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Hydropower, which is the most extensively used renewable energy, is sensitive to
the change of streamflow under the great impact of precipitation. According to the
relationship between the hydropower station generation and local precipitation, the
impact of precipitation on hydropower can be analyzed. In this paper, the global climate
model and regional climate model simulations in precipitation are compared firstly, and
the high-resolution precipitation data are then calculated by stepwise clustering analysis
statistical downscaling method. Secondly, based on the hydropower potential (HP), the
hydropower response model driven by precipitation is established. Finally, the simulated
generation of a hydropower station in Dadu River basin is used as a case to validate this
proposed model. The results show that precipitation will increase by around 42% from
May to August in study region, while it will decrease by 40% in other months in RCP4.5.
For different periods of reservoir scheduling, the precipitation will increase by about 40%
in the Neutral I and Wet period, while it will decrease by around 30% in other periods,
which will lead to the shortening of the peak period of hydropower generation and the
peak value will be decreased. Correspondingly, the results show power generation will
decrease by around 12% from June to December and increase by around 4% in the
rest months. On the other hand, owing to the changes in precipitation, the future power
generation will increase by 25% in Neutral I and decrease by 13.5% in other periods,
but the total hydropower generation will remain. The results can provide some decision
support for future water resources management in Dadu river basin, especially for the
planning and operation of hydropower stations.

Keywords: hydropower, precipitation, regional climate model, stepwise clustering analysis, downscaling

INTRODUCTION

According to the IPCC AR5, with the increase of global populations and economies, the man-made
emissions of greenhouse gases have remained rising and reached the industrial history peak at
the beginning of the 21st century (IPCC, 2013). The global mean temperature at the end of the
21st century will probably be 1.5◦C higher than that in 1899–1990 under the influence of current
emission trends (Arnette, 2017).

China, which is located in East Asia, has a vast territory, abundant climate zones and complex
topography (Guo et al., 2017a). Owing to the stronger regional seasonal wind led by global
warming, more moisture in the atmosphere will be transported to land areas from ocean, then
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resulting in more extreme precipitation events in China recently
(Hui et al., 2018). For example, ten million residents were
displaced and billion dollars economy cost was caused by
the Yangtze River flood in 1998 (Chen and Zong, 2000).
The serious urban waterlogging events in Beijing in 2012
caused thousands people death and 11.6 billion economic losses
(Zhang D.L. et al., 2013).

As one of the effective energies to alleviate the greenhouse
effect caused by fossil energy, renewable energy is in a
fast-growing demand. Renewable energy has taken 18.2% in
world total energy consumption in 2016 (REN21, 2018). In the
meantime, the development of renewable energy in China is also
rapidly developed. Renewable energy generation, which is up to
1676 TWh, has taken 30% in total national power generation in
2017 (CREO, 2018). Relative to other types of renewable energy,
owing to the lowest cost, easier to control and manage and lower
intermittent and uncertainly means, hydropower is a kind of
the most widely used renewable energies (Panwar et al., 2011;
Chu and Majumdar, 2012; Jiang et al., 2018). In 2017, the new
generating capacity of hydropower in China is 9.12 GW, and
the total installed capacity reached 341 GW. The hydropower
generation has taken almost 20% of total power generation,
which is far more than the generation of wind energy (5%)
and solar energy (2%). Therefore, more hydropower is planned
by China’s government to generate electricity and replace fuel
energy (IHA, 2018).

Hydropower is sensitive to climate change, especially for
precipitation. Based on the change of runoff, Ali et al. (2018)
evaluated and predicted the power generation of seven large
hydropower stations in India. Results illustrated that the
specific future climate may increase hydropower generation
by about 25%. Liu et al. (2016) thought runoff and reservoir
storage has a great influence on hydropower, then Generation
Hydropower Potential (GHP) and Development Hydropower
Potential (DHP) are tested based on 8 Global Hydro Models
(GHMs), indicating that GHP will have a 3–6% increase between
2070 and 2099. Obviously, precipitation has a direct influence
on basin runoff change, which will finally affect hydropower
generation (Berghuijs et al., 2014; Wasko and Sharma, 2017).
Based on the observed data, Chilkoti et al. (2017) found that
generation of hydropower stations and the precipitation have
close links, the generation of hydropower stations may rise
39% when the precipitation rise 43%. Above all, climate change
has a more direct impact on precipitation, but few studies
are analyzing the influence of precipitation changes under the
context of global warming on hydropower generation (Guo
et al., 2018). Hence, it is significant to explore the relationship
between precipitation changes and hydropower generation, and
the results could provide some suggestions and measures to
the government policy makers in hydropower to response the
climate change better.

In this study, stepwise cluster analysis (SCA) statistic method
is used to downscale future climate data from PRECIS regional
climate model (RCM). Then, the hydropower response model
driven by precipitation (HRMDP) is established. Finally, a
hydropower station in Dadu River basin is taken as a case
to quantitatively analyze future climate change influence on
hydropower generation.

DATA AND METHODS

As shown in the Figure 1, four analysis steps are divided in
this paper. The first step is collecting precipitation and power
generation data, which include large-scale HadGEM2-ES climate
data, observation of meteorological stations and generation
data of hydropower stations. Then, the statistical downscaling
simulation in precipitation using SCA method is conducted.
Specifically, some independent variables in large scale grids
in PRECIS RCM, such as precipitation, temperature, humidity
and pressure are extracted firstly, afterward, the precipitation
in station scale is simulated and projected by the SCA statistic
downscaling method. The third step is the establishment of a
HRMDP based on the hydropower potential (HP). In the end, we
use the projected precipitation under RCP4.5 and RCP8.5 climate
emission scenarios to drive the HRMDP to analyze the change in
hydropower in the case.

Hydropower Response Model Driven by
Precipitation
In general, hydropower generation has a close relationship
to precipitation. The increase in precipitation will lead to an
increase in power generation, and continuous non-precipitation
will cause a decrease in power generation (Chilkoti et al.,
2017). Figure 2 shows that the daily precipitation and daily
power generation of station A in Dadu River basin. The
high power generation can be found in a high precipitation
period (such as from June to September), while low power
generation in low precipitation periods (such as from January
to April and December). At the same period, power generation
shows an increasing trend with increasing precipitation, and
vice versa. According to Figure 2, we can find that there
is a certain relationship between precipitation and power
generation, and the power generation is sensitive to the change
of precipitation.

Before establishing the hydropower response model, a
new conception – HP is introduced. Hydropower potential is
the perfect state power generation which only considers the
precipitation as the influence condition, it can be calculated by
daily precipitation without considering the actual generating
capacity. In this paper, HP mainly depends on the daily
precipitation. In addition, continually precipitation factor
and non-precipitation factor also have influence on HP,
which respectively represents the increased coefficient of
power generation in the period of continue precipitation
and the decline coefficient of power generation in the
period of non-precipitation. The detailed calculation method
is as follows:

HPn = σ2(HPn−1 + σ1 × Rn) (a1)

σ1 =

(
j∑

n=2

Pn−1−Pn
Rn−1−Rn

)
/j (a2)

σ2 = 1−

[(
j∑

n=2

Pn−1−Pn
Pn−1

)
/j

]
(a3)
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FIGURE 1 | Study flow chart.

FIGURE 2 | Daily precipitation and power generation of a hydropower station in Dadu River basin.
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Notations:
HPn – HP in the day n, kWh;
Rn – Precipitation in the day n, mm;
σ1 – The increasing coefficient of generation in the period of
continue precipitation, dimensionless;
σ2 – The decline coefficient of generation in the period of non-
precipitation, dimensionless;
Pn – The power generation in the day n, kWh;
j – The number of days in some periods.

Hydropower potential represents the optimal power
generation under the current precipitation status. Station
power generation is not only restricted by natural factors
but also influenced by human society factors (such as power
policies and plans). Hence, the controllable coefficient, which
represents human characteristics, is added to the formula.
Formula b is used to restrict the power generation of actual
production, and finally achieves the amount of constrained
power generation.

HPa = (HPmax +HPmin)/2 (b1)

HPb = HPmax −HPmin (b2)

PF,n = [Pmin + (Pmax − Pmin)]/[(
1+ e(−8 HPn−HPa

HPb
)
)
+ δ

]
(b3)

Notations:
HPmax – Maximum HP during this period, kWh;
HPmin – Minimum HP during this period, kWh;
Pmax – Maximum power generation of generator set under the
power plan of this period;
Pmin – Minimum power generation of generator set under the
power plan of this period;
PF,n – The constrained power generation in day n of the period;
δ – The controllable factor, which affected by actual power
plan, power policy and more, and it shows as power generation
fluctuates at a certain range.

Regional Climate Model
The future precipitation forecasting data are from two climate
numerical simulations, which includes HadGEM2-ES and
PRECIS. The former is a global climate model (GCM) and is
used as the initial and boundary field data to drive the RCM
PRECIS for dynamic downscaling. Developed by the UK’s The
Met Office Hadley Centre, PRECIS is a high-resolution (25 km)
RCM and it has been widely used in regional climate simulations
and extreme events forecasting (Xu et al., 2009; Kerkhoff et al.,
2014; Saini et al., 2015; Guo et al., 2017b, 2018; Hui et al.,
2018).

SCA Statistical Downscaling Method
Although the results from RCMs can simulate the climate
change of the whole region or basin, the higher-resolution

FIGURE 3 | Stepwise cluster analysis downscaling flow chart.
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FIGURE 4 | Dadu River basin.

simulations (i.e., station scale) still cannot be met through
dynamical downscaling. Therefore, based on the results of
RCM, statistical downscaling can be achieved by establishing the
numerical statistical relation between the large-scale circulation
fields and station-scale climate variables (i.e., precipitation).
There are rich methods to be applied, the statistical downscaling
has been widely applied in climate change influence analysis
on precipitation and hydrology (Bellouin et al., 2011; Jones
et al., 2011; Wang et al., 2015). However, it is necessary to

select an appropriate statistical downscaling method to reflect
the discrete and random characteristics for precipitation. The
SCA uses a cluster tree to illustrate the relationship between
the large-scale atmosphere fields and high spatial-resolution
variables, especially in effectively dealing with the stochastic and
non-linear relationships. Through the integration of missing
data detection, correlation analysis, model calibration, cluster
tree mapping and other auxiliary function modules, SCA can
rapidly develop downscaling scenarios of local weather variables
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FIGURE 5 | Simulation results and deviation of difference scale models in each period.
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FIGURE 6 | Simulation results and deviation of difference scale models in each season.

under current and future climate forcing, and performs well in
predicting precipitation during the verification (Chen et al., 2011;
Yang et al., 2016).

As shown in Figure 3, the first step in the SCA statistical
downscaling is to select large-scale forecast factors. Following

previous studies, the variables, including mean sea level pressure,
surface airflow strength, surface wind direction, near-surface
temperature, surface specific humidity, surface relative humidity,
surface divergence, surface meridional velocity and more are
selected as initial variables (Duan and Mei, 2013; Li and
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FIGURE 7 | Monthly mean precipitation and deviation of different scale
models and observation data.

Yan, 2017). According to correlation analyze, Near-surface
temperature, Surface relative humidity and Mean sea level
pressure are selected as independent variables in statistical
downscaling (Wood et al., 2004; Perkins et al., 2007; Liu
et al., 2011). The meteorological station precipitation data
are selected as dependent variable. Then, the independent

variables of statistical downscaling are constituted as X matrix.
The dependent variable is constituted as Y matrix. And using
R Studio to create site scale precipitation SCA statistical
downscaling training model, and build the clustering tree
predictor to establish the quantitative relationship between
precipitation and large-scale prediction factors.

Data
The data used for validation is divided into the following
categories:

1. Climate simulation data. The future climate data from
PRECIS are used to drive the power forecasting model. Its
initial field and boundary field data as the driving data
is from HadGEM2-ES(GCM). HadGEM2-ES is a coupled
AOGCM with atmospheric resolution of N96 (1.875◦ × 1.25◦)
with 38 vertical levels and an ocean resolution of 1◦
(increasing to 1/3◦ at the equator) and 40 vertical levels.
HadGEM2-ES also represents interactive land and ocean
carbon cycles and dynamic vegetation with an option to
prescribe either atmospheric CO2 concentrations or to
prescribe anthropogenic CO2 emissions and simulate CO2
concentrations as described. An interactive tropospheric
chemistry scheme is also included, which simulates the
evolution of atmospheric composition and interactions with
atmospheric aerosols. The model time step is 30 min
(atmosphere and land) and 1 h (ocean) (Jones et al., 2011).
The PRECIS is able to run at two different horizontal
resolutions: 0.44◦ × 0.44◦ (approximately 50 km × 50 km)
and 0.22◦ × 0.22◦ (approximately 25 km × 25 km), with 19

FIGURE 8 | Comparison of precipitation simulation and observed data in different scale models: (A) monthly precipitation; (B) monthly precipitation error;
(C) precipitation in period; (D) precipitation error in period.
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FIGURE 9 | Verification of precipitation simulation and observed data in different scale models: (A) monthly correlation coefficient; (B) monthly RMSE; (C) correlation
coefficient in period; (D) RMSE in period.

atmospheric levels in the vertical using a hybrid coordinate
system (Guo et al., 2017b).

2. Climate Observation data. The CN05 precipitation data set
is used to validate the precipitation results of GCM and
RCM. CN05 is a dataset consisting of daily mean, maximum,
and minimum temperature on a 0.25 × 0.25◦ grid has
been constructed over mainland China for the 45-years
period of 1961–2005. CN05 is derived from interpolating
observations from 751 stations distributed throughout the
entire Chinese territory except Taiwan. The interpolation
follows basically the same approach used in generating the
CRU dataset, whereby a gridded climatology is calculated first,
and then a gridded anomaly is added to obtain the final data
(Xu et al., 2009).

3. Meteorological station data. The observation is used to
validate the results of RCM and build the HRMDP.
It is from the real-time monitoring stations, including
daily precipitation, near-surface temperature, surface relative
humidity and surface wind speed.

4. Hydropower station data. The daily power generation data is
used to calibrate and verify the simulation results of the power
forecasting model.

CASE STUDY

The Dadu River basin which shown in Figure 4, is located
between 99◦42’E–103◦48’E and 28◦15’N–33◦33’N and lies in
the transition area of Tibet Plateau and Sichuan Basin. Dadu
River basin meets the Minjiang River in Leshan. It is the largest
tributary of the Minjiang River and the secondary tributary of the
Yangzi River. Dadu River Basin has an abundant hydro resource,

which has 7.74× 104 km2 basin area and a total of 149 tributaries.
The mainstream, which is 1062 km long and 48.8 km3 annual
net flow, and has 33730 MW water resource reserve. The annual
precipitation of Dadu River Basin is about 800–1000 mm, and
the precipitation from May to October takes up 80% of the whole

FIGURE 10 | Simulation power generation compare with actual power
generation: (A) monthly power generation; (B) power generation in period.
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year (Yang et al., 2017). As a key hydropower development area
in China, Dadu River basin has many large power stations.

Station A is one of the largest hydropower stations in China,
the power capacity of station A is nearly 3.6 million KW, and
the reservoir capacity is 5.337 billion km3. Due to the greatest
power generation in Dadu River Basin and the most abundant
water resources, station A is selected as the research object
(Zhang and Xu, 2014).

Moreover, according to the precipitation feature of Dadu River
basin and power generation plan for station A. Five main power
generation periods in a year are divided, which include Dry I
(from January to April), Neutral I (May), Wet (from June to
October), Neutral II (November) and Dry II (December).

In this paper, we take the power station A as a case
and use HRMDP model to build the relationship between
meteorological factors and power generation capacity. Then
based on the projection in precipitation from dynamical and
statistical downscaling results, the influence of precipitation on
power generation from 2025 to 2035 will be analyzed.

RESULTS

Simulation and Verification
The results of climate models and their deviations with CN05
in different periods are shown in Figure 5. Compared with the
results of CN05, GCM underestimates the precipitation in most
regions of the basin but overestimates the precipitation in the
middle of basin. Due to the rough resolutions in GCM, the
results of most areas only show a single value. On the other
hand, PRECIS improves the spatial resolutions and shows more

details in reproducing the precipitation in Dadu River basin,
especially in autumn in Figure 6. The results in PRECIS are
similar to the observation, and the deviation is between -1 mm
and 1 mm in the midstream. In terms of different periods, Dry
II shows a better performance (±1 mm biases) than that in Dry I
(∼2 mm). From the spatial distribution, the deviation is between
0 and 1 mm in the upstream, while the value is larger (∼2 mm)
in the downstream.

Figure 7 shows simulation results in annual cycle obtained
from GCM and PRECIS. Compared to CN05, PRECIS can
simulate the monthly precipitation in Dadu River Basin
reasonably. For example, the highest precipitation occurs in
June, while the precipitation in January is smaller. Meanwhile,
PRECIS shows a great advantage in simulating the monthly mean
precipitation relative to its driving GCM. Lots of overestimations
in HadGEM2-ES (especially from May to October) are corrected
by PRECIS in dynamic downscaling. Overall, the bias of
RCM is kept between −0.34 and 3.67 mm, especially in
August (∼−0.34 mm).

Figure 8 is the comparison results between simulation and
observation in precipitation data at different spatial scales.
The higher in resolutions for climate model, the simulation
trend and value of precipitation are closer to the observed data.
Specifically, comparing to observation, the simulation results of
GCM are overestimated obviously, especially in June or Neutral
I, the error is even exceeding 20 mm/day. While the results
downscaled by PRECIS have numerous improvements relative
to its GCM. However, PRECIS still cannot solve effectively the
accuracy in simulating station-scale precipitation. For example,
the error is still high in June (about 10 mm) and in Neutral
I (about 8 mm). On the other hand, the results from SCA

FIGURE 11 | Future precipitation forecasting: (A) future monthly precipitation; (B) monthly precipitation change; (C) future precipitation in period; (D) precipitation
change in period.
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FIGURE 12 | Future power generation change: (A) future monthly power generation; (B) monthly power generation change; (C) future power generation in period;
(D) power generation change in period.

statistical downscaling show the best performance than other
simulations. The simulated precipitation is consistent with the
observation well. The errors in GCM and PRECIS are reduced
greatly, particularly in August and Dry II.

In terms of the correlations between simulations and
observation, SCA downscaling also show its advantage, with a
correlation coefficient (about 0.97) and low RMSE value (about
0.16), meaning that there is a great fitting degree and lower biases
between the results and observation (Figure 9). Moreover, with
the improvement of resolution, the decrease of RMSE is more
pronounced. For example, the RMSE is about 68.9 mm/day in
July for GCM and about 10.2mm/day for PRECIS, while the
RMSE of SCA statistical downscaling is only about 0.5 mm/day.
In addition, the RMSEs are different in periods and SCA shows a
better performance (∼ 0.16 mm/day) in Dry II periods than that
in other periods.

Overall, compared with coarser-resolution climate models, the
simulation results of SCA statistical downscaling can reasonably
reproduce the precipitation trend and value. Thus, these results
can be used as the input of a subsequent power forecasting model
to simulate the power generation of hydropower stations.

Then, through the HRMDP model, we compare the simulated
power generation and actual power generation in different
months and periods for Station A, which is shown in Figure 10.
Overall, the performance in correlation coefficients and RMSE
values are quite satisfactory especially from May to July, which
are 0.85 and 232 kWh respectively. The simulation results
demonstrate a great performance in Wet period, and the
correlation coefficients and RMSE values in different periods are
0.95 and 611 kWh, respectively.

Future Forecasting
The projection in precipitation is the first step to forecast the
future power generation through the HRMDP model. The future
precipitation and percentage change through SCA downscaling
in annual cycle and different periods are shown in Figure 11.
Compared with the historical period, the projected precipitation
in annual cycle shows different change trends. Specifically,
precipitation will increase by about 20–80% from May to July,
while it will decrease in other months. For different periods,
precipitation will increase in Neutral I and Wet, which are 79
and 4% respectively. The projected precipitation in other periods
shows a decreasing trend, particularly in Neutral II (about 58%).

The changes in power generation resulting from the
precipitation changes in station A in the future are shown in
Figure 12. Compared with the historical period, there is an
ascending trend in power generation in station A from January
to February and May to July in the future, especially in February
with the most increase by about 25%. However, in the rest
months, there is a decreasing trend in power generation in station
A, for example, the decrease in September will be 36%. Similarly,
the power generation will increase by about 20% in future Neutral
I period, while there is no obvious change in other three periods
relative to the historical period.

It is noted that there is more power generation in September
in tradition, but the decrease in future precipitation will lead
to a decrease in power generation in this month. On the other
hand, though the power generation is less in May in the historical,
the value will increase because of the increased precipitation in
future. In addition, the peak of the generation will change from
July to August, and the value will decrease about 8%. Meanwhile,
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the peak period of power generation will be shortened from June
to August, because of the influence of precipitation.

CONCLUSION AND DISCUSSION

In this paper, based on the results from HadGEM2-ES and
PRECIS climate models, the precipitation and power generation
in power station A over Dadu River basin in China were
simulated and projected using SCA statistical downscaling. The
results from SCA downscaling show a great performance relative
former climate models in simulating the precipitation at station
scale. On the other hand, we used the observed meteorological
and hydropower data in station A to establish a HRMDP.
Meanwhile, we also validated the performance of HRMDP,
and the results show that the HRMDP model can reflect the
relationship between the precipitation and power generation,
with the correlation coefficient of 0.95 and RMSE of 611 kWh.

In future, the precipitation of station A is projected an
ascending trend from May to July while it will decrease in other
months. For different periods, the precipitation will increase in
Neutral I and Wet, but it will decrease in other periods. As
the response from precipitation, the power generation will also
show a similarly trend. There is an increasing trend in power
generation in station A from January to February and May to July,
while there is a decreasing trend in other months. For different
periods, the power generation in Neutral I will increase by about
20% in future, while there is no obvious change in other three
periods relative to the historical period.

Climate change has a great impact on precipitation,
which affects hydropower generation. Therefore, it is of great
significance to study the future precipitation change and power
generation forecasting model of hydropower station to adapt
climate change. As far as we know, there are many studies on
future precipitation changes using climate models, but relatively
few on hydropower generation forecasting model. For example,
for precipitation, future climate change will lead to a general
increase in precipitation over the most regions of China (Lin
and Zhou, 2015; Zhao et al., 2019). Future precipitation of

Dadu river basin in our study also shows an increase trend,
which is consistent with other similar basins (Zhang J. et al.,
2013; Zheng et al., 2017). In addition, although there are many
researches on power generation forecasting methods, which focus
on the runoff forecast, there are few studies on hydropower
generation forecasting directly. For example,Cheng et al. (2013)
used linear trend estimation method, Morlet wavelet transform
and Kendall rank correlation method to forecast future runoff
over the Dadu river basin, and shows that runoff will appear
an increase trend. Our results show that hydropower generation
has an increase trend in the future, which means the increase of
precipitation will lead to increase of runoff, and further promote
the increase of hydropower generation. The results can provide
some decision support for future water resources management
in Dadu river basin, especially for the planning and operation of
hydropower stations.
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