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The Yarlung Zangbo River (YZR) basin occupies a crucial position in the formation and

development of atmospheric circulation and climate change in the Tibetan Plateau,

where is the potential trigger and amplifier in global climate fluctuations. Previous studies

mainly focused on meteorological drought induced by variations of precipitation and

temperature. In this study, a multi-index evaluation of drought characteristics from the

perspective of meteorology and agriculture was implemented. GLDAS (Global Land Data

Assimilation System) precipitation, surface air temperature and soil moisture data from

1982 to 2015 were used to calculate the meteorological drought index (Standardized

Precipitation Evapotranspiration Index) and agricultural drought index (Soil Water Deficit

Index), respectively. Meanwhile, the scPDSI (self-calibrating Palmer Drought Severity

Index) dataset provided by CRU (Climate Research Unit) was also utilized to represent the

meteorological drought, with the aim of comprehensively investigating the spatiotemporal

evolution characteristics of drought in the YZR basin. Results indicated that although

there was a slightly wetting tendency of the whole basin from 1982 to 2015, drought

condition from the perspective of meteorology and agriculture at both annual and growing

seasonal scales showed a transition from alleviation to aggravation during 1982–2015,

with an abrupt change from wetting to drying occurring at the year of 2000 detected

by multiple statistical tests including Mann-Kendall test, Moving t-test and Yamamoto

test. Specifically, since the twenty-first century, the meteorological drought in the YZR

basin has changed from moderate wet to moderate dry, while the agricultural drought

relieved to moderate dry from severe dry with a muchmore complicated fluctuation. From

the perspective of spatial pattern, the annual and growing season variation trends of all

three drought indices were identically consistent during 1982–2015. Areas with extremely

significant decreasing trend (2.24∼21.09%) were mostly distributed in the west upstream

and southwest downstream dominating the overall wetting trend of the YZR basin during

the period of 1982–2015, while the transition from wet to dry after 2000 was attributed to

the aggravating drought of the western upstream and southeastern downstream. Results

of this study have important implications for drought monitoring and eco-environmental

sustainability in alpine regions.
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INTRODUCTION

Drought is a natural hazard developed slowly that would
initiate considerable losses (Kelly et al., 2015; Schwalm et al.,
2017; Jiang et al., 2019) which is also regarded as an elusive
phenomenon with the indeterminate onset and demise (Greve
et al., 2014; Bachmair et al., 2016a). Various drivers exert the
occurrence of drought, among which low precipitation and
high evapotranspiration are usually considered as the main
causes (Mishra and Singh, 2010; Sheffield et al., 2012; Vicente-
Serrano et al., 2015). A lot of studies reveal that continuous
global warming has exacerbated global water cycle and triggered
extreme droughts events (Dai, 2011; Huang et al., 2017; Chen
and Sun, 2018). The increasing trend of drought has become a
global concern during recent decades. Therefore, it is urgently
necessary to detect and monitor drought under the process of
global warming.

Drought is generally classified into four types in accordance
with the performance characteristics and affected fields, i.e.,
meteorological drought, agricultural drought, hydrological
drought, and socioeconomic drought (Yuan and Zhou, 2004;
White and Walcott, 2009; Dai, 2011). Meteorological drought
is the prerequisite for other types of drought (Tong et al.,
2017). Consequently, numerous meteorological drought indices
have been proposed to estimate the drought severity and
improve the risk management, such as the Palmer Drought
Severity Index (PDSI) (Palmer, 1965), Standard Precipitation
Evapotranspiration Index (SPEI) (Vicente-Serrano et al., 2010),
Standardized Wetness Index (SWI) (Liu et al., 2017), Standard
Precipitation Index (SPI) (McKee et al., 1993), etc. PDSI was
the first index to successfully quantify the severity of drought
in various climatic conditions and played a milestone role
in the development of the drought index (Zhai et al., 2010;
Zambrano Mera et al., 2018), which has been widely used to
evaluate meteorological drought (Shao et al., 2018; Li et al.,
2019a). In order to overcome the poor applicability of PDSI
in arid and semi-arid regions, scPDSI (self-calibrating Palmer
Drought Severity Index) was put forward by Wells et al. (2004),
which has been proven to be a particularly suitable index for
detecting and monitoring the effects of global warming on
drought conditions (Wang et al., 2016; Herrera and Ault, 2017;
Zhu et al., 2018). It improves PDSI by adopting a self-calibration
procedure that automatically adjusts the PDSI standardization
coefficient to suit the local climate (Bai et al., 2020). Moreover,
in the water balance model of scPDSI, dynamic changes of
seasonal snowpack are considered (Van der Schrier et al., 2013),
which is especially suitable for alpine region, such as the Yarlung
Zangbo River (YZR) basin in the Qinghai-Tibet Plateau (QTP).
And the high-resolution scPDSI dataset generated by the CRU
(Climatic Research Unit) has been successfully applied around
the world (Lewinska et al., 2016; Zhang et al., 2019a). With
the combination of the sensitivity of the PDSI to changes in
evaporation demand and robustness of the multi-temporal
nature of the SPI, SPEI at various timescales has been developed
and employed in an increasing number of climatological and
hydrological studies (Vicente-Serrano et al., 2010; Yu et al.,
2014; Spinoni et al., 2018; Li et al., 2019c). Li X. et al. (2015)

evaluated the multi-scale patterns and the spatiotemporal extent
of drought based on SPEI in Southwest China from 1982 to
2012. Wang et al. (2016) analyzed the performance of five
climate-based drought indices, including SPEI and scPDSI,
to estimate winter wheat drought threat during 2000–2013
in China. Unlike scPDSI, which obtains evapotranspiration
based on the water balance model, SPEI considers the effects
of evapotranspiration through the simple difference between
precipitation and potential evapotranspiration (PET). In order
to better analyze the drought condition in the YZR basin, two
meteorological drought indices including scPDSI and SPEI were
selected for cross-validation in this study.

Most meteorological drought indices are predominantly
applicable to assess drought conditions in global or basin
scales, while agricultural drought indices provide a fine-grained
assessment of a small area during the growing season (Mishra
and Singh, 2011; Zargar et al., 2011). Agricultural drought is
considered to start when soil moisture availability reaches a
certain low level that will lead to a negative impact on crop
yield (Dai, 2011; Zhu et al., 2019). That is, meteorological
drought will induce soil water deficit and further agricultural
drought. In addition, the water supply of crops is mainly
absorbed directly from the soil by the root system (Schoppach
and Sadok, 2012). When crop canopy greenness is stressed by
soil moisture, it will be lower than normal growth vegetation.
In short, agricultural drought events threaten local agri-food
markets and food security (Lesk et al., 2016; Yang et al., 2020).
The adaptability of agricultural drought can effectively reduce
the loss of agricultural drought (Dong et al., 2012). If severe
agricultural drought occurs frequently in a region, local people
will take long-termmeasures (such as crop irrigation technology)
to reduce the sensitivity of agriculture to drought as well as the
impact of agricultural drought on their lives. Therefore, soil water
condition is a key indicator in agricultural drought prediction
and assessment and irrigation management. The monitoring
and early warning systems based on soil moisture are essential
for agricultural activities and risk assessment (Bachmair et al.,
2016b). Effective quantification of agricultural drought impacts
can mitigate crop losses and ameliorate adverse effects (Liu et al.,
2016; Baik et al., 2019). However, SPEI ignoring effects of soil
moisture could not capture the characteristics of agricultural
drought (Bezdan et al., 2019; Teweldebirhan Tsige et al., 2019).
Among numerous drought indices calculated based on soil water
content, the Soil Water Deficit Index (SWDI) is a more mature
indicator to judge crop drought on the basis of wilting point
content and field water capacity, which has been widely used in
agricultural drought detection (Wagner et al., 2013; Martínez-
Fernández et al., 2015; Bai et al., 2018). Martínez-Fernández et al.
(2016) further demonstrated that SWDI can reproduce soil water
balance dynamics and track agricultural drought preferably. Bai
et al. (2018) employed SWDI to evaluate the soil moisture
products of Soil Moisture Active Passive (SMAP) in China.

The Yarlung Zangbo River basin is located in the southeastern
part of the QTP, China, which is characterized by complex and
changeable climatic conditions, rich biological diversities, and
distinct vertical vegetation belts (Liu et al., 2007; Chen B. et al.,
2015). Climate change on the QTP occupies a vital position
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of global climate change because it is the potential trigger and
amplifier in global climate fluctuations (Shen et al., 2015; Li
et al., 2019a). The YZR basin is the source of precipitation
on the QTP, where has vast channels carrying moisture from
the Indian Ocean to the interior of the Plateau. Hence, the
climate of the YZR basin plays a crucial role in the formation
and development of atmospheric circulation and climate change
in the QTP (Liu et al., 2002; Zhou et al., 2010; Lv et al.,
2013). Scholars have done a lot of researches on climate change
characteristics of the YZR basin, pointing out that a much more
severe drought has been observed in recent decades (Li et al.,
2014, 2019a; Li B. et al., 2015; Shen et al., 2015). However, there
is a substantial resistance to conduct a study in the YZR basin
due to its great altitude gradient, noticeable vertical vegetation
belts and sparse observation stations, leading to research focus
are limited to analyses on precipitation and temperature changes
or meteorological drought only. Therefore, the objectives of
this study are: (1) to implement a multi-index evaluation of
drought characteristics from the comprehensively perspective of
meteorology and agriculture based on multiple remotely sensed
data; (2) to identify the spatiotemporal evolution mechanism
of dry-wet regime through multiple statistical methods; (3) to
explore possible causes of the detected variation characteristics
of drought in the YZR basin. Given that few studies focus on
investigating different types of drought for monitoring annual
and growing season drought over the YZR basin, this study can
facilitate water resources management in the YZR basin and
provide a solid basis for maintaining the ecosystem sustainability
of the QTP.

MATERIALS AND METHODS

Study Area
The Yarlung Zangbo River (28◦00′ ∼ 31◦16′N, 82◦00

′ ∼ 97◦07
′
E)

originates from Gemma Yangzong Glacier in the southwest of
Tibet, and its elevation gradually decreases from northwest to
southeast, with an average elevation of more than 4,000m and
an altitude drop of 7,120m, making it one of the highest rivers in
the world. It covers an area of about 240,000 km2 and runs east-
west through the southeast of the Tibetan Plateau, traversing four
prefecture-level cities and 23 counties.

The climate conditions of the YZR basin are greatly influenced
by the southwest warm moist air flowing over the Bay of Bengal
as well as the westerlies. Thus, the temperature exhibits an
obvious vertical belt with the change of elevation, which gradually
increases from northwest to southeast (You et al., 2007). Li B.
et al. (2015) has proven that the warming rate of annual and
seasonal air temperature from 1961 to 2014 in the YZR basin
were larger than that in many other regions of the world. Due to
its peculiar location and topographic characteristics, the climate
of the basin from upstream to downstream shows significant
heterogeneities. The period from November to April of next
year that has less precipitation is considered as the winter half
year and the rest of the year is considered as the summer half.
Figure 1 shows the distribution of national meteorological and
hydrological stations in the YZR basin. In this study, Nugesha
and Nuxia hydrological stations were taken as the outlets of the

upstream and midstream, respectively, which divided the YZR
basin into three sub-basins. The region between the Gemma
Yangzong Glacier and Nugesha hydrological station is defined
as the upstream, which is an arid and semi-arid region with
annual mean precipitation of <300mm. The region between
the Nugesha and Nuxia hydrological stations is defined as the
midstream, which has a temperate climate. The region below the
Nuxia hydrological station, with an annual mean precipitation of
more than 2,000mm, is defined as the downstream characterized
by a warm and wet climate. The glaciers in the YZR basin
cause the upstream to be mostly unused land, while human
activities of the downstream are much more frequent than that
of the upstream.

GLDAS_NOAH Data
GLDAS (Global Land Data Assimilation System) data are
jointly developed by Goddard Space Flight Center of NASA
(National Aeronautics and Space Administration) and NCEP
(National Centers for Environmental Prediction), a high-
resolution land surface data assimilation system, of NOAA
(National Oceanic and Atmospheric Administration), which is
available from http://ldas.gsfc.nasa.gov/gldas/GLDASvegetation.
php. Utilizing satellite remote sensing and ground observation
data, this dataset drives four land surface process models, namely
Mosaic, NOAH, CLM, and VIC. Through data simulation and
assimilation of four different models, 28 surface variables, such
as precipitation (mm), air temperature (◦C), and soil moisture
content (kg/m2), are generated. At present, the land data
assimilation system can provide two versions of data, GLDAS-
1 and GLDAS-2, whose time series are from 1970 to 2010 and
2000 to present, respectively, with a time span of 50 years. The
spatial and temporal resolutions of the data are 0.25◦ and 1
month, respectively. In this study, GLDAS-1 and GLDAS-2 data
generated by NOAH model from 1982 to 2010 and 2010 to 2015
were spliced to obtain a new time series covering the period of
1982–2015. Performance evaluation of GLDAS data in the YZR
basin has already been conducted by Liu et al. (2019) and Li
et al. (2019b), indicating a good representation of spatiotemporal
characteristics of precipitation, temperature and soil moisture.

Drought Indices
The Self-Calibrated Palmer Drought Severity Index

(scPDSI)
The scPDSI was proposed by Wells et al. (2004) to overcome
the weakness of the PDSI. Similar to the PDSI, the scPDSI
is calculated based on the time series of the precipitation,
temperature and the soil moisture with each position related
to the surface of fixed parameters, but it can substitute actual
vegetation as reference crop drought index owing to considering
the seasonal changes, such as snow, thus the scPDSI owns greater
spatial applicability.

The CRU-TS3.24 dataset that time series length is 1901–2016
can be acquired from www.cru.uea.ac.uk/data/, which is released
by the Climatic Research Unit (CRU), University of East Anglia.
The temporal and spatial resolutions of the scPDSI are one 1
month and 0.5◦ × 0.5◦. It classifies the dry and wet characteristics
into 9 specific grades, shown in Table 1. The classified scPDSI
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FIGURE 1 | The geographical location (A), hydrometeorological stations (B), and land use types of the Yarlung Zangbo River (YZR) basin (C).

has been successfully applied to represent themulti-scale drought
characteristics in the YZR basin according to the verification
results by Li et al. (2019a).

The Standardized Precipitation Evapotranspiration

Index (SPEI)
The SPEI based on the probability model is established by
combining the sensitivity to sensibilities in evaporation demand
of the PDSI and the robustness of the multi-temporal nature of

the SPI (McKee et al., 1993), and has been widely used in many
studies so far (Yu et al., 2014; Spinoni et al., 2018; Li et al., 2019c).
The calculation formulas of the SPEI are as follows:

(1) PET based on the Thornthwaite method is calculated as:

PET = 16K
(

10T
I

)a
(1)

where T is the monthly mean temperature (◦C); K is a correction
coefficient that depends on the latitude and month; I is a heat
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TABLE 1 | Drought index classification for the scPDSI (Wells et al., 2004), SPEI

(Vicente-Serrano et al., 2010), and SWDI (Martínez-Fernández et al., 2016).

Drought

Index
Range

Categories

scPDSI SPEI SWDI

Extremely wet ≥4 ≥2 –

Severely wet [3, 3.99] [1.5, 1.99]

Moderately wet [2, 2.99] [1.0, 1.49]

Slightly wet [1, 1.99] [0.5, 0.99]

Near normal [−0.99, 0.99] [−0.49, 0.49]

No drought – – >0

Slightly dry [−1.99, −1] [−0.99, −0.5] [−2, 0]

Moderately dry [−2.99, −2] [−1.49, −1.0] [−5, −2]

Severely dry [−3.99, −3] [−1.99, −1.5] [−10, −5]

Extremely dry ≤–4 ≤–2 <–10

index, which is calculated as the sum of 12 monthly index values,

I =
∑12

i=1

(

Ti
5

)1.514
(2)

a is a coefficient depending on I, and it is computed as:

a = 6.75× 10−7I3 − 7.71× 10−5I2 + 1.79× 10−2I + 0.492(3)

(2) Deficit or surplus of water balance between the PET and
precipitation is defined as:

Di = Pi − PETi (4)

where Di is the difference between monthly precipitation Pi and
potential evapotranspiration PETi.

(3) Normalize the water balance into a log-logistic probability
distribution to obtain the SPEI index series.

The log-logistic of three parameters is adopted to normalize
the aggregated values of the sequence of Di data:

F (x) =
[

1+
(

α
x−γ

)β
]−1

(5)

where F(x) is the probability distribution function; α, β , and γ

are scale, shape, and origin parameters, respectively, which could
all be estimated by the linear distance method.

The SPEI can be obtained as follows:

SPEI =

{

W − C0+C1W+C2W
2

1+d1W+d2W2+d3W3 , p ≤ 0.5
C0+C1W+C2W

2

1+d1W+d2W2+d3W3 −W, p > 0.5
(6)

W =







√

−2 ln
(

p
)

, p ≤ 0.5
√

−2 ln
(

1− p
)

, p > 0.5
(7)

p = 1− F (x) (8)

where p is the standardizing probability density function; the
constants are C0 = 2.515517, C1 = 0.802853, C2 = 0.010328, d1
= 1.432788, d2 = 0.189269, and d3 = 0.001308. The 12-month
SPEI was adopted to analyze the spatiotemporal characteristics
of drought in this study due to its best performance compared
with 1-, 3-, and 6-month SPEI (Liu et al., 2019).

The Soil Water Deficit Index (SWDI)
Based on the time series and basic parameters of soil moisture,
SWDI can be used to capture agricultural drought conditions
through biophysical principles (Vicente-Serrano et al., 2010;
Martínez-Fernández et al., 2016). Soil moisture of GLDAS has
been proven to have a high consistency and low bias with in situ
measurements (Li et al., 2019b). The SWDI is formulated in this
study as follows:

SWDI =
(

θ−θFC
θAWC

)

× 10 (9)

θAWC = θFC − θWP (10)

where θ is the time series of 0–10 cm soil moisture data from
GLDAS (kg/m3); θFC, θWP, and θAWC represent the field capacity,
wilting point, and available water capacity, respectively. The 5th
percentile and 95th percentile based on GLDAS soil moisture
time series are estimators of θWP and θFC.

A positive value of SWDI indicates the excess of soil
water content, while negative values imply the occurrence of
agricultural drought. The classification criteria of the scPDSI,
SPEI and SWDI are shown in Table 1, respectively.

Detection of Abrupt Change
In this study, scPDSI and SPEI were used to represent the
meteorological drought, while the agricultural drought was
represented by SWDI. In order to accurately evaluate the
spatiotemporal variation characteristics of drought in the YZR
basin, non-parametric methods including Mann-Kendall test,
Moving t-test and Yamamoto test were used to conduct abrupt
change detection based on long-term time series of annual and
growing season drought indices.

Mann-Kendall Test
The non-parametric Mann-Kendall test, hereinafter referred to
as M-K test, was employed for detecting abrupt changes of the
time series (Mann, 1945; Kendall, 1975). The advantage is that the
sample to be tested does not have to obey a certain distribution,
and a few outliers have little effects on the overall data sequence.
Two standardized statistic series (UB andUF) are constructed for
two unified data time series.

Given a time series of X = (x1, x2, x3, . . . . . . , xn), the statistical
parameter fk is calculated as follows:

fk =
∑k

i=1

∑n
j=1 logistic

(

xi > xj
)

, k = 2, 3, · · · · · · , n (11)

where n is the length of the time series; when xi > xj, logistic
(xi > xj) is 1, and 0 otherwise. A positive value of UF represents
an ascending trend whereas the inverse represents a descending

Frontiers in Earth Science | www.frontiersin.org 5 June 2020 | Volume 8 | Article 213

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Niu et al. Multi-Index Evaluation of Drought

trend. Under the assumption that the time series is randomly
independent, the standardized fk is computed as follows:

UF
(

k
)

= [fk−E(fk)]√
var(fk)

, k = 2, 3, · · · · · · , n (12)

where E
(

fk
)

and var
(

fk
)

are the mean and variance of fk, which
are defined as:

E
(

fk
)

= k(k−1)
4

(13)

var
(

fk
)

= n(n−1)(2n+5)
72

(14)

The equation of calculating UB that used reversed data series
X′ =

(

x′1, x′2, x′3, · · · · · · , xn′
)

= (xn, xn−1, xn−2, · · · · · · , x1) is
as follows:

UB
(

k
)

= − [fk−E(fk)]√
var(fk)

, k = 2, 3, · · · · · · , n (15)

where fk, E
(

fk
)

, and var
(

fk
)

are calculated using the same
equations of UF(k). Note that if an intersection of UB and
UF curves is within the confidence zone where the confidence
level of 95% is treated as the boundary lines, the null
hypothesis is considered to be rejected and a significant abrupt
change occurred, otherwise, the detected trend is proven to be
not significant.

Moving t-Test
The Moving t-test for identification of the abrupt change point
is to test whether the mean values of two subsequences change
significantly or not at the significance level of 0.05 (Zhao et al.,
2008; Liu L. et al., 2012). Comparing mean values of the two
subsequences in the climate series for significant test, analyzing
variances of the two subsequences and constructing the T
statistics, if the statistics pass the confidence level test, then the
point where has reached the maximum absolute value of statistic
is the abrupt change point most likely (Fu and Wang, 1992).
Two subsequences of almost equivalent length are obtained by
defining a datum point manually. The method is calculated
as follows:

t = x1−x2

s.
√

1
n1

+ 1
n2

(16)

s =
√

n1s
2
1+n2s

2
2

n1+n2−2
(17)

where n1 and n2 are the lengths of two subsequences; x1 and x2
are the two sets of subsequences; x1, x2, s1, and s2 are mean values
and standard deviations of x1 and x2, respectively. Equation (17)
follows the t distribution of n1+n2−2 DOF (Degree of Freedom).
When t > t1−α/2 (i.e., α is the significance level of the student test
and equals 0.05 in this study), it can be considered that the point
of abrupt change has befallen at the significance level of 0.05.

Yamamoto Test
The principle of the Yamamoto test, which is definedmainly from
the ratio of climate information and noise, is similar withMoving
t-test in that an artificially defined reference point (Yamamoto

et al., 1985; Fu and Wang, 1992). Two subsequences before and
after the artificial reference point are defined as n1 and n2; the
signal-to-noise ratio (SNR) is defined as follows:

RSN = |x1−x2|
s1+s2

(18)

where the absolute deviations between x1 and x2 are signals of
climate change; the sum of s1 and s2 is the variability of climate
change; RSN is the value of the SNR, namely the mutagenic index,
and the mutation occurs at the certain time when RSN ≥ 1.

Trend Analysis
One-dimensional linear regression (Hao et al., 2016) was
employed to conduct the long-term trend analysis on the time
series of scPDSI, SPEI, and SWDI in the study area to describe
the spatiotemporal variations from 1982 to 2015. The calculation
formula is as follows:

slope = n ×
∑n

i=1(i×Ci)−
∑n

i=1 i×
∑n

i=1 Ci

n ×
∑n

i=1 i
2−(

∑n
i=1 i)

2 (19)

where slope represents the changing trends of scPDSI, SPEI, and
SWDI; n is the study temporal interval, n = 34 in this study; and
Ci represents scPDSI, SPEI, or SWDI for the year i. A significance
test was performed on the variation trends of three drought
indices (P < 0.01 indicates an extremely significant trend, P <

0.05 indicates a significant trend, and P > 0.05 implies that the
variation trend is not significant).

RESULTS

A Change From Wetting to Drying Inferred
by Temporal Variations
Drought is more destructive when it occurs during the growing
season (Ahmed et al., 2016; Shiru et al., 2019). Scholars have
revealed that vegetation conditions under global warming are
significantly correlated with growing season drought (Ji and
Peters, 2003; Liu X. et al., 2012; Luo et al., 2015). Thus, growing
season drought was investigated along with annual drought in
this study, and the growing season in the YZR basin was defined
as the period from May to September within a year according
to the variation characteristic of vegetation growth, precipitation,
and temperature. As shown in Figure 2, the annual and growing
season variation trends of all three drought indices were fitted
by quadratic polynomial curves, showing the highest correlation
with changing pattern of drought indices. It can be seen that
values of scPDSI, SPEI, and SWDI at both annual and growing
season scales all showed a change from increasing to declining
in the later 1990s, inferring that the drought condition in the
YZR basin during the period of 1982–2015 was firstly alleviated
and then gradually aggravated from both the meteorological and
agricultural perspectives. This phenomenon was consistent with
the findings about extreme precipitation events in the YZR basin
by Liu et al. (2018a), which demonstrated that almost of six
extreme precipitation indices mutated in 1995 during the period
of 1973–2016.

In terms of the annual scPDSI, it fluctuated between −3 and
+3 corresponding to moderately dry and moderately wet in
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FIGURE 2 | Variation trend of three drought indices (the black, green, and blue curves are scPDSI, SPEI, and SWDI, respectively. The red solid lines are curves fitted

by quadratic polynomial. The black dashed lines are linear trend lines from 1982 to 2015. And the left column is annual variations of three indices, while the left column

is variations of growing season).

the past 34 years, with the maximum value (2.02) occurring in
2000. Similarly, the growing season scPDSI also experienced a
fluctuating period from 1982 to 2015, with the maximum value
(2.79) occurring in 2000. Similar to scPDSI, SPEI waved between
−1.5 and +1.5, indicating that the dry-wet condition in the YZR
basin during 1982–2015 varied between moderate humidity and
moderate aridity consistent with the drought grades deduced by
scPDSI. It can be seen from Figure 2 that the highest points of
the fitted curves all located around 2000, revealing that abrupt
changes of meteorological drought occurred in the late 1990s
and early 2000s. However, the change from wetting to drying
implicated by the fitted curve of SPEI was not as significant
as that of scPDSI, due to the different occurring time of the
maximum value, which was located in the year of 1992. From
the perspective of agricultural drought indicated by the SWDI,
the YZR basin suffered a harsh drought condition where it
varied between moderate drought and severe drought with a
much more dramatic fluctuation. But growing season SWDI
showed a downward tendency in the 34-year linear trend line,

and the annual SWDI was opposite. This situation illustrates
that the aggravation drought of the non-growing season made
less contribution to the annual agricultural drought than that
of the growing season. Contradistinguishing to the annual and
growing season variation trends, although the changes of SPEI
and SWDI fromwet to dry implicated by fitted curves were not as
significant as that of scPDSI, such as the different occurring time
of maximum values and more dramatic fluctuations, the upward
and downward tendencies of SPEI and SWDI were coincide
with that of scPDSI on the whole. That is, they all showed a
trend of wetting first and then drying around 2000. Differences
between meteorological and agricultural drought indices are
mainly attributed to the fact that in addition to rainfall and
irrigation, other water supply ways such as meltwater of snow
and glacier are also the significant water sources of the YZR
basin, further illustrating that the influence of global warming
on the YZR basin has progressively increased. The main reason
for the differences is that the soil moisture in the YZR basin
showed a persistently decreasing trend (Zhang et al., 2019b)
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TABLE 2 | Results of abrupt change detection for three drought indices at annual

and growing season scales.

Index Time scale Method

M-K Moving t Yamamoto

scPDSI Annual 1983 1991, 1997, 2005 1997

Growing season 1983 1991, 1997, 2005 2004

SPEI Annual 1983 1997 1998

Growing season 1983, 1994 1997 –

SWDI Annual 1983 1997, 2005 1997, 2005, 2008

Growing season – 1997, 2008 1997

and SWDI was calculated by soil moisture parameters, implying
that it would change immediately as the soil moisture changes.
Other factors, such as soil properties, cropping systems, and the
amount of irrigation, can also affect agricultural drought (Liu
et al., 2016). However, two meteorological drought indices are
more related to precipitation and evapotranspiration. If irrigation
or other agricultural measures can be provided to crops in time to
maintain soil moisture after meteorological drought, then there
would no agricultural drought occurring.

Multi-Index Detection of the Changing
Point From Wetting to Drying
In order to identify whether there was an abrupt change from
wetting process to drying process in the YZR basin, the M-
K test, Moving t-test and Yamamoto test were adopted to
implement the detection at both annual and growing season
time scales based on the long-term time series of scPDSI,
SPEI and SWDI. As demonstrated in section A Change From
Wetting to Drying Inferred by Temporal Variations, there was
a tendency from wetting to drying occurred during the period
of the late 1990s to the early 2000s. Li et al. (2019a) pointed
out that from 1956 to 2015, scPDSI also had a transition during
the mid-twentieth century through locally-weighted scatter
point smoothing method, and previous studies revealed that
precipitation, temperature, and PET all changed significantly
around 2000 in the YZR basin (Liu, 2015; Wang, 2016). As
shown in Table 2, the highest occurrence frequency of changing
point for annual and growing season droughts indicated by three
indices based on M-K test, Moving t-test and Yamamoto test
was 1997, followed by the year of 1983 and 2005. However, the
changing point of 1983 was only identified by the M-K test, while
much more abrupt change points detected by Moving t-test and
Yamamoto test were concentrated in the period from the late of
1990s to the early of 2000s, further verifying there was an abrupt
change around 2000 from wetting to drying in the YZR basin.

Determination of the abrupt change point of the dry-wet
condition in the YZR basin was of great importance to conduct
further investigation in this study. Given that runoff has been
regarded as the most direct indicator to represent the dry-wet
characteristics at the river basin scale (Liu et al., 2014; Yang et al.,
2017). Located in the lower reaches of the YZR basin, the Nuxia
hydrological station controls nearly 80% area of the basin, and

FIGURE 3 | Variation trend of runoff at the Nuxia hydrological station from

1982 to 2015 (*a statistically significant variation trend at the confidence level

of 90%).

its long-term variation of runoff can effectively reflect the dry-
wet condition of the whole basin. Thus, the runoff time series
from 1982 to 2015 at the Nuxia hydrological station were used
in this study to further identify the abrupt change point from
wetting to drying. Results of the M-K test for monotonic trend
showed that, taking 2000 as the changing point, the runoff from
1982 to 1999 exhibited a significant increasing trend (P < 0.1)
and a significant decreasing trend from 2000 to 2015 (P < 0.1).
However, if taking 1998, 1999, or any other year during the period
from the late of 1990s to the early of 2000s as the changing point,
runoff during the divided two periods according to the changing
point could not show simultaneously significant increasing trend
and significant decreasing trend (Figure 3). Combining with the
long-term variations of drought indicated by three indices, it
could be determined that there was an abrupt change from
wetting to drying in the YZR basin, which occurred at the year of
2000. The transition characteristics of drought from 1982 to 2015
in the YZR basin had significant impacts on water projects and
water safety in terms of water allocation, regulation, and water
resource utilization (Alfieri et al., 2007; Chen X. et al., 2015). In
consideration of utilizing the water resource in the downstream
and relieving water shortage in some northern areas, it is an
effective way to build pumped storage hydropower stations in
the midstream.

Spatial Variation of Drought Associated
With the Change From Wetting to Drying
In order to characterize the regional differences inmeteorological
and agricultural drought change trends in the watershed for 34
years, it is necessary to analyse the spatial evolution process and
occurrence characteristics of drought in the YZR basin. Due
to the significant spatial heterogeneities of meteorological and
underlying conditions, the spatial distributions of the annual
and growing season values of three drought indices in the
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YZR basin before and after 2000 were obtained by using
Kriging interpolation method, aiming to further investigate
the drought evolution mechanism from wetting to drying. As
shown in Figure 4, it could be obviously found that the annual
spatial distribution of scPDSI, SPEI, and SWDI showed a high
consistency with that of the growing season during both periods
(1982–1999 and 2000–2015). Before 2000, the dry areas were
mainly located in the east upstream and midstream of the
study area, while the west upstream and southeast downstream
were relatively wet. Similar to the temporal abrupt change
phenomenon from wetting to drying at the year of 2000, the
spatial pattern of scPDSI, SPEI and SWDI all displayed a
reversal phenomenon from the period of 1982–1999 to the
period of 2000–2015, i.e., areas where used to be wet during
1982–1999 were getting dry during 2000–2015 and formerly dry
areas were getting wet, mainly attributed to the aggravation of
drought in the west and southeast of the upstream and the
alleviation of drought in the midstream from 1982 to 2015.
These results were consistent with the finding obtained by Li
et al. (2019a). However, meteorological drought represented by
scPDSI and SPEI showed a different spatial variation of drought
level with agricultural drought indicated by SWDI. The driest
area indicated by meteorological drought in the basin moved
from the midstream to the southeast downstream, while the
driest area deduced by agricultural drought shifted from the east
midstream and north downstream to the south downstream.
Furthermore, during 1982–2015, values of SWDI decreased in
the northeast midstream and northwest downstream, causing the
degree of agricultural drought turned from severe drought to
moderate drought. Two meteorological drought indices showed
that the upstream changed from slightly wet to slightly dry,
while both meteorological and agricultural drought showed a
moderate drought in the downstream after 2000. According to
Figures 2, 4, both the annual meteorological and agricultural
drought alleviated, and spatially the overall wetting tendency of

the YZR basin was mainly attributed to the significant wetting
trend of the midstream from 1982 to 2000, while the abrupt
change from wetting to drying from 2000 to 2015 in the basin
was ascribed to drought aggravation that was situated in the west
upstream and south downstream.

To further probe into the mechanism of spatial variations
of drought in the YZR basin, the annual and growing season
variation trends with the significance test of scPDSI, SPEI, and
SWDI were analyzed at the pixel scale (Figure 5). The area
proportions occupied by extremely significant, significant and
non-significant increases and decreases of the three drought
indices were shown in Figure 6.

Although the spatial distribution of SWDI representing
agricultural drought was slightly different from that of the other
two meteorological drought indices (illustrated in Figure 4),
the spatial variation trends with the significance test of all
three indices at the annual scale exhibited highly consistent
characteristics (shown in Figure 5). During 1982–2015, the
northwest upstream and southeast downstream showed an
increasing trend of drought, while the southeast upstream
and middle reaches experienced a contrary characteristic. And
areas with extremely significant decreasing trend were mostly
distributed in the west upstream and southwest downstream,
whereas the midstream and northwest downstream mainly
showed extremely significant increasing trends, accounting for
the spatial reversal phenomenon from wetting to drying after
2000. The spatial variation trends with the significance test of
growing season drought were consistent with those of annual
drought. Areas occupied by non-significant increasing and
non-significant decreasing trends of the annual and growing
season meteorological drought consistently accounted for the
greatest and almost equivalent proportions, followed by area
proportions occupied by the extremely significant increase,
leading to the overall wetting tendency in the YZR basin from
1982 to 2015. There have some differences with the results

FIGURE 4 | Annual and growing season spatial distributions of three drought indices.
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FIGURE 5 | Annual and growing season variation trends of three drought indices with the significance test.

obtained by Zhang et al. (2019c), which revealed that the
trend of agricultural drought was significantly increasing at 95%
confidence level during 2000–2014 in the YZR basin. This may
be due to discrepancies in length of observation time series
and size of the focusing study area. Nevertheless, areas with
the greatest proportions for the annual and growing season
SWDIwere, respectively, located in extremely significant increase
and non-significant decrease, and areas with an increasing
trend of the annual and growing season SWDI accounted
for 62.95 and 43.7% of the basin area, respectively, further
giving an explanation for overall alleviated agricultural drought
from severe dry to moderate dry and manifesting that the
degree of alleviated agricultural drought in the YZR basin
was dominated by the alleviated drought in the non-growing
season period from January to April and from October to
December. With the combination of the results obtained in
the study and Zhang et al. (2019c), it is recommended to
plant more crops with drought resistance, cold resistance and
high yield, such as wheat, in some well-irrigated valleys of
the middle and lower reaches for the purpose of coping with
growing season drought and guaranteeing the food security in
the YZR basin.

DISCUSSION

Droughts cause agricultural loss, forest mortality, and drinking
water scarcity. Their current increase in recurrence and intensity
poses serious threats to future food security. Still today, our
knowledge of how droughts start and evolve remains limited
(Zhang et al., 2017; Zhai et al., 2018; Chen et al., 2019; Huang
et al., 2019). Zhang et al. (2010) pointed out that temperature

rise and precipitation decrease were two important drought-
causing factors in the north, northeast, and eastern part of
northwest China with the most significant trend of drought
since the 1980s. Feng and Fu (2013) considered the rising
temperature as the main reason of global drought. Zeng et al.
(2019) attributed the spring and winter drought to a decrease
in relative humidity which led to an increase in reference
evapotranspiration, while the duration of sunshine was the
dominant factor of summer and autumn drought in southwest
China from 1960 to 2000. In addition, soil drought (low soil
moisture) and atmospheric aridity (high vapor pressure deficit,
VPD) have been regarded as the two main factors responsible
for drought, which influenced terrestrial water use and carbon
uptake further (Novick et al., 2016; Zhou et al., 2019b). Ding
et al. (2018) demonstrated that alpine grasslands in Tibetan
Plateau would face increasingly severe meteorological drought
pressure in the future due to the negative influence of VPD.
What’s more, there is a significant correlation between vegetation
degradation and climate change in the YZR basin, emphasizing
the importance of VPD as the driving factor of drought (Han
et al., 2018). Meanwhile, low correlations between scPDSI and
air temperature were found in the YZR basin, indicating that
meteorological drought variations were largely unaffected by
temperature (Li et al., 2019a). Regarded as the difference between
the water vapor pressure at saturation and the actual water
vapor pressure for a given temperature, VPD has been used
to estimate atmospheric aridity for the implication of drought.
Zhou et al. (2019a) demonstrated that VPD had a strong
coupling with soil moisture and then would affect the initiation
and perpetuation of drought. Increased VPD will increase the
atmospheric demand of evapotranspiration water (Penman,
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FIGURE 6 | Area proportions (%) occupied by different variation trends of the three drought indices.

1948; Monteith, 1965). It also will reduce stomatal conductance
by closing stomata (Massmann et al., 2019), and changes of VPD
substantially influences the terrestrial ecosystem structure and
function through vegetation productivity (Konings et al., 2017),
further resulting in a significant change in evapotranspiration
that leads to meteorological drought (Rawson et al., 1977; Zhou
et al., 2019a). Therefore, facing the significant increase of VPD
under global warming, VPD calculated by the improved Magus
Empirical Formula (Zeng, 1974) was taken into consideration in
this study to implement a further investigation on the evolution
mechanism of drought in the YZR basin.

According to the temporal variation trends of VPD (Figure 7),
the YZR basin got drier during the period of 1982–2015.

Obviously, it can be found that there was a huge jump of annual
and growing season VPD in 2011 and VPD remained high in
the following years. This is consistent with the historical record
that severe drought had happened in 2011 (Shao et al., 2018).
However, only SWDI indicated such severe drought event, while
two meteorological drought indices used in this study indicated
that the dry-wet condition of the YZR basin were nearly normal
in 2011. The main reason for this consistent implication from
VPD and SWDI could be attributed to the fact that rising
temperature accelerates the deficit of soil water by increasing
soil evaporation and simultaneously aggravates the difference
between saturated and actual water vapor pressures by increasing
VPD. Nevertheless, meteorological drought was dominated by
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FIGURE 7 | Variation trend of annual and growing season VPD (The red solid lines are curves fitted by quadratic polynomial. The black dashed lines are linear trend

lines from 1982 to 2015).

FIGURE 8 | Annual and growing season spatial distributions of VPD.

precipitation rather than temperature demonstrated by Li et al.
(2019a), giving an explanation for the inconsistent implication
from VPD and two meteorological drought indices, and further
emphasizing that VPD could not be independently used to
represent themeteorological drought in the YZR basin. As shown
in Figure 8, values of annual and growing season VPD from
2000 to 2015 (2.6 and 3.1) were both approximately 1.5 times
those from 1982 to 1999 (1.8 and 1.9). The maximum values of
annual and growing season VPD (5.5 and 6.0) were all located
in the southern downstream and the junction of upstream and

midstream, which were consistent with the agricultural drying
tendency of upstream and southeast downstream of the basin
represented by SWDI. However, the agricultural drought in
the northeast midstream and the northwest downstream were
alleviating from 1982 to 2015, which is not in line with the spatial
distribution of VPD. That may be due to a decrease trend of snow
cover in these places, which in turn leads to an increase in soil
water content (Liu et al., 2018b). The meteorological drought in
the east upstream, nearly the entire midstream and the northwest
downstream changed from slightly dry to near normal while
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VPD of almost the whole basin has increased, which further
confirmed that other factors besides VPD comprehensively affect
the meteorological drought in the YZR basin. Similar results
were also obtained by Liu et al. (2019), demonstrating a trend of
humidification occurring in the eastern upstream and midstream
regions. Combined Figures 1C, 8, the drought characteristics
inferred by VPD might be related to frequent human activities
concentrated in the midstream. Although VPD has been well-
known to play an important role in the evolution mechanism
of drought, it is not suitable to be independently applied as an
indicator of drought in alpine regions like the YZR basin. Even
more noteworthy is the fact that VPD does not have a clear
drought classification yet. Given that VPD has a consistency with
agricultural drought and a heterogeneity with meteorological
drought, it is better to comprehensively analyze rather than pick
out a single factor separately when identifying the influencing
factors of drought in the YZR basin, and more attention
should be paid to VPD variation characteristics to improve the
understanding of drought variation and its impacts on ecosystem.

CONCLUSION

Based on the scPDSI, SPEI, and SWDI derived from GLDAS and
CRU datasets, a multi-index evaluation of drought characteristics
during 1982–2015 in the Yarlung Zangbo River basin from the
perspective of meteorology and agriculture was conducted in
this study. Non-parametric statistical tests including M-K test,
Moving t-test and Yamamoto test were adopted to implement
long-term trend analysis and abrupt change detection, further
exploring the possible causes of drought evolution. The
conclusions are as follows:

(1) The whole basin presented a wetting trend during 1982
to 2015. Meteorological and agricultural drought of annual
and growing season scales in the YZR basin showed an
abrupt change from wetting to drying in the year of 2000,
indicating a trend of alleviating first and then aggravating
during 1982 to 2015. Meteorological drought represented
by scPDSI and SPEI changed from moderate drought to
moderate wet before 2000 while it was opposite after 2000,
and agricultural drought alleviated from severe drought to
moderate drought during 34 years.

(2) Both meteorological and agricultural drought in the basin
showed a moderate drought in the downstream after 2000

and the upstream changed to slightly dry. The driest area
indicated by meteorological drought in the basin moved
from the midstream to the southeast downstream, while
it indicated by agricultural drought shifted from the east
midstream and north downstream to the south downstream.

(3) Non-significant increasing and non-significant decreasing
trends of the annual and growing season meteorological
drought consistently hold the greatest and almost equivalent
proportions. Areas with extremely significant decreasing
trend were mostly distributed in the west upstream
and southwest downstream, whereas the midstream and
northwest downstream mainly showed extremely significant
increasing trends.
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