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The terrestrial ecosystem productivity (hereafter, TEP) is a key index of global carbon
cycles and a fundamental constraint of carbon sequestration capacity, and also an
important measure of ecosystem services and food security. However, the TEP has been
significantly affected by the long-lasting droughts. Identifying the spatial relationship
between droughts and the TEP is crucial for enhancing ecosystem services in China.
Here the net primary production (hereafter, NPP) derived from the Carnegie-Ames-
Stanford Approach model (CASA-NPP) and two drought indices, namely the Standard
Precipitation Index (hereafter, SPI) and the Standard Precipitation Evaporation Index
(hereafter, SPEI), are used to examine the spatial relationship between droughts and
the NPP in China for the period of 1982–2012. Our main results have shown that: (1)
China’s annual NPP has increased slowly from 3.82 to 4.35 PgC per year (hereafter,
PgC/yr), while droughts have become much severer from 1982 to 2012; (2) on the 3-
month timescale, the NPP in arid and semi-arid ecosystems has decreased at a rate
of 1.28 TgC per month with per “unit” decrease in the drought index (indicating drier
conditions). (3) Overall, the NPP in China has increased 5.71 TgC per month with per
“unit” increase in the drought index (indicating wetter conditions); the contribution of
this NPP increase is mainly from forests and farmlands; (4) the SPEI is a relatively more
effective and sensitive index in representing China’s droughts. In southern China, the
lagging period for the NPP response to droughts is about 3-month, while a 6-month
lagging period is found in the arid and semi-arid ecosystems in northern China.

Keywords: terrestrial ecosystem productivity, the Chinese NPP trends, SPI/SPEI drought indices, the lagging
responses of Chinese NPP to droughts, ecological effect

INTRODUCTION

The terrestrial ecosystem productivity (hereafter, TEP) is the fundamental indicator for ecosystem
services, and an integrated component of global carbon cycles, biodiversity, and regional food
security (e.g., Piao et al., 2005; Zhu and Pan, 2007; Luo et al., 2019) and is generally controlled by
many interplaying factors (Li et al., 2018; Liu et al., 2019). Under the threats of global warming, both
the broadness and devastation of droughts and floods will continue to intensify, which will greatly
affect the TEP, especially under long-lasting droughts (e.g., Yu et al., 2007; Doughty et al., 2015; Lei
et al., 2015; Huang et al., 2016; Su et al., 2018; Gherardi and Sala, 2019; Xu et al., 2019). Droughts are
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a comprehensive and frequently occurred natural disaster,
involving both precipitation and temperature changes, and
they also control the soil moisture and vapor pressure deficit
that will greatly influence the plant growth (Eamus et al.,
2013). Many studies have shown that long-lasting droughts can
significantly constrain vegetation activity and reduce the net
primary production (hereafter, NPP) (e.g., Zhao and Running,
2010; Mk et al., 2011; Pei et al., 2013; Hou et al., 2014; Lai
et al., 2018; Anderegg et al., 2019; Li et al., 2019a). As one of
the major agricultural countries in the world, China has suffered
from the strong interannual variability of monsoonal climate
changes (e.g., Liu and Wang, 2011), the higher frequency of floods
and droughts, especially in northern China. According to the
“China Flood and Drought Disaster Bulletin” (2016), on average,
2.17 × 105 km2 farmlands were influenced by droughts each
year from 1950 to 2007, resulting in a loss of nearly 15.8 billion
kilograms of grain, accounting for 60% of the total loss caused by
all-natural disasters (MWRPRC, 2016).

Droughts can significantly diminish plant growth by cutting
back the availability of soil water and therefore reducing crop
yields (e.g., Chen et al., 2013; Heyer et al., 2018). A previous
study has revealed that the grain loss induced by droughts has
contributed about 7% of the total reduction of the global grain
yield (Lesk et al., 2016). During a drought, plants can survive
by closing their stomata, stabilizing intracellular water potential,
and reducing the rate of autotrophic respiration, which can
remarkably decrease the gross primary production (e.g., Mk et al.,
2011; Doughty et al., 2015; Su et al., 2018; Kannenberg et al.,
2019). There are wide-range differences among the responses
of the plant growth to droughts for different ecosystems and at
different spatial–temporal scales.

As concluded from previous studies, the effect of droughts on
NPP variation has generally been examined at annual timescale
or specific events (e.g., Huang et al., 2016; Li et al., 2019a). For
example, an earlier study has argued that the interannual NPP
variation in semi-arid and arid ecosystems was driven mainly by
droughts (Huang et al., 2016). Their study has shown that about
29% of the interannual variation of the global NPP is explained
by droughts-dominated NPP in semi-arid ecosystems, and 33%
of the interannual variation of the global NPP is contributed
by droughts prone ecosystems in the Southern Hemisphere
(Huang et al., 2016). Furthermore, Zhao and Running (2010)
have reported that a total loss of 0.55 PgC/yr global NPP between
2000 and 2009 could be explained by droughts, occurred in the
Southern Hemisphere. Compared with forest ecosystems, grass
ecosystems are more sensitive to droughts (e.g., Lei et al., 2015;
Fei et al., 2018). In addition, long-lasting and severe droughts
can also significantly lower the regional NPP in semi-humid
and humid areas (Vicente−Serrano et al., 2015). Many drought
indices can be used to represent regional drought level and
further to explore the impact of the droughts on ecosystem
evolution, such as Palmer Drought Severity Index (hereafter,
PDSI, reference-PDSI) and Standardized Precipitation–
Evapotranspiration Index (hereafter, SPEI, reference-SPEI),
Standardized Precipitation Index (hereafter, SPI, reference-
SPI), and standardized evapotranspiration deficit index
(hereafter, SEDI, reference-SEDI) (e.g., Li et al., 2016, 2019a;

Peng et al., 2016). Vegetation growth is generally controlled
by periodic/seasonal and interannual changes of major driving
factors, including climatic factors and human activities.
Therefore, it is crucial to investigate the NPP variation and
meteorological droughts overall a wide range of timescales.
Compared with the PDSI and SEDI, the multi-timescale
indices of SPI and SPEI have a remarkable advantage in
representing the impacts of droughts to consider their delayed
impacts on ecosystems.

However, the relationships between the monthly variability of
NPP and intensive droughts in China are still unclear, because the
drought distribution and plant growth processes are controlled
by inconclusive factors at different spatial–temporal scales. In
particular, determining the interannual relationship between
NPP and intensive droughts cannot reveal the actual influence
of droughts on monthly ecosystem production, which may result
in some misleading conclusions (e.g., Zhao and Running, 2010;
Zarei and Eslamian, 2017; Piao et al., 2019). Most previous studies
have paid more attention to responses of the forest NPP to annual
droughts (Vicente−Serrano et al., 2015), and the grassland and
farmland NPP to annual droughts (Ji and Peters, 2003). Other
studies have mainly focused on the issues of different timescales
and lagging effects of droughts (e.g., Vicenteserrano et al., 2013;
Anderegg et al., 2015; Wu et al., 2015; Huang et al., 2016; Huang
and Xia, 2019). In China, the terrestrial ecosystems are so diverse
that the relationships between NPP and intensive droughts at
multiple spatiotemporal scales need further detailed analyses.
Moreover, how and to what extent droughts affect monthly NPP
variation in China are still unclear (Pei et al., 2013). Precisely
determining the effect of droughts on monthly NPP changes is
beneficial to assess the impacts of the potential extreme climate
on TEP in the near future.

Our main objectives here are: (1) to identify the hotspots
where droughts have some significant impacts on the NPP, (2)
to examine the response time or lagging effect of ecosystems
to droughts, and (3) to determine a suitable drought index
representing the relationship between the monthly variability
of NPP and droughts well. The following paper is arranged as
below. The section “Materials and Methods” describes briefly
the datasets used and our methods. The section “Results and
Analyses” presents our main results. The discussion is shown in
the section “Discussion,” followed by the section “conclusion.”

MATERIALS AND METHODS

In this study, two drought indices, namely the SPI and the
SPEI, are used to estimate the impact of droughts on NPP
in China at monthly timescales (see Supplementary Section
S3 for more details). The NDVI images used to estimate the
parameter, FPAR for CASA model (see Supplementary Section
S1 for more details), are from the Global Inventory Modeling and
Mapping Studies-NDVI dataset (see GIMMS-NDVI1) (Ruimy
et al., 1994). The GIMMS-NDVI dataset is constructed by
Tucker et al. (2004), which includes the 31-year (372-month)

1https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1/
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period from 1982 to 2012, and covers the whole China at a
spatial resolution of 8 km × 8 km. The NPP in China during
the period of 1982–2012 is estimated using the CASA model
(Zhu et al., 2006). The meteorological data (including monthly
precipitation, monthly mean temperature, and monthly total
solar radiation, see Supplementary Section S2 for more details)
is downloaded from the China Meteorological Administration
(CMA) Meteorological Data Center2 (in total 823 meteorological
stations, see Figure 1 for locations of these meteorological
stations). All meteorological data downloaded from the Data
Center of CMA is imported into ArcGIS 10.2, and then
spatially interpolated to a grid space of 8-km in order to obtain
maps of monthly precipitation, monthly mean temperature,
and monthly total solar radiation using the inverse distance
weight method (Bartier and Keller, 1996). The detailed processes
for all datasets and the CASA-NPP model can be found in
Supplementary Sections S1–S3.

RESULTS AND ANALYSES

The Evaluation of Derived NPP
In this study, the CASA model shown in Supplementary Section
S1 is employed to derive the NPP in China from 1982 to 2012,
which includes the annual NPP and monthly net photosynthesis.
On average, our derived NPP has continuously increased from
3.7 PgC/yr in 1982 to 4.35 PgC/yr in 2012. Our result is similar
to the work of Tao et al. (2003) and Yuan et al. (2014), but
much larger than the results of Liu et al. (2013) and Piao
et al. (2005). The different parameters in CASA model, namely
the maximum efficiency of light energy utilization, and the
more realistic classification of vegetation types, may explain
the different results (Zhu and Pan, 2007). Our NPPs using
the CASA model are generally higher than those derived from
the MODIS products (MOD17 A3), which are produced by
the Numerical Terradynamic Simulation Group (NTSG) of
University of Montana (UMT) using MOD17 algorithm (Asrar
et al., 1992; Figure 2). In fact, the MOD17 algorithm integrates
maximum light energy utilization derived from Biome-BGC
model, which does not consider many local factors (e.g., the water
stress and vegetation types) that influence vegetation growth
based on the high-precision vegetation classification. Therefore,
the uncertainty of MOD17-derived NPP is relatively larger. To
verify our estimation, mean NPPs in higher vegetated (e.g.,
humid zone) and lower vegetated (e.g., semi-arid and arid zones)
regions have been extracted and compared with those derived
from MOD17A3 dataset (Figure 2). Overall, our NPP in humid
zones is larger than that derived from MOD17A3. In particular,
from 2000 to 2006, our NPP is∼400 gC/m2/yr larger (Figure 2A).
Using FPAR constrained from the satellite NDVI retrieval, CASA
model calculates more realistic NPPs in densely vegetated regions
(Figure 2A). On the other hand, in arid and semi-arid zones,
our estimated NPP is on average ∼100 gC/m2/yr smaller than
that derived by MOD17A3 (Figure 2B). We speculate this may
be caused by the different spatial resolutions between CASA

2http://data.cma.cn/

and MOD17A3 calculations. At 1 km × 1 km resolution, the
assignment of deserts in MOD17A3 is more realistic than that
in CASA at 8 km × 8 km resolution. In China, deserts cover
1.33 million km2, 13.6% of the total land area of China. Deserts
have been assigned a zero NPP in MOD17A3 and CASA.
However, at 8 km× 8 km resolution, the same assignment of the
wide-spread deserts is much larger than that in the MOD17A3
model, which may directly result a potential reduction in the NPP
calculation in CASA model for the arid and semi-arid regions.

Table 1 shows a comparison of NPP values in the year
2005 for different plant functional types within China. Most of
our derived NPPs is similar to those observed, except for the
farmland NPP. CASA model has underestimated the farmland
NPP compared to observation (eddy covariance tower). This
is because in the CASA model, factors involving agricultural
productions (e.g., fertilization, agricultural management, and
irrigation) have been excluded. In fact, these factors play an
important role in promoting agricultural yield (Knapp and van
der Heijden, 2018). Compared to other studies, our derived
NPPs for evergreen broad-leaf forest and deciduous needle-leaf
forest are very similar to observed NPP. However, our derived
NPPs are significantly different from the result of Piao et al.
(2005) and Shang et al. (2018). We speculate that this is mainly
due to the difference in the maximum light use efficiency and
other constraint factors, such as temperature and soil water
content in CASA model.

The Characteristics of Annual Mean NPP
in China From 1982 to 2012
Figure 3A shows the annual NPP in southern China is generally
higher than in northern China. In addition, the annual NPP
in western China is remarkably lower than in eastern China.
The spatial distribution of Chinese NPP ranges from 0 to
2108 gC/m2/yr with a mean value of 433.04 gC/m2/yr. The lowest
NPP values are found in the northern Tibet Plateau, southern
Xinjiang, northern Gansu, and western Inner Mongolia. The
highest NPP values are mainly located in the Qinling Mountains,
southwestern Sichuan Mountains, Yarlun-Tzanpo River valley,
the areas to south of the Yangtze River basin, and most of
Hainan, Yunnan, and Taiwan. The NPP hotspots (locations with
annual NPP values over 1600 gC/m2/yr) are found in the Hainan
province and southern Yunnan where the tropical rainforest is
widely distributed. As shown in Figure 3B, the annual total NPP
in China has increased substantially from 1982 (3.82 PgC/yr) to
2012 (4.35 PgC/yr), at an average rate of 16.97 TgC/yr.

The Characteristics of Droughts in China
The SPI and SPEI indices are characterized by multi-timescales,
such as 3-, 6-, 9-, and 12-month (and longer) timescales.
The drought status over a 3-month period (including current
month) can be identified by using the SPI3 and SPEI3 indices.
According to the SPEI ranking criteria (Yang et al., 2018), three
classifications are defined: (1) SPEI < 0 (mild drought), (2)
SPEI < −1 (moderate drought), and (3) SPEI < −1.5 (severe
drought). In this study, our drought frequency has been defined
as the ratio between the total month of drought’s occurrences
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FIGURE 1 | The meteorological stations (red dots), carbon flux observation station (green triangles), and our study area including the DEM in color shades.

FIGURE 2 | A comparison of two NPP estimations across different vegetation zones. (A) Higher vegetation coverage zones. (B) Lower vegetation coverage zones.

TABLE 1 | A comparison of derived NPPs using CASA model of this study with previous studies and eddy covariance tower data for the year of 2005 (unit: gC/m2/yr).

Plant functional types Pixels Our
NPP

Observed
NPP

Observations from station* Piao et al. (2007) Ni (2010)

Evergreen broad-leaf forest 6375 1046.32 1125.17 Qianyanzhou 525 945

Evergreen needle-leaf forest 14,579 1253.36 997.29 Changbai Mountain 354 439

Farmland 26,406 903.56 1403.16 Yucheng 216 N/A

Grassland 6596 458.13 462.17 Neimenggu N/A N/A

*Data for observed NPP were obtained using eddy covariance tower in Chinese national observation network (Source: http://rs.cern.ac.cn/data/initDRsearch?classcode=
SYC_A02), in which NPP is derived using this formula: NPP = NEE (Net Ecosystem Productivity) + Reco (Ecosystem Respiration) − AR (Autotrophic Respiration) (Fei et al.,
2018). The carbon flux stations are plotted in Figure 1 as green triangles. The Chinese forestry data was listed in Supplementary Section S6, which was used to validate
the precision of our CASA-NPP model.
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FIGURE 3 | (A) The spatial distribution of annual mean NPP in China from 1982 to 2012 and (B) the timeseries of total annual NPP in China.

and the whole study period (372 months from 1982 to 2012)
(see Supplementary Section S4.1 and Eq. 3). In this study, the
datasets of SPI and SPEI were derived and validated based on
the dataset at each meteorological station (see Supplementary
Sections S3, S5). Figure 4A shows the mild drought is mainly
located in the middle of the Tibet plateau. According to Eq. 3

in Supplementary Section S4.1, the frequency of mild drought
is above 50% in most parts of China with a mean value
of 56.25% (Figure 4A). The average frequency of moderate
and severe droughts in China is 19.48 and 8.85%, respectively
(Figures 4B,C). The areas to the north of Qinling Mountains-
Huaihe River line generally have a higher severe drought
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FIGURE 4 | The frequency of droughts in China from 1982 to 2012 (SPEI3). (A) Mild droughts (SPEI3 < 0), (B) moderate droughts (SPEI3 < –1), and (C) severe
droughts (SPEI3 < –1.5).

FIGURE 5 | The significant correlation coefficient (hereafter CC) between SPI/SPEI and monthly NPP (P < 0.1 or 90% significance level). (A) CC between SPI3 and
monthly NPP, (B) CC between SPI6 and monthly NPP, (C) CC between SPI12 and monthly NPP, (D) CC between SPEI3 and monthly NPP, (E) CC between SPEI6
and monthly NPP, and (F) CC between SPEI12 and monthly NPP.

frequency (see Figure 4B, >20%), among which eastern Shanxi
and western Hebei are the most pronounced areas. For moderate
droughts, higher frequency (>40%) is mainly distributed in
Turpan and Hami of Xinjiang province. Nevertheless, higher
drought frequency (Figure 4C) appeared in farming-pastoral
ecotones (around the Heihe-Tengchong line), where agriculture
and animal husbandry are developed very rapidly, indicating a
high risk to China’s NPP.

The Correlation Between Droughts and
Monthly NPP in China
At different timescales, the SPI and SPEI drought indices are
used to examine the relationships between droughts and monthly
NPP in China (i.e., net photosynthesis), respectively, and also to
show the reliability of our correlation analyses using different
drought indices (i.e., SPI and SPEI). Pixels with significant
coefficient of correlation (P < 0.1 or 90% significance level)

are plotted. Figure 5 suggests that regardless which drought
indices used, the results across different timescales (e.g., 3-, 6-,
and 12-month) are quite similar. At the 3-month timescale,
positive relationships between the monthly NPP and drought
index are found in the Loess Plateau and the XilinGol League
of Inner Mongolia (Figures 5A,D), in which corn planting and
grassland are extensive. This indicates that the localized NPP
(mainly from the agricultural production) would be significantly
increased (decreased) under a wetter (drier) condition. The
areas with negative relationships, mainly locate in Yangtze River
Basin and its south, suggesting that excessive rainfall in these
areas could cause a negative impact on the localized NPP at
shorter timescales (i.e., 3 months). Our result is supported by
a previous study about the heavy rainfall triggering saturated
ground water and surface flooding, further decreases plant
growth efficiency and results in hypoxia or death in some
extreme cases (Tan et al., 2009). In southern China, very heavy
rainstorms and typhoons often occur in the summer that will
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FIGURE 6 | The contributions (unit: gC/m2 per unit of drought index) of SPI/SPEI to monthly NPP as defined by Eq. 6 in Supplementary Section S4.4. (A) SPI3
contributions, (B) SPI6 contributions, (C) SPI12 contributions, (D) SPEI3 contributions, (E) SPEI6 contributions, and (F) SPEI12 contributions. Only 90% statistically
significant pixels are plotted here.

likely intensify this negative impact on the regional NPP. At the 6-
month timescale (Figures 5B,E), the negative impact in southern
China disappears. On the other hand, the positive correlation
in northern China continues to increase, showing expanding
influences of droughts at longer timescales (Figure 5B). The
expanded areas now cover the whole Sanjiangyuan region,
northern Sichuan, western Chongqing, and most parts of Shanxi
and Gansu Provinces. Compared with the SPI, the more diverse
relationships between the SPEI and monthly NPP have been
identified, especially in the high mountains of western China.
The positive relationship is mainly found in the northern and
central China largely due to insufficient water supply in those
arid and semi-arid regions. On the other hand, the negative
relationship generally distributes in the shadow and nearby snow
line (Figure 5E). At the 12-month timescale (Figures 5C,F),
the statistically significant regions mainly concentrate in western
China, especially in the Xinjiang and Sanjiangyuan regions. The
main reason could be that everlasting droughts have significant
impacts on arid or semi-arid ecosystems during the longer
timescale (Chen et al., 2012). In summary, the areas with a
significant relationship between drought indices and monthly
NPPs at the 3-month timescale are much larger than those at 6-
and 12-month timescales regardless which drought index is used.

The Contributions of the SPI/SPEI to
Monthly NPPs Across Different
Timescales
Contributions of the SPI/SPEI to the variability of NPP are
determined using Eq. 5 in Supplementary Section S4.5, which
represents the amount of NPP variation under the per-unit
change of the drought index (unit: gC/m2 per unit change of

drought index). Our results (Figures 6A,D) show that significant
contributions of droughts on monthly NPP have been identified
in northern and southern China over shorter timescales (e.g.,
SPI3 and SPEI3). At longer timescales, positive contributions of
droughts tend to become significant in the semi-arid and arid
ecosystems in western and northern China. In areas with positive
impacts between the drought index and monthly NPP, the mean
values of contributions are 2.28, 3.55, and 1.75 (unit: gC/m2 per
unit change of drought index) at 3-, 6-, and 12-month timescales,
respectively (Figures 6A–C). Our result shows that monthly NPP
variation of arid and semi-arid ecosystems is driven mainly by
the 6-month timescale droughts. On the 3-month timescale,
droughts can only affect the monthly NPP in northern China,
such as the North China Plain, the Chinese Loess Plateau, and the
farming-pastoral ecotones. The strongest positive contribution is
found in the catchment of River Wei and Guanzhong Plain in the
southern boundary of the Chinese Loess Plateau (Figures 6A,D).
Here, an increase of 20 gC/m2 monthly NPP could occur under
an increase of per unit of drought index (wetter conditions).
Conversely, at 3-month timescale, the negative contributions
are mainly found in southern China (Figures 6A,D), such
as Jiangxi, Fujian, and Guangdong provinces, with a monthly
NPP decrease of 2.54 gC/m2 would result from per drought
index unit increase (wetter conditions). The strongest negative
contributions are found in the Sanjiangyuan Region and southern
Sichuan Province. The probable reason for this phenomenon is
that the ongoing increase in temperature (lowering the drought
index) in these areas promotes the melting of snow and ice,
causing a further increase of monthly NPP. On the 6-month
timescale, the significant contributions between droughts and
the NPP in southern China tend to disappear, while the same
contributions are enhanced in semi-arid and arid regions in
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FIGURE 7 | The R2 of monthly NPP and SPEI 3 in different months over a period of 1982–2012. From Images (A) to (L) stands from January to December.

northern China. At the 12-month timescale, the stronger positive
contributions are found in semi-arid and arid regions in northern
China (Figures 6C,F). In addition, the influences of droughts
on monthly NPP variation in eastern China tend to become
weaker at longer timescales, except for the North China Plain.
Compared to the SPI, the SPEI index is more effective to
contribute to monthly NPP variation in China due to a relatively
higher coefficient and larger areas with statistically significant
relationships (see Figure 6, P < 0.1 or 90% significance level).

Relative Contributions of Droughts
(SPEI3) to Monthly NPP Changes in
Individual Months
Based on the section “The Correlation Between Droughts and
Monthly NPP in China,” the SPEI3 is selected to examine the
relative contribution (R2, unitless, and in percentage) of droughts

to monthly NPP in individual months (January–December) as
explained in our Eq. 7 in Supplementary Section S4.5. Figure 7
suggests that a unimodal tendency of R2 (at first an increase
followed by a decrease) is observed from January to December.
Across different months, minimal impacts of droughts are found
in December with a mean value of 12.25%. However, the greatest
impacts are identified in June with a mean value of 22%. The
greatest impact occurs between June and September, with a mean
value of over 20%. In January–February, the strong relationships
are mainly in the North China Plain. The average impacts are
generally lower due to the non-growing season, with a mean
value about 16%. Between March and May, the influence level
of water tends to increase in southern China (to nearly 18%),
especially in Sichuan, Hunan, Chongqing, Guizhou provinces,
and a small portion of Jiangxi province. This is because the
evergreen forests begin to grow in these areas and vegetables
are sowing and germinating at that time. During this period, the
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northern winter wheat is in the tillering stage, and spring wheat
is sown, which results in an increasing demand for water. Hence,
the impacts continue to increase in northern China (however,
the pixels with higher percentages are scatteredly distributed;
see Figure 7). In June and July, the main grasses (Leymus
chinensis, Agropyron grass, Stipa grandis, and Artemisia frigida)
and corn in northern China begin to grow (Zhang and Yang,
2007); hence, the impact of droughts on monthly NPP increases
to 50% in the Xilingol grassland and the Chinese Loess Plateau
due to water deficits. In August and September, much more
water is needed due to the growth of vegetables and upland
crops in southern China as well as the grass and staple crops in
northern regions. This causes a significant increase in the impact
of drought, but the areas with a significant value of R2 (P < 0.1
or 90% significance level) gradually decreases. Between October
and December, the significant drought impact tends to decrease
continuously. Interestingly, the period from May to September
is the key season for vegetation growth in the Tibet Plateau and
agricultural production of the isolated oasis farms in western
China, which is significantly impacted by droughts.

DISCUSSION

Droughts can significantly limit plant growth and further
decrease the NPP by restricting the availability of soil water
(Xu et al., 2019). In this study, the strongest correlation
between drought and monthly NPP is identified in the semi-
arid ecosystems in the farming-pastoral ecotones in northern
China (Figure 5). This information will help to promote
the terrestrial ecosystem management in the area. At multi-
timescales, the strategies for coping with droughts are different
among individual biomes (Vicente−Serrano et al., 2015).
The humid biomes are usually sensitive to droughts, and
their NPP tends to sharply decrease under the water stress
(Vicenteserrano et al., 2013). However, except for upland
crops, the resistance of arid or semi-arid biomes to water
deficits is much stronger when they change leaf and root
morphology to reduce evaporation and retain water during
long-term droughts. Therefore, the monthly NPP of semi-
arid biomes tends to decrease gradually. The response time of
biomes toward drought is called the “lagging time.” Concerning
interannual NPP variation, a significant lagging time usually
exists in trees, and a period of 1–4 years is usual among the
Pinaceae family (Anderegg et al., 2015). However, the lagging
time in semi-arid ecosystems may be 16–19 months (Huang
et al., 2016). In addition, the monthly NPP of grassland and
farmland in semi-arid ecosystems is sharply reduced during
droughts. Lei et al. (2015) reported that droughts could account
for 51.75% of NPP loss in grasslands in Inner Mongolia of
northern China. A total reduction of 154 gC/m2/yr of the
NPP can occur due to droughts in grasslands in China (Xiao
et al., 2009). About 53% of the areas of China are occupied
by arid or semi-arid ecosystems, of which 22% are semi-
arid ecosystems where agriculture and animal husbandry are
developed. However, severe droughts in these areas occur
frequently (Figure 4), causing substantial fluctuations in the

annual NPP. A previous study reported that the farmlands in
China obviously have been moved to the north and across
the Yellow River, indicating that there is no doubt that the
future Chinese NPP will be threatened profoundly by droughts
(Liu et al., 2009).

Over the past 20 years, the increasing annual NPP in the
northern hemisphere, including China, has been verified by many
studies (Liu, 2001; Lee and Veizer, 2003; Piao et al., 2007; Zhao
and Running, 2010; Kim et al., 2012). In China, significant
increasing trends in annual NPP (Figure 8) are mainly located in
the southwestern China, including Sichuan, Guizhou, Yunnan,
Guangxi, Guangdong, Hainan provinces, and the eastern Tibet
Plateau, where an increase of 26.64 gC/m2/yr of the annual NPP
is identified during our study period (Figure 8). We also notice
that the greening project led by the so-called “grain-for-green”
policy in the Chinese Loess Plateau has resulted in a remarkable
increase in vegetation activities. Our derived annual NPP has
shown this significant increase, which has been confirmed by
other studies (Peng et al., 2007; Persson et al., 2013; Jiang X. et al.,
2019). However, in areas with strong human activities and/or an
unreasonable combination of water and heat (e.g., urban zones
and high mountains), the annual NPP tends to decrease in our
study period. Our results have been supported by previous studies
(Liu, 2007; Xu et al., 2017). The mean annual NPP decreasing
rate of 42.82 gC/m2/yr is found in those areas. On the 3-month
timescale, increased SPEI3 index (indicating wetter conditions)
can significantly enhance the monthly NPP in northern China,
but significant heavy rain at shorter timescales (e.g., 3-month)
in southern China can reduce the monthly NPP. Considering
the extent of influence from droughts, the 3-month timescale is
appropriate to evaluate the relationships between water shortage
and monthly variability of NPP in China, which is consistent
with the result of Yang et al. (2018). In addition, at the 6-month
timescale, droughts can only be used to assess the relationships
between water shortage and the monthly variability of NPP in
northern and western China. Our results suggest that the 3- to
6-month drought indices (e.g., SPEI3 and SPEI6) are appropriate
for evaluating the relationships between droughts and monthly
variability of NPP in China.

According to Figure 7, the NPP in China is mostly sensitive
to droughts in the March–October season, among which the
period of May–July is the most important months. Here, our
result agrees with Ji and Peters (2003). During May–July, the
average contribution from droughts on monthly NPP is >22%
(Figure 7). The greatest contributions of droughts to monthly
NPP have been found in the Tibet Plateau and northwestern
China, including the middle of the Tibet Plateau, the Yarlun-
Tzanpo River Valley, and the Tianshan Mountains of western
China, especially the variation of alpine meadow (Figure 7). More
importantly, according to our results (Figure 7), the greatest
impacting month of droughts on the NPP in southern China
occurs in May, but in northern China, it occurs in June.

Previous studies have reported that longer and severe
droughts, as represented by the PDSI and SEDI, can remarkably
reduce the NPP in China over the past 30 years (e.g., Li et al.,
2016, 2019a). Although soil moisture content and soil water loss
have been considered in the PDSI, which is beneficial to reflecting
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FIGURE 8 | The long-term trends of annual NPP in China from 1982 to 2012 (P < 0.1 or 90% significance level).

the actual status of droughts, lagged response from vegetation
to soil water deficit can result in some unreliable results for
quantitatively determining the relationship between PDSI and
NPP. In this study, an outstanding 3–6-month lagging period
of vegetation to droughts has been found; therefore, a multi-
timescale drought index (e.g., 3–6-month drought index) can
provide a reliable investigation about the lagged relationship
between droughts and NPP changes. In previous studies, the
effect of individual drought events on NPP has been focused
broadly (e.g., Lai et al., 2018; Li et al., 2019a). However,
compared with individual drought events, the evolution trend of
droughts generally have greater impacts on vegetation activities
at longer timescales (Piao et al., 2019). Thus, exploring the
relationship between drought trends over longer timescales and
their impacts on NPP changes has played a key role in revealing
the mechanism of future TEP evolution within the context of
extreme climate events.

More importantly, NPP variations are generally controlled
by many inter-playing factors, including from both natural
and anthropogenic sources. First, different tillage practices and
grazing policies can all have profound impacts on farmland and
grassland NPP changes, respectively. In general, ever-advancing
tillage practices (fertilization, pesticides, plastic mulch, and
irrigation) have significant and positive impacts on increasing
NPP in farmlands. For instance, higher maize NPP (yield)
can be achieved by improving tillage practices at a planting
date ranging from late April to early May and an N-fertilizer
input rate of 180–210 kgN ha−1 with two timing splits in
northeastern China (Jiang R. et al., 2019). Furthermore, severe
grazing can remarkably reduce the NPP in grass ecosystem
and further result in desertification that has been verified

in a case study of Xilingol Grassland, northern China (Chi
et al., 2018). The study revealed that 94.6% of the area of
Xilingol grassland showed a negative correlation between
NPP residuals and grazing pressure (Chi et al., 2018). Second,
at shorter timescales, human activities play some important
roles in driving NPP variations. In the developing world,
the rapid urbanization has an obviously negative impact on
regional NPP changes (Li et al., 2019b). Under the processes
of urbanization, large amounts of farmlands, wetlands, and
forests are overall replaced with poorly permeable surfaces
of cement and asphalt that result in the NPP reduction. Liu
et al. (2019) have reported that the rapid urban expansion in
the period of 2000–2010 has in turn reduced global terrestrial
NPP, with a net loss of 22.4 Tg carbon per year (Tg C yr−1),
which can overall offset 30% of the climate-driven NPP increase
(73.6 Tg C yr−1) over the same period. Li et al. (2018) has
shown that 63.02% of total NPP losses in China could be
explained by the conversion from farmland to suburban land.
Furthermore, different feedbacks and interactions between
vegetation growth and human activities have been identified.
For example, Piao’s group has demonstrated that an increasing
vegetation greenness (likely higher NPP) caused by human
activities (land-use practice, CO2 fertilization, and nitrogen
deposition) has significantly changed regional water cycle
and evapotranspiration, especially in dry regions. Data have
revealed that the global leaf area index (LAI) has enhanced 8%
between the early 1980s and 2010s, which will cause a global
increase of 12.0 ± 2.4 mm yr−1 in evapotranspiration and
12.1 ± 2.7 mm yr−1 in precipitation representing about 55 ± 25
and 28± 6% of the observed increases in land evapotranspiration
and precipitation, respectively (Zeng et al., 2018;
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Piao et al., 2020). Chen et al. (2019) has demonstrated that
human land use practice has contributed a larger proportion
to Earth greening (over 33%). However, in our study, the
anthropogenic factors mentioned above were not considered
mainly due to factor of the large-scale nature of our study,
and the lack of localized observations to match with policy-
driven and LULC impacts on the NPP. Therefore, in the future,
a process-based model (e.g., CLM4.5, ISAM, LPJGUESS, LPJ,
and LPX) involving many interplaying factors can be used
to accurately explore the relationships between the NPP and
natural/anthropogenic factors (Ding et al., 2018).

CONCLUSION

The total annual NPP in China has increased from 1982 to 2012
with a mean rate of 433.04 gC/m2/yr. In our study period, a
total NPP increase of 16.97 TgC/yr is found mainly located in
southern and southwestern China. Droughts in China continue
to be severe, and the frequency of moderate drought is >20% in
northern China. The frequency of severe drought is >10% across
farming-pastoral ecotones. The strongest relationships between
drought and monthly NPP in China are located in the farming-
pastoral ecotones of semi-arid ecosystems. On the 3-month
timescale, a negative contribution of droughts on the monthly
NPP in southern China has been found, in which a mean NPP
reduction of 2.54 gC/m2 can be found with per-unit increases in
the drought index (wetter conditions). However, the interannual
NPP in the same areas has continued to increase due to the global
warming, nitrogen deposition, and advances in agriculture that
can compensate for the monthly NPP losses caused by flooding
(higher SPEI index). On the 6-month timescale, the strongest
correlations between drought and monthly NPP are located
in farming-pastoral ecotones of arid and semi-arid ecosystems
covering grassland and corn fields.

The SPEI is more effective in defining the relationships
between droughts and monthly NPP in China. The response
period (e.g., the lagging time) of monthly NPP to droughts in
southern China is about 3 months. The lagging time in arid
and semi-arid ecosystems of northern China is nearly 6 months.
The drought accounts for >15% of monthly NPP variation in

China each month. Over the whole China, the lowest impact
season of droughts on monthly NPP has been found during the
December–February period, but the greatest impact period has
been determined in the months of May–July. Regionally, the
greatest impact season for the middle of the Tibet Plateau, Yarlun-
Tzanpo River valley, and the Tianshan Mountains of western
China is the July–September period. While in northern China,
the greatest impact month of droughts on monthly NPP is in
June; this becomes May in southern China.
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