospheric northern annular mode
anomalies. J. Clim. 32, 1857–1873. doi: 10.1175/jcli-d-18-0574.1

Zhao, X. R., Sheng, Z., Li, J. W., Yu, H., and Wei, K. J. (2019). Determination of the
“wave turbopause” using a numerical differentiation method. J. Geophys. Res.
Atmos. 124, 10592–10607. doi: 10.1029/2019jd030754

Zorita, E., and Von Storch, H. (1999). The analog method as a simple statistical
downscaling technique: comparison with more complicated methods. J. Clim.
12, 2474–2489. doi: 10.1175/1520-0442(1999)012<2474:tamaas>2.0.co;2

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Ma and Xie. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and
the copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Earth Science | www.frontiersin.org 12 March 2020 | Volume 8 | Article 56

https://doi.org/10.1175/jcli-d-14-00615.1
https://doi.org/10.1038/s41467-017-02565-2
https://doi.org/10.1038/s41467-017-02565-2
https://doi.org/10.1175/jcli-d-18-0574.1
https://doi.org/10.1029/2019jd030754
https://doi.org/10.1175/1520-0442(1999)012<2474:tamaas>2.0.co;2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles

	Predicting April Precipitation in the Northwestern United States Based on Arctic Stratospheric Ozone and Local Circulation
	Introduction
	Data
	Data
	Simulations
	Methods
	Holdout Method
	Running Holdout Method
	Anomaly Sign Consistency
	Root-Mean-Squared Errors


	Selecting Factors for April PNwus Predictions
	Development of a Linear Regression Model to Predict April PNwus
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


