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This paper aims to present a multifractal approach of the turbulent atmosphere, by

proposing that it can be considered a complex system whose structural units support

dynamics on continuous but non-differentiable multifractal curves. Implementing the

theoretical framework of multifractality through non-differentiable functions in the form

of scale relativity theory with arbitrary and constant fractal dimension, the minimal vortex

of an instance of turbulent flow is considered. The results of this assumption lead to an

equation that describes the minimal vortex itself, and the velocity fields that compose

it, the vortex and turbulent energy dissipation derived from the vortex being plotted

and studied. With its structure mathematically described, while employing a classical

dynamical turbulence model and relations between turbulent energy dissipation and

the minimal vortex, relations are then extrapolated to allow for the solving of multiple

turbulent parameters using the inner and outer length scales of the turbulent flow.

These equations are then solved as altitude profiles with the necessary length scales

obtained from processing lidar data. Finally, profiles are taken periodically and assembled

into timeseries, in order to exemplify the method and to compare the results with

known literature.

Keywords: turbulence, multifractal, atmosphere, non-differentiable, vortex, lidar, PBL

INTRODUCTION

Determinism does not necessarily imply regulated behavior or predictability in atmosphere
dynamics. In the standard (linear) analysis focused on atmosphere, unlimited predictability was
a fundamental quality of atmosphere dynamics. Development of non-linear analysis and the
discovery of laws regarding chaotic behavior demonstrated that not only does the reductionist
analysis method, on which the entirety of atmosphere was grounded so far, has limited applicability,
but also that unlimited predictability is not an attribute of the atmosphere, but an expected
consequence of simplifying its description through linear analysis (Badii, 1997; Hou et al., 2009;
Mitchell, 2009; Deville and Gatski, 2012).

The chaotic and non-linear nature of the atmosphere is both structural and functional, and
interactions between entities of the atmosphere determine reciprocal conditionings of the types
microscopic-macroscopic, local-global, individual-collective, and others. Within this theoretical
framework, the universality of the laws describing atmosphere dynamics becomes obvious and
must be seen in the used mathematical procedures. There is increasing discussion regarding
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non-differentiable implementations in the description of
atmosphere dynamics (Badii, 1997; Hou et al., 2009; Deville and
Gatski, 2012).

Usually, models used to describe atmosphere dynamics are
based on the uncertain hypothesis that the variables describing it
are differentiable (Deville and Gatski, 2012). The success of these
models must be understood sequentially on domains in which
differentiability and integrability are still valid. The differential
and integral procedures, however, “suffer” when describing
processes regarding atmosphere dynamics which imply non-
linearity and chaos (which is usually the case) (Hou et al., 2009;
Deville and Gatski, 2012).

To describe atmosphere dynamics, while remaining faithful
to the differentiable and integrable mathematical procedures,
it is necessary to explicitly introduce scale resolution in the
expression of the variables, and in the fundamental equations
which govern atmospheric dynamics (Nottale, 2011;Merches and
Agop, 2016; Agop and Paun, 2017). This means that any variable,
dependent, in a “classical sense,” only on spatial coordinates
and time depends, in the new, “non-differentiable sense,” on
scale resolution. Or, instead of “working” with a single physical
variable described by a strict non-differentiable function, we
will “work” only with approximations of these mathematical
functions obtained by averaging them on different scale
resolutions. As a consequence, any variable meant to describe
atmosphere dynamics will function as the limit of a family of
mathematical functions, this being non-differentiable for null
scale resolutions and differentiable otherwise (Mandelbrot, 1982;
Nottale, 2011; Merches and Agop, 2016; Agop and Paun, 2017).

This mode of describing atmosphere dynamics obviously
implies the development of a new geometrical structure and
a theory compatible with these structures for which dynamics
laws, invariant to spatial, and temporal transformations, are
integrated with scale laws invariant to the transformations
of scale resolutions. In our opinion, such a geometrical
structure can be obtained through the concept of fractal,
the physical model associated being the fractal atmospheric
dynamics either in the form of scale relativity theory
with arbitrary and constant fractal dimension (Merches
and Agop, 2016; Agop and Paun, 2017), or in the form
of scale relativity theory on Nottale theory (Nottale,
2011).

In the present paper a multifractal model describes the
atmosphere dynamics and correspondences of this model with
experimental data are proposed.

MATHEMATICAL MODEL

The atmosphere, both functionally and structurally, is a
multifractal; such a hypothesis is sustained by the following
typical example: between two successive collisions the trajectory
of any atmosphere particle is a straight line that becomes non-
differentiable at the impact point. Considering that all collisions
impact points form an uncountable set of points, it results that the
trajectories of the atmospheric particles becomes continuous and
non-differentiable curves. Now, considering both the diversity of

atmospheric particles and the variety of the collision processes
between its particles, the atmosphere becomes a multifractal.
Therefore, the fundamental hypothesis of our mathematical
model is that the dynamics of the atmospheric entities (particles)
will be described by continuous but non-differentiable curves
(multifractal curves). In such context, the dynamics of the
atmosphere entities are described through the operator [see
Appendix A—relation (15A)] (Arnold, 1980; Baker and Gollub,
1996; Ott, 2002; Cristescu, 2008):

d̂

dt
= ∂t + V̂ l∂l +

1

4

(

dt
)

2
f (α)

−1
Dlp∂l∂p (1)

where

V̂ l = V̂ l
D − V̂ l

F

Dlp = dlp − idlp

dlp = λl+λ
p
+ − λl−λ

p
− (2)

d
lp

= λl+λ
p
+ − λl−λ

p
−

f (α) = DF {x, α (x) = α}

∂t = ∂

∂t
, ∂l =

∂

∂Xl
, ∂l∂p =

∂

∂Xl

∂

∂Xp
, i =

√
−1, i, l,

p = 1, 2, 3

The meanings of the variables and of the parameters from (1)
and (2) are extensively given in Appendix A; the general form
of the non-differentiable operator is given in (4A) (Cresson,
2007), the differentiable and non-differentiable velocities
are described in (5A) and (6A), and coefficients associated
to differential-non-differential transition are mentioned
in (3A).

The operator (1) plays the role of the scale covariant
derivative (see Appendix A), namely it is used to write
the fundamental equations of atmosphere dynamics in
the same form as in the classic (differentiable) case.
Under these conditions, applying the operator (1) to
the complex velocity fields from (2), in the absence
of any external constraint, the geodesics equations
(motion equations) take the following form [see
Appendix A—relation (17A)]:

d̂V̂ i

dt
= ∂tV̂

i + V̂ l∂lV̂
i + 1

4

(

dt
)

2
fα
−1

Dlk∂l∂kV̂
i (3)

This means that the local multifractal acceleration ∂tV̂
i,

the multifractal convection V̂ l∂lV̂
i and the multifractal

dissipation Dlk∂l∂kV̂
i, are balanced in any point of

the multifractal curve. Moreover, the presence of the

complex coefficient of viscosity type 1
4

(

dt
)

2
fα
−1

Dlk in the
dynamics of atmosphere specifies that it is a rheological
medium. So the atmosphere has memory, a datum by its
own structure.
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If the multifractalities are achieved by Markov—type
stochastic processes which involve Lévy type movements
(Mitchell, 2009; Nottale, 2011), then:

λi+λl+ = λi−λl− = 2λδil (4)

where λ is a coefficient associated to the differentiable—non-
differentiable transition and δil Kronecker’s pseudo-tensor.

Under these conditions, the equation of geodesics takes the
simpler form [see Appendix A—relation (22A)]:

d̂V̂ i

dt
= ∂tV̂

i + V̂ l∂lV̂
i − iλ

(

dt
)

2
fα
−1

∂ l∂lV̂
i = 0 (5)

or more, by separating motion on differential and non-
differential scale resolutions, hydrodynamic type equation results
[see Appendix A—relation (23A) and (24A)]:

d̂V i
D

dt
= ∂tV

i
D + V l

D∂lV
i
D −

[

V l
F + λ

(

dt
)

2
fα
−1

∂ l
]

∂lV
i
F = 0

d̂V i
F

dt
= ∂tV

i
F + V l

D∂lV
i
F +

[

V l
F + λ

(

dt
)

2
fα
−1

∂ l
]

∂lV
i
D = 0 (6)

In this case we discuss about “holographic implementation”
of the dynamics of the atmosphere through hydrodynamic
fractal “regimes” (i.e., describing dynamics atmosphere by using
hydrodynamic equations at various scale resolutions).

From the relations (6) it results that at differentiable scale
resolutions “operates” a specific fractal force:

f iF =
(

V l
F + λ

(

dt
)

2
fα
−1

∂l

)

∂ lV i
F (7)

For irrotational motions of the atmosphere dynamics, the
complex velocity field V̂ i takes the form:

V̂ i = −2iλ
(

dt
)

2
fα
−1

∂ i ln9 (8)

where 8 = −2iλ
(

dt
)

2
fα
−1

ln9 is the complex scalar potential of
the velocity fields and 9 is the states function.

Then substituting (8) in (5) the geodesics equation (for details
see method from Nottale, 2011; Merches and Agop, 2016; Agop
and Paun, 2017):

λ2
(

dt
)

4
fα
−2

∂ l∂l9 + iλ
(

dt
)

2
fα
−1

∂t9 = 0 (9)

In this case we discuss about “holographic implementations”
of the dynamics of atmosphere through Schrödinger fractal
“regimes” (i.e., describing dynamics atmosphere by using
Schrödinger type equations at various scale solutions).

RESULTS AND DISCUSSION

Dynamics of the Atmosphere at
Non-differentiable Scale Resolution
Through Hydronamic “Regimes”
The explicit form of the velocity field at non-differentiable
scale can be shown through the functionality of
“evolution” equations (i.e., hydrodynamic equations at
non-differentiable scale):

f i =
[

V l
F+λ

(

dt
)

[

2
f (α)

]

−1
∂l

]

∂ lV i
F = 0, (10)

∂lV
l
F = 0, (11)

The first of these equations corresponds to the canceling of the
specific multifractal force while the second equation corresponds
to the incompressibility of the atmosphere.

Generally, it is difficult to obtain an analytical solution for
our previous equations system taking into account its non-
linear nature [induced both by means of non-differentiable
convection V l

F∂lV
i
F , and by the non-differentiable dissipation

λ
(

dt
)

[

2
f (α)

]

− 1
∂l∂

lV i
F].

We can still obtain an analytic solution in the case of a
plane symmetry (in x, y coordinates) of the dynamics of the
atmospheric. For this purpose, let us consider the Equations (10)
and (11) in the form:

u∂xu+ v∂yu = σ∂2yyu, (12)

∂xu+ ∂yv = 0, (13)

where we substituted

VFx = u
(

x, y
)

, VFy = v
(

x, y
)

, σ = λ
(

dt
)

[

2
f (α)

]

−1
, (14)

First of all, one needs to consider the situation at hand given by
the complexity and difficulty of the equations of the atmospheric
multifractal: ideally, a three-axis solution would have been
reached, but as we have mentioned, this is an exceedingly difficult
task. In any case, because the model produces realistic results,
as we shall see, a physical interpretation of the phenomena is
that our plane-symmetrical multifractal velocity field might be a
projection of a true, complete multifractal velocity field.

Using the similarities method (Schlichting and Gersten, 2017)
to solve the equations system (12) and (13) with the conditions

lim
y→0

v
(

x, y
)

= 0, lim
y→0

∂u

∂y
= 0, lim

y→∞ u
(

x, y
)

= 0, (15)

and a constant flux moment per unit of depth,

q = ρ

∫ +∞

−∞
u2dy = const., (16)
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we obtain the velocity fields as solutions of the Equations (12) and
(13) in the form:

u =
1.5
(

q
6ρ

)
2
3

(νx)
1
3

sech2









0.5y
(

q
6ρ

)
1
3

(νx)
2
3









, (17)

v =
1.9
(

q
6ρ

)
2
3

(σx)
1
3















y
(

q
6ρ

)
1
3

(σx)
2
3

sech

2 







0.5y
(

q
6ρ

)
1
3

(σx)
2
3









−tanh









0.5y
(

q
6ρ

)
1
3

(σx)
2
3























, (18)

The above equations are simplified greatly if we introduce both
non-dimensional variables:

X = x

x0
, Y = y

y0
, U = u

w0
, V = v

w0
, (19)

and non-dimensional parameters:

ξ = σ

σ0
, σ0 =

y0
3
2

x0

(

q

6ρ

)
1
2

, w0 =
1

(

y0
)
1
2

(

q

6ρ

)
1
2

, (20)

where x0, y0, w0, and σ0 are specific lengths, specific velocity, and
“fractality degree” of the atmosphere. The normalized velocity
field is obtained:

U = 1.5

(ξX)
1
3

sech2

[

0.5Y

(ξX)
2
3

]

, (21)

V = 1.9

(ξX)
1
3

{

Y

(ξX)
2
3

sech
2
[

0.5Y

(ξX)
2
3

]

− tanh

[

0.5Y

(ξX)
2
3

]}

, (22)

In Figures 1A–D, 2A–D the dependences of velocity fields
U
(

x, y
)

and V
(

x, y
)

for various fractal degrees ξ and a given
rotation angle θ are presented.

The above dependences specify the non-linearity behaviors
of the velocity fields: a multifractal soliton for the velocity
field across the Ox axis, respectively, “mixtures” of multifractal
soliton—multifractal kink of the velocity fields across the Oy axis.
The multifractality of the atmosphere dynamics is “explained”
through its dependence from scale resolutions (Figures 1, 2).

The velocity fields (21) and (22) induces the multifractal
minimal vortex

� =
(

∂U

∂Y
− ∂V

∂Y

)

= 0.57Y

(ξX)2
+ 0.63ξ

(ξX)
4
3

tanh

[

0.5Y

(ξX)
2
3

]

+ 1.9Y

(ξX)2
sech2

[

0.5Y

(ξX)
2
3

]

− 0.57Y

(ξX)2
tanh2

[

0.5Y

(ξX)
2
3

]

(23)

−
[

1.5

(ξX)
2
3

+ 1.4Y2

X (ξX)
5
3

]

sech2

[

0.5Y

(ξX)
2
3

]

tanh

[

0.5Y

(ξX)
2
3

]

,

In Figures 3A–D the dependences of minimal vortex field � for
various fractal degrees ξ and a given rotation angle θ is presented.

The above dependences specify the non-linear behaviors
(through fractal degrees) of the minimal vortex field.

Energy Injection and Dissipation in
Multifractal Turbulence
In turbulence, energy is injected in l0 units, through a “cascade” of
intermediary ln scales, toward the dissipation scale ld. We admit
that this process can be described mathematically through the
series of discrete scale lengths:

ln = 2−nl0, n = 0, 1, 2 . . . , (24)

given the associated wavenumbers:

kn = 1

ln
, (25)

We follow with an analysis neglecting numerical factors, with
the exception of those resulted from successive multiplications.
Thus, if the specific kinetic energy of the “turbulent fluctuations”
associated to the scale ln is En, then it is possible to define by
means of vn as the average value of the velocity difference for ln
in the form:

En = vn
2, (26)

Then, the corresponding time interval can be defined as:

tn = ln

vn
, (27)

We then admit that a certain fraction of the specific energy
corresponding to the scale ln is transferred to the scale ln+1 during
a period tn. As a consequence, the specific energy transfer rate for
n order units is given by the expression:

εn = En

tn
= vn

3

ln
, (28)

In the case of “stationary turbulence” the energy conservation
law implies:

εn = 〈ε〉 , l0 > ln > ld, (29)

where 〈ε〉 is the average dissipation rate. We remind that
〈ε〉 found in (29) can be interpreted both as the rate of
energy injection and the rate of energy transfer; the last is a
relevant “measure” for the dynamics of the inertial domain.
As regards the previous idea, we agree with the addressed
Kraichnan critics (Kraichnan, 1974) of Kolmogorov modified
models (Kolmogorov, 1962) observing that in these the central
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FIGURE 1 | Normalized velocity field U, for θ = 180◦; (A) ξ = 0.5; (B) ξ = 1; (C) ξ = 1.5; and (D) ξ = 2.

role of the dissipation is arbitrary as long as the specific energy
conservation does not provide a connection between the local
dissipation rate and local energy transfer rate. From (28) and (29)
it results:

vn = 〈ε〉 13 ln
1
3 , (30)

and from (26) we obtain:

En = 〈ε〉 23 ln
2
3 , (31)

an expression which, after Fourier transformation, is identical
to its counterpart in Kolmogorov theory (Kolmogorov, 1962;
McComb, 1990).

In the following let us consider the hypotheses that the average
number of “vortex fragmentation” is N. Or, a scale unit ln it is
supposed to induce N subunits of scale ln+1 for each value of n.
Thus, the “fractional volume reduction,” from one “generation”
to the others, is given by the equation:

θ = Nln+1
3

lǫn
3

= N

23
≤ 1, (32)

in which the second equality is explained through (24).
Furthermore, if we admit that the largest units “fill” all the space
they have at their disposal, then the n-th generation occupies
the space:

θn = θn, (33)

which will be occupied with units of scale ln.
Now, we return to the previous argument, but limit ourselves

to the “matter” volumes of n-th generation with a turbulent
dynamic. Or, in these “regions,” (30) maintains its functionality.
However, the relation between the globally averaged specific
energy and locally averaged speed vn is supposed to be:

En = θnvn
2, (34)

expressions which, by using the relations (30), (32), and (33) takes
the form:

En = 〈ε〉 23 ln
2
3

(

N

23

)
n
3

, (35)
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FIGURE 2 | Normalized velocity field V, for θ = 180◦; (A) ξ = 0.5; (B) ξ = 1; (C) ξ = 1.5; and (D) ξ = 2.

Also, introducing:

N = 2f (α), (36)

and the relation (24) to eliminate n, (35) can be written as:

En = 〈ε〉 23 ln
2
3

(

ln

l0

)−B(α)

, (37)

where we introduce the notation:

B (α) =
[

f (α) − 3
]

3
, (38)

For an atmosphere with a mono-fractal behavior our model is
reduced to the standard β model (Benzi et al., 1984; Paladin and
Vulpiani, 1987; McComb, 1990).

Returning to the definition of the average turbulent energy
dissipation rate, Tatarski finds the following definition for
stationary atmospheric turbulence (Tatarski, 1961).

ε ∼= 0.353ld
2
�3, (39)

Now, through (24), we can establish a number n such that the
first, largest scale and the dissipation scale, are contained in the
following equations:

nl0 = − log2

(

ld

l0

)

, (40)

In this manner, nl0 is the number of instances of vortices of ln
scales that are fractionated into an average of N subunits of ln+1

scales in the energy cascade, starting from energy injection to
dissipation. Using the relations (34) and (37) in this manner,
combined with (40), we find:

〈ε〉 = 0.0441 ·
(

N
3
2 vld

3

l0

)

·2
[

log2

(

ld
l0

)

·
(

log2 N−5
3

)]

, (41)

〈�〉 ∼=
1

2
·
(√

Nvld

l0
1
3 ld

2
3

)

· 2
{

1
3

[

log2

(

ld
l0

)

·
(

log2 N−5
3

)]}

, (42)

where, vld is the velocity difference between two points separated
by ld. Then, solving for N, it results:

N ∼= 9.1895 ·
(

〈�〉6 l04ld2

vld
6

)
1
5

, (43)
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FIGURE 3 | Multifractal minimal vortex field �, for θ = 180◦; (A) ξ = 0.5; (B) ξ = 1; (C) ξ = 1.5; and (D) ξ = 2.

With (40) and (41) it is now possible to construct the expressions
for the kinetic energy of the first and last “stages” of turbulent
fluctuations, taking into consideration (35):

El0 = 0.1248 · vld
2N

(

ld

l0

)

[

2
9 (1.4426 lnN−5)

]

, (44)

Eld = 0.1248 · vld
2N



1−
ln

(

ld
l0

)

2.0799



 (

ld

l0

)

[

2
9 (1.4426 lnN+5)

]

, (45)

The fraction
ld
l0
is necessarily less than unity, so the shift of the

“–” to a “+” sign will produce a smaller number; this gives the
logical conclusion that Eld is necessarily smaller than El0 . In any
case, between the liminal stages of the energy cascade, there are n
stages with their own energy En, and all of them can be calculated
in this manner, using only length scales and the average of
the multifractal minimal vortex obtained by averaging obtained
values in the vortex (Equation 23) in order to first obtain N (43).

Correspondences of the Model With
Experimental Data
The introduction of the dissipation and injection scales is
performed to verify equations with experimental data, and, by
using experimental data to solve a number of these equations,
to investigate the results. In the following segment of this
paper, we present simulations of these various equations with
a varying ξ non-dimensional parameter (Figures 1, 2), and we
compare 〈ε〉 with measured data obtained via a lidar platform
(Figure 6). For the sake of convenience, this theory used to
construct ε(z) profiles with lidar data shall be referred to as
the “Ros̨u-Tatarski method”; the finer details of this method
are contained in a previous study (Rosu et al., 2019). This
comparison is of qualitative nature; it is of interest to check
if the profile yielded by theory in this study is comparable in
evolution and order to a verified profile. Additionally, timeseries
of 〈ε〉, nl0 and N altitude profiles are shown (Figures 7–9). The
experimental data used to solve these equations is calculated by
analyzing lidar RCS (Range Corrected Signal) data obtained and
compiled on the 28th of May 2017 at the Optical Atmosphere
Spectroscopy and Lasers Laboratory, part of the Faculty of
Physics in the “Alexandru Ioan Cuza” University, at the
coordinates 47.19306North and 27.55556 East. Themethodology
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FIGURE 4 | Turbulent dissipation rate field ε, for θ = 180◦; (A) ξ = 0.5; (B) ξ = 1; (C) ξ = 1.5; and (D) ξ = 2.

FIGURE 5 | Lidar-obtained RCS timeseries on the 28th of May 2017; temporal resolution: 1min; spatial resolution: 3.75m.
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FIGURE 6 | ε(z) profile (red) calculated with multifractal theory coupled with lidar-obtained length scales; ε(z) profile (black) calculated with Ros̨u -Tatarski method.

Length scales profiled on the 28th of May 2017, 20:05.

FIGURE 7 | ε(z) timeseries on the 28th of May 2017 calculated with multifractal theory and lidar-obtained length scales; temporal resolution: 3min; spatial resolution:

3.75m.

for obtaining the injection and dissipation scale profiles is reliant
on calculating the scintillation profiles of the lidar signal by
observing the variation between multiple RCS profiles (Rosu
et al., 2019).

The technical specifications of the main components of the
lidar platform utilized in the study are as follows: the laser
component is a Nd:YAG, producing pulses of laser at a frequency
of 30 Hz, with a wavelength of 532 nm, laser beam diameter
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FIGURE 8 | N(z) timeseries on the 28th of May 2017 calculated with multifractal theory and lidar-obtained length scales; temporal resolution: 3min; spatial resolution:

3.75m.

of 6 mm and a pulse energy of 100 mJ; meanwhile, the optical
component is a Newtonian LightBridge telescope with a primary
mirror diameter of 406 mm. The profiling frequency used in this
particular study yielded 1 profile everyminute. The lidar platform
utilized in the study has a spatial resolution of 3.75 m and
both technical details and results from previous measurement
campaigns were reported in the scientific literature (Papayannis
et al., 2014; Cazacu et al., 2018; Rosu et al., 2019). The profile
is calculated by software written in Python 3.6 (Rosu et al.,
2019). It must be mentioned that under 400m AGL, calculations
for the 〈ε〉 profile present many “mathematical domain errors,”
which are visible as blank spaces in the timeseries; this may
be a consequence of a number of factors, including a lack of
sufficient computing power, instances of division by zero in the
calculations, or others. The signal overlap altitude in most cases
is at most 200m from the lidar platform.

As mentioned, the length scale profiles used in this study
are obtained by first calculating scintillation profiles in order to
compile the structure coefficient of the refraction index profile
C2
N (z). According to Tatarski (1961), this can be calculated as:

σ2I (L) = 1.23 C2
N (L)k

7
6 L

11
6 (46)

with σ2I being the scintilation (or, in this case, the logarithm of the
standard deviation of light intensity) of a source of light observed
from a distance represented by the optical path L. The definition:

σ 2
I (L) = ln

(

1+
〈

I (L)2
〉

− 〈I (L)〉2

〈I (L)〉2

)

, (47)

is given, with I (L) being the intensity of the range-corrected
signal at the particular point in the optical path, which is
analogous with the RCS intensity. Given the fact that the lidar
platform produces 1 RCS profile every minute in this particular
study, we have performed our averaging calculations necessary
for the obtaining of the scintillation using 3 profiles. Thus, every
3 RCS profiles we obtain one 〈ε〉 for our timeseries, and an 〈ε〉,
nl0 N, and profile is yielded every 3min. Having determined the
C2
N (z) profile, it is now possible to calculate, with or without a

degree of approximation, the length scales. The inner scale profile
is linked to scintillation (46) (Tatarski, 1961):

σ 2
I (L) ∼= 0.615 C2

N (L) L3ld (L)
−7
3 , (48)

while the outer scale is linked to the C2
N (z) profile (Tatarski,

1961):

C2
N (z) = l0(z)

4
3
(

∇n (z)
)2
, (49)

With turbulent eddies within the inertial subrange, the refraction
index profile can be approximated from the definition of the
respective structure coefficient (Tatarski, 1961; Yura, 1979):

n (z) ∼= n0 −
√

C2
N (z) z

2
3 , (50)

which then gives us the means to extract the outer scale
profile (49).
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Regarding the potential influence of noise-related errors to the
calculation of the scintillation profile used to obtain the length
scales, the overall signal uncertainty added by noise is:

1V =
√

NSF2
(

V − Vb

)

+ (1Vb)
2, (51)

where V is raw lidar signal, Vb is background lidar signal, and
NSF is the “noise scale factor,” which is equal to the standard
deviation of the shot noise divided by the square root of average
shot noise (Liu et al., 2006). It is determined that the signal
uncertainty, in the case of attenuated backscatter, has values
of the order 10−7 or lower (Liu et al., 2006), while a typical
attenuated backscatter profile has values of the order 10−5 or
lower; thus, this uncertainty represents variations hundreds of
times smaller than the actual values of the profile. Since the
model subtracts the “dark” signal [generated by photocathode
thermionic emission, which is collected before the measurements
begin (Hamamatsu, 2007)] from the raw signal, we can assume
that such uncertainty is even lower. Also, the fact that the
photomultiplier component of the lidar platform utilized in this
study was being operated in analog mode removes the need to
consider possible instances of “afterpulsing,” which only take
place when a photomultiplier component is operated in a “pulse
detection mode” (Hamamatsu, 2007). Finally, the fact that the
photomultiplier component of the lidar platform used in this
study is a PMT (photomultiplier tube) presents an advantage,
since excess noise decreases with an increase in the average
photo-multiplication gain in PMTs (Liu et al., 2006).

First of all, velocity fields, the multifractal minimal vortex
and its dissipation field are exemplified (Figures 1–4); the
maximum intensity of the vortex lies close to the center, and as
expected, the dissipation is also strongest there. Interestingly, the

rotor structure presents a “downward-spiral” motion, wherein
the minimum value and the maximum value are close to
each other, and the trajectory from one to the other seems
to be the shortest along the x-axis toward 0. The physical
interpretation of this representation could be that it shows the
manner in which the minimal vortex dissipates completely,
with its kinetic energy being converted into internal energy.
An increase in the non-dimensional parameter ξ produces a
smaller minimum value in the vortex, and a “flatter” dissipation
field (larger in size, with smaller values), however an increase in
the parameter produces velocity fields that present a “sharper”
peak and a more spread-out minimal region in a rotating
manner. We assume that these simulated phenomena take place
in relatively calm, from a meteorological perspective, ground-
level conditions.

The following figure is a timeseries of the RCS lidar signal
used to calculate the length scales according to the presented
theory (Figure 5); this figure is presented in order to ascertain
with accuracy the location of the PBL (Planetary Boundary Layer)
relative to values obtained in the rest of the timeseries. The
comparison between 〈ε〉 obtained from this paper’s theory and
〈ε〉 altitude profiles calculated through the Ros̨u-Tatarski method
(Figure 6) seems to highlight many similarities. The two profiles
are quite close in terms of numerical order and evolution, with
the first 〈ε〉 profile exhibiting amore dynamical behavior than the
lidar-obtained 〈ε〉 profile. Given that the first profile is calculated,
through N (43), with just the average of the purely-theoretical
multifractal minimal vortex and with the maximal and minimal
length scales, these similarities are important.

Regarding the timeseries, 〈ε〉 values appear to be lowest in the
region of the PBL (Figure 7); multiple studies seem to support
the fact that turbulent dissipation is lowest at, or just above, the
PBL, with both experimental and theoretical data (Chen, 1974;

FIGURE 9 | n(z) timeseries on the 28th of May 2017 calculated with multifractal theory and lidar-obtained length scales; temporal resolution: 3min; spatial resolution:

3.75m.
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Shupe et al., 2012). The timeseries of N generally do not show
values larger than 8 (Figure 8), which confirms the previously
presented theory (32). Any values that may be slightly higher can
be attributed to the various approximations taken throughout
the theory, or to calculation errors, however in general the
results seem to support the theory. The altitude variability of nl0
shown by the timeseries seems low, roughly between 14 and 17
(Figure 9); the equations do produce some non-integer results,
which we can attribute once again to the taken approximations
or calculation errors.

It must be highlighted that N and nl0 values seem highest
in the PBL, with dissipation values being lowest. It is possible
that this difference can be interpreted such that the turbulent
behavior of the atmosphere in the PBL is more active, and more
“resilient” to dissipative effects, which does indeed justify why
this layer is such a stable and easily-recognizable feature of the
atmosphere in most meteorological scenarios. The horizontal
stripes of either very high or very low values in the time series,
starting from certain intervals above the PBL, are produced due
to signal noise present in the RCS lidar data used to calculate the
length scales; this noise appears because of the influence of clouds
in the vicinity of the PBL.

A simple analysis using a more discrete variation of the
non-dimensional parameter ξ is also performed (Table 1); the
maximal and minimal length scales used are l0 = 260 m, ld =
0.0035m. First values of ξ for whichN ≥ 8 are shown; it is found
that realistic values of N are produced with ξ between 0.3 and
2.1. A number of important correlations can be inferred; some of
these are obvious when analyzing the equations that dictate the
parameters. First of all, a higher vld produces a lower N; second
of all, the dissipation seems to be more or less independent to N.

CONCLUSIONS

In this work a holographic (multifractal) approach has been
used to describe the non-linear behavior of the atmosphere,
by considering that it can be assimilated to a complex system
whose structural units support dynamics on continuous and
non-differentiable curves. We have named this system the
atmospheric multifractal, and the formulation of the motion
operator of this atmospheric multifractal has allowed an analytic
solution in the case of a plane symmetry for the dynamics of
this system. The rotor of the obtained normalized velocity fields
is then interpreted as the multifractal minimal vortex, which
corresponds to the dissipation scale in the turbulent energy
cascade. The velocity fields and the vortex are then plotted using
multiple instances of a non-dimensional parameter that is linked
to their fractal dimensions, and these results are discussed. Using
this new formulation of the minimal vortex, it is then possible
to extract an expression of turbulent energy dissipation in the
atmospheric flow, and to construct an equation system that can
describe the behavior of the cascade of vortices in terms of their
scales, the average number of vortex fragmentations per “stage,”
and the total number of stages of fragmentation, from injection
to dissipation. In this equation system, from an atmospheric
modeling and forecast point of view, the remaining unknown

TABLE 1 | Calculation of �, ε, vld , and N with varying ξ .

ξ (adim.) Ω (m/s) ε (m∧2/s∧3) vld (m/s) N (adim.)

0.2 0.1116 0.001839 0.229 19.6844

0.3 0.1447 0.002068 0.797 6.015

0.4 0.1578 0.001832 1.04 4.8521

0.5 0.1622 0.001529 1.127 4.5548

0.6 0.1627 0.001258 1.139 4.5162

0.7 0.1616 0.00103 1.115 4.5942

0.8 0.1598 0.000841 1.075 4.7372

0.9 0.1578 0.000687 1.028 4.9206

1 0.1557 0.000561 0.979 5.1313

1.1 0.1537 0.000458 0.932 5.361

1.2 0.1519 0.000374 0.887 5.6043

1.3 0.1501 0.000306 0.846 5.8573

1.4 0.1485 0.000251 0.807 6.1172

1.5 0.1471 0.000207 0.771 6.3818

1.6 0.1458 0.000171 0.739 6.6495

1.7 0.1446 0.000142 0.709 6.9188

1.8 0.1435 0.000119 0.681 7.1887

1.9 0.1425 0.0001 0.656 7.4583

2 0.1415 0.000085 0.633 7.7271

2.1 0.1407 0.000073 0.612 7.9943

2.2 0.1399 0.000064 0.592 8.2596

quantities are the injection and dissipation scales themselves;
however, these quantities can be obtained as an atmospheric
profile through a method detailed in one of our previous studies
with a lidar platform. Using these profiles, time series of the
turbulence parameters detailed in this study have been compiled,
and it has been found that, especially regarding the known
behavior of the PBL, they are in accord with the presented
theory and existing scientific literature. Also, an altitude profile
comparison has been made between turbulent energy dissipation
calculated with the theory presented in this study and turbulent
energy dissipation calculated with theory from one of our
previous studies.

The success of these results leads us to believe that a
future study might implement these theories, coupled with
theoretical means of determining the inner and outer length
scales, in order to produce forecasts of turbulent parameters;
this, of course, using measured, ground-level, initial parameters.
A future study might also include multiple other methods
of experimentation and validation using platforms that would
contain both traditional measurement instruments and remote
sensing instruments. Finally, if these theories, along with many
others, would be implemented into a fully functional model, a
comparison with other well-known models could be performed
in a potential new study.
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