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Effective identification of induced seismicity and real-time management of seismic
risks are hot topics due to increasing induced seismicity in areas related to energy
exploitation. Existing decision-making tool for managing seismic risks, known as the
traffic light system, is not robust enough. To meet the increasing needs for safe mining
of energy at production sites, finding an advanced and efficient method to improve the
traffic light system is essential. In recent years, machine learning, an advanced inductive
and analytical method, has been widely used in seismology. In this context, research
gaps associated with the identification and management of induced seismicity, as well
as the current achievements of machine learning in addressing induced seismicity
problems, are reviewed. A basic framework of using machine learning method to
optimize the traffic light system in the industrial production process is first proposed.
Then, its feasibility and rationality are demonstrated by similar cases. This framework
may provide a reference for the development of a risk-based adaptive traffic light
management system.

Keywords: induced seismicity, machine learning, discriminating earthquakes, managing seismic risk, traffic light
system

HIGHLIGHTS

– The progress and gaps in injection-induced seismicity are reviewed.
– The concepts and current challenges of traffic light systems are reviewed.
– The main methods of machine learning and their applications in induced seismicity are

summarized.
– The basic framework for improving the traffic light system using machine learning method

is proposed.
– The feasibility and rationality of the framework are demonstrated by similar cases.

Abbreviations: AE, acoustic emission; AI, artificial intelligence; AIC, Akaike information criterion; ANN, artificial neural
network; ATLS, adaptive traffic light system; BPNN, back propagation neural network; CLVD, compensated linear vector
dipole; CNY, Chinese Yuan; CO2, carbon dioxide; DC, double-couple; EGS, enhanced geothermal system; ETAS, epidemic-
type aftershock sequence; FLAC, fast Lagrangian analysis of continua; GPR, Gaussian process regression; Graviquakes,
fluid removal from a stratigraphic reservoir that can cause normal faults-related earthquakes; ISO, isotropic; LSSVM,
least square support vector machine; ML, machine learning; MT, moment tensor; PGV, peak ground velocity; RBF, radial
basis function; RIS, reservoir-induced seismicity; RVM, relevance vector machine; SVM, support vector machine; THM,
thermal-hydrological-mechanical; TLS, traffic light system; TOUGH, transport of unsaturated groundwater and heat; US,
the United States.
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INTRODUCTION

Earthquakes can cause the sudden release of elastic energy
in the Earth. Generally, natural earthquakes are caused by
crustal movements, and the majority of strong seismic events
in the world are natural earthquakes and have tectonic
origin. Unlike natural earthquakes, most induced seismic events
are usually related to anthropogenic production activities.
The mechanisms that account for induced seismicity include
changes in the state of stress, pore pressure, volume, and
applied forces or loads (McGarr et al., 2002). The earliest
induced earthquake records can be traced back to the 1920s
(Pratt and Johnson, 1926), and the most classic case of
wastewater reinjection-induced seismicity occurred in Denver,
Colorado, in the 1960s (Evans, 1966; Healy et al., 1968;
Hsieh and Bredehoeft, 1981).

The potential of energy technologies to induce earthquakes
is known (National Research Council, 2013), mainly including
wastewater disposal (e.g., Pratt and Johnson, 1926; Davis and
Frohlich, 1993; Currie et al., 2018), extraction and injection of
natural gas (e.g., Grasso and Wittlinger, 1990; Herber and de
Jager, 2014; Zbinden et al., 2017), geothermal energy exploitation
(e.g., Majer and Peterson, 2007; Martínez-Garzón et al., 2016;
Boyd et al., 2018), hydraulic fracturing (e.g., Rutqvist et al.,
2015; Bao and Eaton, 2016; Ghofrani and Atkinson, 2016)
and Carbon dioxide (CO2) geological sequestration (Goertz-
Allmann et al., 2014, 2017a,b). Frequently felt earthquakes
(3 ≤ M < 4.5) can create negative public sentiments and
even hinder the smooth progress of industrial production. For
instance, in the Basel Geothermal Field, Switzerland, enhanced
geothermal system (EGS) exploitation projects induced a series
of locally felt earthquake events. The damage claims in Basel
amounted to more than $9 million, and these projects were
temporarily suspended due to strong protests from the general
public (Giardini, 2009). A similar case occurred in the Groningen
gas field, the Netherlands. In the 28 years since the gas was
extracted in 1991, there have been approximately 320 earthquakes
with M > 1.5, including 3 M≈3.5 earthquakes. These growing
seismic events have caused widespread building damage, social
concern and political upheaval (Sintubin, 2018; Vlek, 2018,
2019a,b). Moderate magnitude earthquakes (4.5 ≤ M < 6)
may threaten public safety and cause heavy economic losses.
For instance, in the Changning shale gas block, Sichuan Basin,
China, a moderate intensity earthquake (ML 5.7) occurred on
16 December 2018. In this event, 17 persons were injured,
more than 390 houses were damaged, and 9 houses collapsed.
The direct economic loss reached approximately 50 million
CNY (Lei et al., 2019). Another famous induced earthquake
is the MW 5.5 Pohang earthquake. The earthquake occurred
on 15 November 2017, in Heunghae, Pohang in the North
Gyeongsang Province in South Korea (Kim et al., 2018). The
earthquake injured 82 people, killed one and left about 1,500
homeless, moreover, it caused serious damage to infrastructure
and more than 75 million US dollars (Ellsworth et al., 2019).
More cases of human-induced seismicity can be found in some
reports and papers (e.g., Gibson and Sandiford, 2013; Folger
and Tiemann, 2017; Foulger et al., 2018). Therefore, managing

the risks of induced seismicity is of great significance for the
smooth progress of industrial production and the development
of energy technology.

In recent years, due to the fossil energy crisis, more
resources from deeper in the Earth are needed, and in turn,
the induced seismicity becomes more prominent. Although
the traffic light system (TLS) has been used to manage
the risk of induced seismicity, there remain two unresolved
problems at present: (1) the differences between natural and
induced earthquakes cannot be completely distinguished; (2)
the evolving risk of deep fluid injection-induced seismicity is
still difficult to manage effectively and timely, especially in the
post-injection phase after shut-in. To solve these two problems,
many different types of data related to injection-induced
seismicity are needed, including geological data, seismicity and
operational parameters (Yang et al., 2017). Unfortunately, the
characteristics of the induced seismicity and their relationships
with the production parameters are usually hidden in these
large and disorderly data, and we cannot extract effective
information from the large amount of data merely by analytical
or conventional methods.

The rapid development of computer science provides
technical support for big data processing, especially machine
learning techniques. Machine learning (ML) was proposed in
the computational model theory of neural networks in the
1940s (McCulloch and Pitts, 1943). It is a computer algorithm
that can automatically improve itself through experience
(Mitchell, 1997), and also a transformation chain from data
to decision. ML can use mathematical and statistical methods
to determine the intrinsic regulation from various data. To
date, it has evolved towards more advanced learning types
that are closer to the human brain, such as deep learning
(Hinton and Salakhutdinov, 2006), transfer learning (Pan
and Yang, 2010) and deep reinforcement learning (Mnih
et al., 2015). At the same time, ML has been widely used
in many fields, especially in seismology, such as for the
identification and prediction of earthquake events (e.g., Asim
et al., 2016; DeVries et al., 2018; Lubbers et al., 2018;
Rajguru et al., 2018; Corbi et al., 2019) and the classification
of seismic remote sensing images (e.g., Afonso et al., 2016;
Bialas et al., 2016; Frank et al., 2017), etc. However, the
achievements in solving induced seismicity by using ML-
based methods are rarely reported, especially in improving
traffic light systems.

In this context, we attempt to propose a basic framework
for improving current traffic light system that is, using machine
learning method to build a proxy model. This model could well
reflect the complex relationship between seismicity magnitude
and operational parameters. The paper is organized as follows.
The first section briefly reviews the research progress of induced
earthquakes related to fluid injection, including the explanation
of the mechanism, the discrimination of induced seismicity
and the concept of the traffic light system. Then, the main
methods of machine learning and their research achievements in
induced seismicity are summarized and reviewed systematically.
Finally, the basic framework of using machine learning method
to optimize the traffic light system is elaborated.
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REVIEW OF FLUID-INDUCED
SEISMICITY

Fault reactivation induced by fluid injection in industrial activity
is one of the main causes of seismicity (Ellsworth, 2013), and
Figure 1 displays this process. Identified factors affecting fault
reactivation mainly include the rate and volume of fluid injection
(Nicol et al., 2011), in-situ stress conditions (Rutqvist et al., 2010),
type and occurrence of the fault (Macdonald et al., 2012), and
physical and mechanical properties of host rocks (Figueiredo
et al., 2015). Notably, the most relevant role is played by fault
orientation versus dominant stress orientation. In this section,
the research progress and gaps in induced seismicity related to
industrial activities are reviewed briefly.

Mechanisms of Induced Seismicity
The Coulomb failure criterion based on Mohr-Coulomb theory is
commonly used to explain the mechanism of induced seismicity
(Healy et al., 1968) and can be defined as:

1CFS = 1τ− µ1σ′ (1)

where 1CFS is Coulomb stress, 1τ is the shear stress change
(MPa), µ is the friction coefficient on the fault, and 1σ′ is the
effective normal stress change (MPa), which can be calculated
according to the effective stress principle (Alcoverro, 2003):

1σ′ = 1 (σ− P) (2)

where σ is the normal stress (MPa) and P is the
pore pressure (MPa).

In Eq. (1), when 1CFS > 0, the fault loses stability and fails;
otherwise, it remains stable.

Based on different ways of fluid injection or extraction in
industrial production, Doglioni (2018) further summarized four
possible mechanisms, that is, fluid removal from a stratigraphic
reservoir that can cause normal faults-related earthquakes (also
called graviquakes), reinjection quakes, hydrofracturing quakes
and load quakes, as shown in Figure 2. For a more detailed
explanation of the mechanism of fluid-induced seismicity, please
refer to Shapiro (2015).

It is worth noting, however, that the Coulomb failure criterion
can only be used to simply evaluate whether a fault is reactivated,
and cannot truly reflect the entire physical process of fault failure
induced by industrial activities.

Discrimination of Natural and Induced
Seismicity
The first step for reducing seismic hazard is to effectively identify
induced seismicity among a large number of earthquake events.
Davis and Frohlich (1993) first proposed analytical approaches
to discriminate between induced and natural earthquakes in
industrial activity based on a set of YES or NO criteria. The
analytical approaches for differentiation mainly include physics-
based probabilistic models, statistics-based seismicity models
and source parameter approaches (Dahm et al., 2012). Table 1
lists the basic information about these three discrimination

methods, including theoretical bases, advantages, disadvantages,
and application scopes.

Physics-Based Probabilistic Model
The physics-based model is used to understand the complicated
relationship between fluid migration and seismic activity and
reveal the physical processes of induced seismicity by using
laboratory and in-situ measurements and numerical simulations
(e.g., Guglielmi et al., 2015; Zbinden et al., 2017). In recent
years, physics-based probabilistic models have been developed,
taking into account physical and statistical-stochastic factors
(Dahm et al., 2015).

This model can be used to quantify the probability of
event rate change induced by stress changes. However, it is
not suitable in case of insufficiently detailed data, such as
production/exploitation data and rock parameters (e.g., Passarelli
et al., 2012; Rinaldi and Nespoli, 2017).

Statistics-Based Seismicity Model
The statistics-based seismicity model directly uses the change
in statistical parameters in an earthquake catalog to determine
whether the rate of stress change caused by production exceeds
the change in natural stress. It is worth mentioning that the
changes in these parameters are likely related to human activities.
The epidemic-type aftershock sequence (ETAS) model (Hainzl
and Ogata, 2005) is often used to identify artificial factors in
seismicity event statistics.

The ETAS model is a combination of a constant background
activity rate and the behavior of aftershock sequences according
to the Omori-Utsu law (Tokuji et al., 1995). The total occurrence
rate can be calculated by the sum of Omori’s law for aftershocks
ν (t) and the background activity rate λ (t) (Lei et al., 2017):

ν (t) = K0
∑

ti<t
eα(Mi−Mc)

(t−ti+ĉ)
p̂

λ (t) = λ0 (t)+ ν (t)

 (3)

where K0 is a constant, α is a constant related to the magnitude
dependence, Mi is the magnitude of the i-th earthquake, Mc is
the estimated cut-off magnitude of completeness, ĉ and p̂ are
constants for Omori’s law.

When the background rate λ (t) >> 50% and the Omori’s
law aftershocks ν (t) are rare, the earthquake can be considered
artificially induced (Lei et al., 2008, 2013, 2017, 2019). In recent
years, improved statistical models have been proposed to forecast
and discriminate induced seismicity in the space-time-magnitude
domain (Gaucher et al., 2015; Zaliapin and Ben-Zion, 2016;
Grigoli et al., 2017).

Statistics-based methods do not need to consider complex
physical constraints, so their advantage is that few input data or
detailed models are required.

Source Parameter Approach
The source parameter approach attempts to discriminate between
induced and natural earthquakes by searching specific rupture
processes. It is generally believed that the hypocentral locations
of induced earthquakes are different in the range of human
activities. The source mechanism solution obtained by moment
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FIGURE 1 | The whole process of fault slip induced by fluid injection in industrial production. (A) Before fluid injection, the fault is closed under the pressure of normal
stress on both sides. (B) With the continuous injection of fluid during the production process, the pores and cracks in the fault are gradually filled with fluid. (C) When
pore pressure increases to a certain value, the fault slips because the effective normal stress on both sides is less than the shear stress; then, an earthquake is
induced.

tensor (MT) inversion helps in understanding the orientation and
type of fault and obtaining the subsurface stress field disturbance
caused by fluid injection (Grigoli et al., 2017).

The moment tensor inversion is an important physical
quantity describing different types of earthquakes. It consists of
double-couple (DC) and non-DC components, where the non-
DC includes isotropic (ISO) components and compensated linear
vector dipole (CLVD) components (Gilbert, 1971):

MT = MTDC
+MTnon-DC

= MTDC
+MTISO

+MTCLVD (4)

where MT is the moment tensor, which can be inversed by
MT = (GT

f Gf )
−1GT

f ũ, Gf is Green’s function, and ũ is the
ground motion. When a high proportion of ISO and non-DC
components occurs, an earthquake is likely to be induced because
natural earthquakes are often characterized by a nearly pure DC
source mechanism. This contrast provides an effective means to
discriminate induced from natural seismicity (Cesca et al., 2012).

The moment tensor inversion is usually combined with
other methods, such as waveform template matching (Skoumal
et al., 2015), source spectra, and stress drop estimation (Clerc
et al., 2016; Zhang et al., 2016). However, the source parameter
approach requires high-quality data. If the structural model is
not sufficiently accurate, a certain error appears in the analog

waveform, and the results of waveform inversion may have
significant deviations (Jechumtálová and Bulant, 2014).

It is worth noting that these three methods are often used in
combination with detailed seismicity source parameters (Dahm
et al., 2015). Some research cases and achievements in typical
regions are given in Table 2.

Relationship Between Operational
Parameters and Seismicity Magnitude
The operational parameters of fluid injection, such as wellhead
pressure, total injection volume, injection rate and injection
location, are the important factors affecting fault reactivation.
Understanding the relation between reservoir engineering
operations and corresponding seismic response is important
towards the optimization of production and mitigating seismic
hazard (Hofmann et al., 2018).

Some scholars have built analytical models based on statistical
methods. For instance, Nicol et al. (2011) conducted statistical
analysis of water injection data and seismic data from the 30
best reported seismicity sites. They found that the magnitude
was positively correlated with the fluid injection, which
could be expressed as M = 0.3353 ln 1V + 1.8061, where M
is the earthquake magnitude and 1V is the water injection
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FIGURE 2 | Fault failure is induced by four possible mechanisms: (A) graviquakes, (B) reinjection quakes, (C) hydrofracturing quakes, (D) load quakes. The black
solid Mohr circles represent the in-situ stress state of the fault before industrial production, while the blue dashed circles show the stress state after different
changes. The red dotted lines mark the failure envelope in the safe state, and the red corresponds to the critical state. The fault is considered to fail when the Mohr
circle is tangent to the envelope (as shown by the yellow star). [Modified from Doglioni (2018)] (This work is licensed under the CC BY-NC-ND license.
http://creativecommons.org/licenses/by-nc-nd/4.0/).

TABLE 1 | Basic information of three different discrimination methods.

Methods Theoretical basis Advantage Disadvantage Application scope

Physics-based
model

Coulomb failure criterion
Rate-state seismicity model
Background tectonic stress
rate

This model can quantify the
probability of an event rate
change caused by the induced
stress changes and investigate
physical processes governing
induced seismicity

This method can be difficult to
apply because of the limited
data availability and
computational ability

This model is suitable for
testing the occurrence of a
single event and observed
changes of event rate.

Statistics-based
model

Seismic statistical model
ETAS model

This method only requires less
seismic catalog input data

This method does not take into
account the physical
mechanism that control
induced seismicity

This method is suitable for
short- and medium-term
seismic activity patterns related
to human activities, such as
borehole fluid injections

Source parameter
approach

Focal mechanism solution
Specific rupture process of
induced seismicity
Background tectonic stress

This method not only allows us
to understand the type of fault,
but also reveals the specific
motion of the fault before and
after earthquake

This method is greatly affected
by external uncertain factors
such as anisotropic media and
data quality, and its robustness
is difficult to be guaranteed

This method is usually only
applicable to some large
seismic events of ML > 3
non-DC terms.

volume. McGarr (2014) studied some earthquakes induced by
unconventional oil and gas production in the central and eastern
United States and found that the maximum magnitude seemed to
be proportional to the total volume of the injected fluid but with

an upper limit. Under some assumptions, which can be found
in section 3 of McGarr (2014), the upper limit magnitude for a
given fluid injection activity could be estimated as M0 (max) =
G1V , where G is the shear modulus. Galis et al. (2017) analyzed
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TABLE 2 | Discrimination of natural and induced seismicity in some typical regions.

Source Seismogenic zone Seismicity event Discriminating method Research result

Passarelli et al., 2012 Tjörnes Fracture Zone
(Iceland)

1976.01.13 Kópasker
earthquake
(M 6.2)

Physics-based probabilistic
model and Bayes’ theorem

The probability of earthquake being
triggered by a dike was
approximately 60% to 90%

Cesca et al., 2012 Germany and adjacent
areas
(Central Europe)

1996.09.11 Teutschenthal
earthquake
(Mw 4.6)
1989.03.13 Völkershausen
earthquake
(Mw 4.9)

Full moment tensor inversion
and decomposition
(source parameter method)

The two events were induced by
pillar burst and roof collapse in
potash mines

Lei et al., 2013 Huangjiachang gas field
(Sichuan Basin, China)

2009.01–2010.07 Hundreds of
earthquakes
( > M 2)

Statistics-based seismicity
model and mode analysis of
injection rate and pressure

Seismic activity in this region was
induced by water injection during
natural gas production

Dahm et al., 2015 (1) Ekofisk oil field
(North Sea)
(2) Söhlingen gas field
(Northern Germany)
(3)Hydrocarbon reservoir
(Northern Italy)

2001 Ekofisk earthquake in the
North Sea
(Mw 4.3)
2004 Rotenburg earthquake in
Germany
(Mw 4.4)
2012 Emilia earthquake
In northern Italy
(Mw 6.1)

Physics-based probabilistic
model and source parameter
approach

(1) The Ekofisk earthquake had a
high probability of being triggered
and induced by depletion
(2) The Rotenburg earthquake was
triggered with a probability of about
74% and induced with a probability
of about 50%
(3) The Emilia earthquake was
probably entirely tectonic

Schoenball et al., 2015 Coso Geothermal Field
(Eastern California,
United States)

1981–2013 35,00 seismic
events

Statistical analysis of
space-time-magnitude

Distribution of nearest neighbor
distances in a combined
space-time-magnitude metric was
able to identify induced seismicity

Skoumal et al., 2015 Northeastern Ohio
(United States)

All Ohio earthquakes
catalogued since the arrival of
nearby EarthScope TA stations
in 2011.11.06

Template matching Template matching found the
swarms that could identify induced
seismicity due to natural
earthquakes lacked swarminess

Zhang et al., 2016 Western Canadian
Sedimentary Basin

2001.01.14—2015.06.13
9 seismic events ( > Mw 3)

Moment tensor solution and
Static stress-drop value
(source parameter method)

Focal depth could be the most
robust parameter in this area,
because focal depth of induced
seismicities was significantly smaller
than natural earthquakes

Albano et al., 2017 Emilia Romagna oil field
(Northern Italy)

2011.07.17 Emilia-Romagna
Earthquake
(Mw 4.5)
2012.05.20 Emilia-Romagna
Earthquake
(Mw 5.9)

Physics-based poroelastic
model

Anthropogenic activities only
accounted for less than 10% in Mw

4.5 earthquake, so 2012 Mw 5.9
earthquake may be related to
increased natural pressure

Lei et al., 2017 Shangluo shale gas site
block and its environs
(Sichuan Basin, China)

2014.12—2017.07
13 seismic events
( > Mw 3.5)

ETAS sequence model,
hypocenter relocation, Focal
mechanism solution and
Coulomb failure stress
numerical calculation

A series of seismicities with more
than Mw 4.7 were induced by
“short-term” injections for hydraulic
fracturing at depths of 2.3∼3 km

Lei et al., 2019 Changning shale gas block
(Sichuan Basin, China)

2018.12.16 main shock in
southwestern
(ML 5.7)
2019.01.03 mainshock in
northeastern
(ML 5.3)

Hypocenter relocation, Moment
tensor inversion, Pore
overpressure analysis and
Coulomb failure stress
estimation

Both ML 5.7 and 5.3 earthquakes
were induced by nearby hydraulic
fracturing, the pore overpressure to
induce Mw > 3.5 events was
ranged from 0.2 to 5.8 MPa

a scaling relation between the largest magnitude Mmax−arr
0 of

self-arrested earthquakes and the injected volume 1V with an
analytical model Mmax−arr

0 ∝ 1V3/ 2.
Numerical simulations are also used to predict the maximum

seismic magnitude. Lei et al. (2017) studied the physical
mechanisms of several moderate earthquake sequences in the
Shangluo shale gas block and its environs (Sichuan Basin, China).
They used the “TOUGH-FLAC” simulator to conduct coupled

thermal-hydrological-mechanical (THM) analysis on the 1CFS
evolution patterns caused by hydraulic fracturing injection in this
area. Based on it, a numerical model containing four layers of
different mechanical and hydraulic properties was established,
and the critical pressure at the injection wellhead that could
cause fault failure was determined. Focusing on the different
shale gas basins in North America, Amini and Eberhardt (2019)
studied the effect of tectonic stress regime on the magnitude and
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its distribution of induced seismicity associated with hydraulic
fracturing. They used the 3D distinct-element method to simulate
the fault slip under different stress regimes, and found that both
the shear displacement magnitudes and the stress drop for the
thrust and reverse fault case were much larger than those for the
normal and strike-slip fault case.

Notably, the prediction accuracy of these analytical models is
highly dependent on the input parameters (Eaton and Igonin,
2018), and the relationship between operational parameters and
seismicity magnitude may not always be simple or straight.
In addition, numerical simulations might have problems with
calibration when proper parameters are difficult to select.

Traffic Light System for Safe Production
The traffic light system (TLS) is a powerful decision-making tool
to manage industrial activities (Bommer et al., 2006). This system
has been widely used to manage a risk associated with operation-
related earthquakes, often using two or more thresholds to
mitigate unexpected seismic hazards (Baisch et al., 2019; Wei
et al., 2020). In this section, the application and limitations of TLS
in induced seismicity are reviewed.

Working Mechanisms and Application Cases
A TLS consists of decision variables (e.g., peak ground
acceleration, peak ground velocity, earthquake magnitude and
other parameters) and thresholds (Mignan et al., 2017). When the
earthquake magnitude or ground shaking exceed the threshold,
the alert levels will be automatically activated and relevant actions
must be taken (e.g., stopping operations, reducing injection rate
or volume) (Braun et al., 2020).

The TLS is usually divided into three alert levels to provide
feedback to manage operational measures or actions. Figure 3
shows a workflow of the traffic light system. When the traffic light
is green, conditions are normal, and production can continue as
planned. When the light becomes orange, it means caution, and
the operational parameters should be adjusted. However, if the
light turns red, the production must be suspended.

At present, the model of predicting piecewise induced seismic
activity rateλ (t,M ≥ M0; θ)and the exceedance probability of
risk assessment in TLS are as follows (Mignan et al., 2017):

λ (t,M ≥ M0; θ) =

{
10afb−bsM0 V̇ (t)

10afb−bsM0 V̇
(
tshut−in

)
exp

(
−

t−tshut−in
τr

) ; t ≤ tshut−in
; t > tshut−in (5)

Pr
(
M ≥ Msaf

)
= 1− exp

{
−10afb−bsMsaf

[
V
(
tshut−in

)
+ τrV̇

(
tshut−in

)]}
=Y (6)

where V(t) is the cumulative injected fluid volume (m3), V̇ (t) is
the injection flow rate (m3/day), θ

(
afb, bs, τr

)
is a set of model

parameters describing the underground characteristics, afb is the
activation feedback in m−3, bs is the earthquake size ratio, τr
is the mean relaxation time in days, M0 is the minimum cut-
off magnitude, tshut−in is the shut-in time (day), and Msaf is
the given safety magnitude (i.e., threshold magnitude). Notably,
Y represents the probability that the magnitude exceeds the
threshold. Whenever the magnitude of an induced seismic event
exceeds the threshold, Y = 1.

For different industrial activities, criteria for setting-up the
TLS may be very different. Baisch et al. (2019) summarized some
examples of existing TLS that correspond to different industrial
activities taking place in Europe, North America and Australia,
as shown in Figure 4. Notably, the wastewater disposal in the
Cavone oil field is mainly used to enhance oil (or gas) production
and to balance the loss of volume due to the primary production.
It is within the production reservoir and is considered quite safe
as regards induced seismicity (Styles et al., 2014).

Meanwhile, Baisch et al. (2019) investigated the different
effects of TLS on seismic activity caused by fluid injection and
gas production based on observation data from 12 fluid-injection
operations in geothermal reservoirs and gas production in 26 gas
fields. Their research showed that, for an earthquake of a given
strength, the effect of TLS on short-term fluid injection induced
seismicity was significantly better than that of gas production-
induced seismicity.

Current Limitations
Remarkably, in TLS, the decision variables such as magnitude,
PGV, and possibly other parameters are linked each other,
and which decision variable to choose depends on how they
contribute to the risk evaluation. When the appropriate reference
variables for the decision are selected, their corresponding
thresholds need to be further determined. Unfortunately,
there are some challenges in determining the threshold
effectively and timely.

Take the threshold magnitude as an example. Threshold
magnitude is the transitional magnitude between different alert
levels. The relationship between threshold magnitudes and
operational parameters plays a vital role in TLS. However,
the current definition of threshold magnitude Msaf in Eq.
(6) is mainly chosen on the basis of expert judgment and
regulation (Grigoli et al., 2017; Mignan et al., 2017), which lacks
objectivity and cannot reflect the full range of possible scenarios.
Magnitude thresholds enforced by different jurisdictions may
vary significantly. It would further result in TLS not being flexible
enough to adapt to evolving risks. Therefore, at present, one
of the main limitations of classical TLS is that the threshold
magnitudes for different stages are difficult to reappraisal
accurately and timely, especially in the post-injection phase.

An important lesson about the limitation of classical TLS
has recently come from the Pohang earthquake. Notably, Woo
et al. (2019) used a variety of methods including the construction
of a velocity model, to conduct earthquake detection, the
determination of hypocenters, magnitudes, focal mechanisms
and stress inversion, and a clustering analysis, to conduct
a seismic analysis on the earthquakes occurring around the
EGS site in the past 10 years. It is worth noting that all
those investigations were important in order to improve the
seismological interpretation, which was needed for an effective
application of TLS. As part of the EGS project, a clear causal
relationship between the origin of theMW 5.5 Pohang earthquake
and the injected fluid was discovered. That is, the earthquake
initiated on the fault zone that was reactivated by fluid injection,
representing a self-sustained rupture process that released a large
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FIGURE 3 | A complete workflow of the traffic light system. The traffic light system needs to make decisions based on the results of the risk assessment model,
which consists of a seismic assessment model and a building damage assessment model. The judgment basis for the former model is magnitude, while that for the
latter model is ground motion.

amount of energy via tectonic loading rather than being a directly
induced earthquake via fluid injection.

In the Pohang EGS project, the monitoring focus of classical
TLS is the threshold magnitude. However, Ellsworth et al. (2019)
and Lee et al. (2019) found that EGS stimulation could trigger
large earthquakes that rupture beyond the stimulated volume,
and the assumption that the maximum seismic magnitude was
governed by the injection volume might no longer be true. It
indicated that in addition to injection volume, more operational
parameters should be considered in reappraising the threshold
magnitude. Moreover, sufficient attention must be paid to post-
injection seismicity after shut-in.

On the issue of post-injection earthquakes, Baisch et al. (2019)
pointed out that the performance of TLS depends heavily on the
prediction model that accounts for post-injection seismicity, so
the post-injection phase must be considered in the design of TLS
thresholds. The predicting model in Eq. (5) has the advantages of
simplicity and stability, and can also consider the underground
feedback in the post-injection phase. However, it assumes that
the relationship between injection rate and overpressure is linear,
and the fluid diffusion process at the post-injection phase is only
represented by an exponential decay, which is different from the
actual physical process (Mignan et al., 2017). In addition, the
magnitude used in post-injection model does not change with
time and cannot meet the real-time design of TLS thresholds in
the post-injection phase.

Based on the 2017 Pohang earthquake experience, it is urgent
to develop risk-based TLS based on the relationship between EGS
and associated stimulus activities to adapt to evolving hazards. To
this end, physical and statistical models of induced and triggered

seismicity were also needed to further develop, as well as some
advanced analyses. Machine learning methods may help us.

MACHINE LEARNING IN INDUCED
SEISMICITY

Artificial intelligence (AI) is considered one of the most
sophisticated technologies with research prospects and strategic
value in the 21st century. The cornerstone of AI is machine
learning, a simulation of the learning process of the human
brain. ML has become a useful tool to study earthquakes in the
field of earth science in recent years. In this section, the basic
algorithms of ML and their application to induced seismicity are
briefly reviewed.

Basic Algorithms of Machine Learning
According to the types of available datasets, ML can be roughly
divided into supervised learning and unsupervised learning
(Love, 2002). Supervised learning is the most basic type of
ML. The goal of supervised learning is to train data from
samples with known labels and finally gain generalization
capabilities. Unsupervised learning can automatically find hidden
structures in unlabelled data. Some information on supervised
and unsupervised learning is introduced as follows.

Supervised Learning
The basic tasks of supervised learning are regression and
classification. The algorithm models include but are not limited

Frontiers in Earth Science | www.frontiersin.org 8 June 2020 | Volume 8 | Article 227

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-08-00227 June 22, 2020 Time: 13:15 # 9

He et al. Induced-Seismicity Management Using Machine Learning

FIGURE 4 | Application cases of traffic light system (TLS) corresponding to different industrial activities in Europe, North America and Australia.

to linear regression, logistic regression, artificial neural networks
(ANNs) and support vector machines (SVMs).

Linear regression is, as the definition implies, a regression
algorithm (Franklin, 2005). The basic idea is to use a linear
combination of features to approximate the predicted value:

y = ωTx+ b (7)

where y is a vector of predicted values, x is a matrix of features,
ω is a matrix of optimizing coefficients, and b is a matrix of bias.
The optimal values of ω and b can be determined by square loss:

f
(
ω, b

)
= arg min

(
ωTx+ b− y

)T (
ωTx+ b− y

)
(8)

where arg min f (x) stands for the argument of the minimum,
that is to say, the set of points of the given argument

for which the value of the given expression attains its
minimum value.

Notably, linear regression sometimes leads to over-fitting,
and adding a regularization coefficient λ̃ is an effective method
to address the over-fitting problem (Cawley and Talbot, 2007;
Aghajanyan, 2017).

Logistic regression is actually a classification algorithm that
outputs predicted values in the range of 0 to 1, which is suitable
for discrete labels. Although the logistic regression model is a
non-linear model, it is still based on linear regression theory. The
predicted value can be expressed as:

y = sigmoid
(
ωTx

)
(9)

where sigmoid (x)= 1
1+e−arx , and ar is the learning rate.
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The ANNs are an abstraction and approximation of the
biological nervous system. The purpose of ANNs is to simulate
the learning function of biological neural networks (Rumelhart
et al., 1986). An ANN is a network in which many logical
units are organized according to different layers, and the
variable of each layer is the output. Then, the variable
acts as the input for the next layer. Figure 5 shows an
n-layer neural network. The first layer becomes the input
layer, and the last layer is called the output layer. In
addition, other layers are called hidden layers. There is an
activation unit on each neuron that acts to turn the input
into a specific output and a weight between different layers.
Furthermore, the ANNs have a powerful non-linear adaptive
information processing capability and can adapt sample data
(Schmidhuber, 2015).

The core of SVMs is to find the one hyperplane with the
largest margin out of many hyperplanes that divide the training
set (Cortes and Vapnik, 1995). The mathematical representation
is: {

min
ω,b

1
2 ||ω| |

2

yi
(
ωTφ (xi)+ b

)
≥ 1, i = 1, 2, ...,mf

(10)

where mf is the number of features, φ (x) is the eigenvector
after x mapping and f (x) = ωTφ (x)+ b is the mathematical
representation of the hyperplane.

The final performance of SVMs is directly determined by the
kernel function (Crammer and Singer, 2002):

f (x) = sgn
{ mf∑

i=1

αLi Yi κ (x, xi)
}

(11)

where αL is the Lagrange multiplier and κ (x, xi)=φT (xi) φ (x)
is the kernel. Commonly used kernel functions are shown
in Table 3.

The linear function has the advantage of fewer parameters
and fast speed but can be used only in the case of
linear separability. Although the polynomial function can
map a low-dimensional input space to a high-latitude feature
space, its multiple parameters may make the computation
complicated. In contrast, the radial basis function (RBF) has good
performance in both large and small samples and requires fewer
parameters than the polynomial function. Therefore, the RBF is
widely used in SVMs.

Unsupervised Learning
The major task of unsupervised learning is data clustering.
Clustering is one of the data mining techniques in which
data are divided into groups of similar and dissimilar
objects by using the intrinsic relations between data
(Saroj and Kavita, 2016).

K-means clustering is the most basic clustering algorithm.
The idea is to measure the similarity between different data
objects by using the Euclidean distance. The similarity is inversely
proportional to the Euclidean distance between different data
objects. If the similarity between the data objects is greater, the
Euclidean distance is smaller.

The local optimal solution of the K-means algorithm (yi) is the
minimum value of the sum of distances between all data points
and their associated cluster centroids. It can be calculated as:

yi = arg min
1 ≤ i ≤ mt
1 ≤ j ≤ k

∣∣∣∣xi − uj
∣∣∣∣

uj = 1
nj

∑
x∈Cj

x
(12)

where mt is the total number of samples, k is the total
number of clusters, Cj is the j-th cluster, uj is the cluster
centroid of Cj and nj is the number of samples in Cj.
The workflow of the K-means clustering algorithm is shown
in Figure 6.

The K-means algorithm is very efficient when dealing with a
large dataset. However, there are typically still two disadvantages:
sensitivity to the initial value and ease of falling into a local
optimal solution (Hung et al., 2013).

In short, these basic algorithms of ML do not have absolutely
clear scopes of application. We should choose a relatively
appropriate algorithm according to specific problems.

Applications of Machine Learning in
Induced Seismicity
Incorporating novel ML into traditional seismological methods
could provide great benefit. Kong et al. (2018) reviewed
several current applications of ML in seismology, including
earthquake detection and phase picking, real-time earthquake
early warning, ground-motion prediction, seismic tomography
and earthquake geodesy, etc. However, these applications are
mainly focused on natural earthquakes. Since in the induced
seismicity context one has to establish a causative connection
between the human activities and detected seismicity, studying
induced seismicity needs more data than studying natural
earthquakes, especially operational data, which reflect the
information of industrial activities. Unfortunately, some
operational data are hardly available to the public. This is
the main obstacle to applying ML to induced seismicity.
For this reason, the current application of ML in induced
seismicity is mainly focused on the laboratory study of
mechanism, while the preliminary field applications are
relatively rare.

Laboratory Study of the Mechanism
The seismogenic mechanism of induced seismicity is absolutely
vital for managing induced seismicity, and laboratory rock
testing is an important means to understand its mechanism.
Energy stored in rocks is released in the form of elastic
waves, which are called acoustic emissions (AEs), during
micro-crack initiation, propagation and connection in the
laboratory (Lei et al., 2003; Liu et al., 2019; Yue et al.,
2019). The phenomena of micro-seismicity at the field scale
and AEs in the laboratory are similar in nature (Sarout
et al., 2017), and high-quality microseismic observations can
effectively improve the statistical models that forecast expected
seismic event magnitudes (Clarke et al., 2019). Therefore,
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FIGURE 5 | Diagram of an n-layer neural network. In this neural network, i is the number of layers and j is the number of units in each layer. x1,x2,. . .,xm represent
input units, while y1,y2,. . .,yk represent output units. a(i)

j represents the j-th activation unit in the i-layer, which is responsible for mapping the input of a neuron to the

output. 2(i) represents the weight from the i-th layer to the i+1-th layer, whose function is to adjust the proportion of each input value before entering the activation
function. Furthermore, we sometimes add a bias unit to each layer to reduce the error of the output value.

TABLE 3 | List of commonly used kernel functions.

Function name Mathematical expression Instruction

Linear function κ (x, xi) = xT xi This function is mainly used in the case of linear separability, and its fewer parameters and fast
speed are ideal for classification of linear separable data

Polynomial function κ (x, xi)=
(
γxT xi + c

)
This function can map a low-dimensional input space to a high-latitude feature space, but its
multiple parameters may make the computation complicated

Radial basis function (RBF) κ (x, xi)= exp
(
−
||x−xi ||

2

2σ̃2

)
This function can realize non-linear mapping. It has good performance in both large and small
samples and needs fewer parameters than the polynomial function

Sigmoid function κ (x, xi)= tanh
(
ηxT, xi+ θ̂

)
This function is usually used to implement multi-layer neural networks

a In the polynomial function, γ > 0, c≥0, and n is the degree of the polynomial. When γ = c = n = 1, we can obtain the linear function. b In the radial basis function, σ̃ is
the width of the Gaussian kernel, and σ̃ > 0. c In the sigmoid function, tanh(x) is the hyperbolic tangent function, η > 0 and θ̂ < 0.

the accurate identification and location of rock AE signals
in the laboratory is of great significance for the study of
induced seismicity.

Liu et al. (2015) used wavelet transform and ANNs to study
the AE characteristics of different rock specimens during fracture
under uniaxial compression. They created an efficient way to
identify rock types and noise based on wavelet transform and
ANNs. Rouet-Leduc et al. (2017) and Hulbert et al. (2018)
applied the ML method to identify AE signals from fault
shear experiments and AE signals before both slow and fast
slip modes. It was found that ML could not only effectively
identify AE signals that were previously considered to represent
low-amplitude fault zones but also successfully predict the

timing and duration of laboratory earthquakes. Rock fracture
and blast events have similar waveform characteristics, and
they are always mixed together. To effectively distinguish the
AE signals of rocks from environmental noise and other
signals, Zhou et al. (2018) proposed a new method based
on signal complexity analysis and ML. This method did
not seek waveform parameters of detected signals and could
classify rock fracture and blast signals automatically based
on the self-learning capacity of back propagation neural
networks (BPNNs). On this basis, (Zhou et al., 2019a,b,
2020) further proposed an improved joint method based on
discrete wavelet transform, modified energy ratio and Akaike
information criterion (AIC) pickers, which effectively overcame
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FIGURE 6 | The workflow of the K-means clustering algorithm. This algorithm needs to select k initial cluster centroids in advance. Then, the positions of cluster
centroids are continuously updated according to the similarity between data objects and these positions. When updated cluster centroids no longer change or the
objective function converges, the iteration ends, and the final result can be obtained.

the interference of spike noise and channel crosstalk and greatly
improved the accuracy of automatic method for picking onset
time of AE signals.

These results indicate that using ML method can capture
more comprehensive and accurate rock fracture information at
the laboratory scale, which can help us deepen understanding of
the mechanism and further improve the physical and statistical
models of induce seismicity.

Preliminary Exploration and Application in the Field
For seismicity induced by EGS exploitation, Holtzman et al.
(2018) studied various small earthquake events in the Geysers
geothermal field using the ML method, indicating that it
could reveal the time-dependent spectral characteristics of
seismicity signals and identify changes in the faulting process.
In response to a large number of induced earthquakes in
Oklahoma since 2009, Hincks et al. (2018) developed an advanced
Bayesian network to model joint conditional dependencies
among spatial, operational and seismic parameters, indicating
that the injection depth was closely related to the release
of the seismic moment. The model they proposed proved

the feasibility and superiority of using ML to establish the
mapping relationship between operational parameters and
seismic information.

USING MACHINE LEARNING METHOD
TO IMPROVE ADAPTIVE TRAFFIC LIGHT
SYSTEM

The importance of TLS for managing induced seismic risks
has been illustrated in section “Traffic Light System for Safe
Production.” One of the ways to improve TLS is to develop a risk-
based adaptive TLS. The work of Mignan et al. (2017) has great
reference value. They used statistical and actuarial approaches
to improve the current prediction model (mentioned in section
“Traffic Light System for Safe Production”) of induced seismic
activity, and further proposed an adaptive traffic light system
(called ATLS) that can reflect the mapping relationship between
earthquake magnitude and risk.

In this ATLS, the threshold magnitude is selected as the
decision variable. They put forward a method to calculate the
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threshold magnitude so that it can be updated in time with the
change of the planned injection scheme.

Mth=
1
bs

log10

[
Y − 10afb−bsMsaf τrV̇

(
tshut−in

)]
+Msaf (13)

where Mth is the threshold magnitude in ATLS, and the meaning
of other parameters can be found in Eq. (5) and Eq. (6).

Based on it, they then defined the ATLS as the operational
threshold Mth at which the injection was stopped in order to
meet the safety target, and thus obtained the following system of
equations [for the meaning of the symbols, please see Eq. (5) and
Eq. (6)]:{

10afb−bsMsaf
[
V
(
tshut−in

)
+ τrV̇

(
tshut−in

)]
≈ Y

10afb−bsMthV
(
tshut−in

)
= 1

(14)

In Eq. (14), the first equation represents the situation of
production safety. The probability that the magnitude exceeds the
threshold is much less than 1 (i.e., Y << 1), and Mth ≈ Msaf
can be obtained according to Eq. (13). The second equation
represents the first time during the production process that
the magnitude exceeds the threshold (i.e., Y = 1). At this
point, the injection should be stopped immediately (t = tshut−in,
V̇
(
tshut−in

)
= 0), and Mth=Msaf can be obtained according to

Eq. (13). In particular, m0 in Eq. (5) can be replaced by Mth to
consider induced seismic activity in the post-injection phase.

The quantitative risk-based ATLS they proposed is a suite
of simple closed-form expressions, with the advantages of high
transparency and fast execution speed, which can provide the
operator with the greatest chance of success. It is important
to note, however, that the data set used to generate ATLS
is relatively small (only data from 6 underground reservoir
stimulation experiments were used for analysis), so its application
scope needs further testing, although in principle its adoption
would make any project in compliance with the safety threshold
whatever the response of the underground.

The present study points the way for developing risk-
based adaptive TLS and also illustrates that a large number of
operational data are needed to improve TLS. In terms of big
data processing, ML method is superior to traditional actuarial
approach. Using ML methods to further improve the adaptive
TLS has attractive potential.

Basic Framework
In order to solve the shortcomings of the ATLS proposed by
Mignan et al. (2017), this section describes a basic framework
for further improving the adaptive TLS by using ML method.
Through the training and learning of a large number of samples,
a proxy model that reflects the complex non-linear relationship
between threshold magnitude and operating parameters can be
obtained. The implementation process of the basic framework is
shown in Figure 7.

The establishment of the proxy model requires sufficient
geological, seismic and production data. Geological data include
information such as geomechanical and hydraulic parameters,
which can be obtained through geological exploration. Seismic
data mainly contain waveform information that can be acquired

by monitoring at nearby seismic stations. Production data can
be divided into engineering data and operational data. The
engineering data mainly include drilling information, such as
drilling time, drilling position, drilling depth and the number of
wells, while the operational data reflect the information about
injection operational parameters, such as wellhead pressure, total
injection amount, injection speed and injection position.

For a specific study region, the local geological data should be
acquired in advance, which include geomechanical and hydraulic
parameters. Next, we must collect seismicity wave data and
the engineering dataset in this region over a relatively long
period of time (e.g., 5 or 10 years) to ensure that the dataset is
comparatively complete. It should be noted that the seismic wave
data are mixtures of natural and induced earthquake information
(i.e., unlabelled), while the engineering dataset contains some
previously known drilling information (i.e., labeled). Then,
the original data for earthquake events, including hypocentral
location, focal mechanism solution and aftershock sequence type
analysis, need to be pre-processed to obtain the seismic dataset.
The seismic dataset and the engineering dataset are combined,
and methods mentioned in section “Discrimination of Natural
and Induced Seismicity” can be used to distinguish the induced
seismic events, as shown in Figure 7A. There are some relations
between induced seismicity data and engineering data. Finally,
we can form a training dataset based on the relationship between
the induced seismicity data and operational data. These data are
taken as prior knowledge for ML. Since both induced seismicity
data and operational data are labeled, we can use the supervised
learning methods mentioned in section “Supervised Learning”
to train this dataset and further fit a proxy model, as shown
in Figure 7B.

Additionally, to ensure the generalization ability of the
training model, over-fitting should be mitigated to the greatest
extent. To improve the algorithms, we can divide the original
dataset into three parts: training dataset, validation dataset and
testing dataset before training. According to the performance of
the training model on the cross-validation dataset and testing
dataset, the generalization ability of this proxy model could be
roughly determined (Santos et al., 2018).

Similar Cases
In this section, the theoretical feasibility of the basic framework
will be demonstrated with some real cases. However, as
mentioned in section “Applications of Machine Learning in
Induced Seismicity,” there is almost no public report on the
use of ML for injection-induced seismic risk management. To
overcome this difficulty, we select some similar cases that use
ML to manage reservoir-induced seismicity (RIS). At present,
the application of ML in reservoir induced earthquake is mainly
reflected in the prediction of earthquake magnitude based on
reservoir parameters, which is very similar to the real-time
evaluation of threshold magnitude in TLS.

Samui and Kim (2013) used SVM and Gaussian process
regression (GPR) models in ML to predict the magnitude
of RIS based on reservoir properties. At first, they collected
information from 30 worldwide historical cases of RIS into
dataset. These data were taken as prior knowledge for SVM and
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FIGURE 7 | Flowchart for using machine learning methods to improve the adaptive TLS. (A) Identify induced seismicity and (B) Determine the proxy model.

GPR models. Reservoir depthHR, reservoir capacityVR, reservoir
surface SR and earthquake magnitude M were suggested to be
main influential factors of RIS. In that study, they used the
comprehensive parameter E to characterize the three elements
(i.e., HR, VR, SR) of reservoir size, which could be expressed
as E = SRHR

/
VR (Baoqi, 1990). These parameters could well

reflect the internal and exterior causes of RIS. Then, to develop
the SVM and GPR, they divided the dataset into two types: the
training dataset (containing information about 24 reservoirs) and
the testing dataset (containing information about 6 reservoirs).
The comprehensive parameter E and the reservoir depth HR
were used as input variables, while the earthquake magnitude
M was output. Finally, through learning process by SVM and
GPR models, the complex mapping relationship between RIS
magnitude and its influence factors was established, respectively.
Thus the magnitude could be controlled by adjusting the input
parameters in the relationship.

It is worth noting that the correlation coefficient (R) value is
the criterion for determining the success of the learning process.
The closer R is to 1, the more accurate the mapping relationship
(overlearning needs to be excluded). For SVM model, the penalty
coefficient C̃, the error insensitive zone ε̃ and the radial basis
function width σ̃ should be determined. As for GPR model, the
design values that need to be determined are the Gaussian noise
and the radial basis function width σ̃.

Based on those studies, Samui and Kim (2014) further
tested the feasibility of least square support vector machine
(LSSVM) and relevance vector machine (RVM) in predicting
RIS magnitude and compared the results with ANN and linear
regression models. They found that the LSSVM and RVM models
were more efficient and effective. Furthermore, Su (2008) also
used the GPR model to predict the magnitude of RIS in western
China. They considered more impact parameters in learning

process, including reservoir depth, tectonic stress, lithologic
character, activity background of seismicity, activity of fault,
development degree of geology structure plane, connectivity
between geology structure plane and reservoir water, and
development degree of karst, etc. Their method has been applied
to control RIS magnitude at the Three Gorges Reservoir in China.
Although these achievements are limited to RIS, it provides ideas
and confidence for using ML to manage the risk of injection-
induced seismicity also for other kinds of activities.

Some Statements
(1) Decision variable: Since the basic framework is based on

the results of Mignan et al. (2017), it takes the threshold
magnitude as the decision variable for induced seismic
risk control. If PGV or other parameters are selected
as decision variables, they must be converted to the
corresponding magnitude.

(2) Application scope: The operational parameters mentioned
in the basic framework mainly involve some fluid
injection information. Therefore, it is mainly applicable
to injection-induced seismicity, including wastewater
reinjection, hydraulic fracturing and geothermal energy
exploitation, etc. Notably, for different activities, it
is necessary to collect corresponding key parameters
according to the characteristics of the activities and take
these parameters as the prior knowledge for ML training.
The combination of ML methods with specific TLS models
implemented for different activities is very important.

(3) Post-injection phase: The basic framework can also
consider the post-injection phase. To do this, we need to
expand the time window to a period of time after shut-in
and collect the data. Then, the data before and after shut-in
are trained to establish their proxy models, respectively.
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(4) Main challenges: The complete collection of relevant data
is a major challenge, because some production data is
hardly available to the public. In addition, the efficient
processing of large amounts of data is also a problem faced
by ML.

CONCLUSION

This paper provides an overview of current research progress
of induced seismicity related to fluid injection, and proposes a
basic framework of using ML method to improve the adaptive
TLS. The implementation process of the framework has been
described in detail, and its feasibility and rationality have
also been demonstrated by some cases related to reservoir-
induced seismicity.

The proposed framework uses the threshold magnitude as
the decision variable and can also consider the post-injection
phase after shut-in. Compared with the statistical and actuarial
approaches, the proxy model based on ML training with
a large amount of data can more comprehensively reflect
the complex relationship between operational and seismic
parameters. Moreover, it can be applied to various injection-
induced earthquakes by collecting characteristic data of different
activities. However, the complete collection of relevant data is the
primary challenge.

We hope that this basic framework can provide valuable
references for developing the risk-based adaptive TLS
models in the future.
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