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As the northwest Pacific has been subject to varying terrigenous input linked to
paleoclimate change, the concentration of magnetic minerals in deep-sea sediments is
often utilized as a proxy to reconstruct the past atmospheric circulation in the Northern
hemisphere. Volcanic materials account for a significant portion of the terrigenous
input, but their contribution to sedimentary magnetic properties has not been carefully
investigated. This study reveals the magnetic contribution and characteristics of volcanic
materials, based on particle-size specific magnetic measurements on sediments that
span the last 400 kyr for five size-fractions, including ranges typically attributed to
fine eolian (<2 and 2–8 µm) and coarse volcanic (8–31 and 31–63 µm) sediments.
Such detrital origins were confirmed by SEM observations. Magnetic concentration
(i.e., saturation isothermal remanent magnetization) of the coarse fractions is found
to have a positive relationship with bulk values, making up a 23–68% portion. The
volcanic contribution is more pronounced on the concentration of hard (>100 mT)
magnetic minerals, showing an increased portion of 32–74%. From coercivity spectra
analysis, the coarse volcanic fractions are characterized by an abundance of the ∼100
mT coercivity minerals, which can result in an increased average coercivity of bulk
sediments. Around the study area, magnetic susceptibility records show synchronized
variations with volcanic proportions in terrigenous sediments, validating their close
relationship. Consequently, our results indicate that volcanic materials have a high
potency of magnetic concentration, which can control bulk sedimentary signals in the
northwest Pacific.

Keywords: volcanic materials, terrigenous input, particle size fraction, magnetic concentration, northwest Pacific

INTRODUCTION

Mineral dust in the North Pacific, including iron oxides, is transported mainly from the Asian
inland by westerly winds (Rea et al., 1998). In agreement with the geochemical behaviors of mineral
dust, the physical properties of magnetic particles (e.g., concentration and composition) in deep-
sea sediments have shown long-term dependence on Cenozoic global cooling. For example, an
increased concentration of magnetic minerals in sediments, particularly of high coercivity minerals
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(e.g., hematite), has been an indicator of the intensified Asian
dust input by source aridification (e.g., Yamazaki and Ioka,
1997; Bailey et al., 2011; Zhang et al., 2018). On orbital
timescales, magnetic mineral concentration in North Pacific
sediments shows a good correlation with the global oxygen
isotope stack (e.g., LR04; Lisiecki and Raymo, 2005) during
the Pleistocene, with its decrease or increase during colder or
warmer periods, respectively (e.g., Yamazaki, 1999; Yamamoto
et al., 2007; Kars et al., 2017). As an explanation for the
cyclicity of the magnetic concentration, various factors have
been suggested: glacial enhancement of dust input with high
coercivity minerals (Doh et al., 1988), fossilized biogenic
magnetite contribution relative to dust input (Yamazaki, 2009),
and non-steady state diagenesis with glacial magnetite dissolution
(Korff et al., 2016; Shin et al., 2018). However, the relationship
between terrigenous input and magnetic concentration in orbital
timescales is still unclear.

In the northwest Pacific, the atmospheric transport of
volcanic materials from nearby arcs (e.g., Japan and the
Kurile Islands) makes a vital part of terrigenous input
(Nakai et al., 1993). The geochemical isotopic composition
of terrigenous sediments provides a simple binary mixing
feature between eolian and volcanic components (Pettke
et al., 2000; Bory et al., 2003; Chen et al., 2007). Volcanic
materials generally comprise more than 10–30 percentages
of terrigenous input in the northwest Pacific (e.g., Nakai
et al., 1993; Serno et al., 2014). Most magnetic studies on
volcanic materials have identified that intercalated tephra layers
in northwest Pacific sediments are characterized by strong
magnetization (e.g., Yamamoto et al., 2007; Korff et al., 2016).
In addition, a good relationship between magnetic signal and
volcanic ash contribution during the last ∼800 kyr has been
reported from abyssal sediments at a western marginal site
(Urbat and Pletsch, 2003).

The development of methods to unmix magnetic signals helps
discriminate magnetic mineral assemblages in bulk sediments,
such as detrital/biogenic magnetite and hematite (e.g., Kruiver
and Passier, 2001; Egli et al., 2010; Heslop, 2015). The
magnetic contribution of biogenic magnetite, which significantly
contributes to the bulk magnetic signals of northwest Pacific
sediments, is readily decomposed by its non-interacting magnetic
signature, such as a low and narrow coercivity distribution
(Roberts et al., 2000; Egli, 2004). Meanwhile, detrital magnetite
and hematite can be identified by a broader spectrum and
their intrinsic coercivity (Egli, 2004). However, it is often
difficult to decompose detrital magnetic minerals of different
origins, such as eolian and volcanic components, from bulk
magnetic signals. In this case, the combination of physical particle
size separation and magnetic measurements provide useful
insight to sediment transport mechanisms linked to particle size
distribution (e.g., Bailey et al., 2011; Hatfield, 2014; Hatfield
et al., 2017). In this study, the particle size separation approach
is applied to isolate the magnetic properties of northwest
Pacific sediments. From the particle size-dependent magnetic
properties, we investigate the magnetic contribution of volcanic
materials and its relationship with the climate-related magnetic
variations since 400 ka.

MATERIALS AND METHODS

Materials
Sediment samples were taken from the core NPGP1302-1B
(32◦17.550N, 158◦13.570E; Figure 1) on the South High of
the Shatsky Rise studied by Shin et al. (2018). Terrigenous
sediments of the Shatsky Rise area are mainly composed of
eolian dust from Asian deserts (e.g., the Taklimakan and Gobi
deserts) and volcanic materials from the nearby Japanese arcs
(Natland, 1993; Zhao et al., 2006). In terms of magnetic minerals,
the terrigenous fractions have experienced post-depositional
alteration (i.e., magnetite dissolutions) during glacial periods,
as indicated by abruptly reduced magnetizations in glacial-
stage sediments (Korff et al., 2016; Shin et al., 2018). For the
studied core, Shin et al. (2018) reported that magnetic minerals
experienced weak alteration during Marine Isotope Stage (MIS) 2
and severe dissolution during MIS 6, 8, and 10.

To identify particle size dependence on rock magnetic
properties, 20 bulk sediment samples were selected from core
NGP1302-1B and physically separated into five particle size
fractions (<2, 2–8, 8–31, 31–63, and >63 µm). Sample selection
was based on sediment ages of NPGP1302-1B (Shin et al., 2018),
covering periods of MIS 1–10. Shin et al. (2018) constructed
the sediment age model through correlations of magnetic
susceptibility and Ba/Ti (Ba/Al) records with adjacent cores.
Radiocarbon dates spanning the last ∼20 kyr were also combined.
From a total of 23 age–depth points, the average sedimentation
rate was calculated as 1.60 cm/kyr, with the bottom age of 394 ka
at 603 cm depth.

Particle Size Separation
Particle size separation was made following the Atterberg
method (Atterberg, 1912). A bulk sediment sample of
∼2.5 g dry weight was mixed with 25 ml of a 2% Calgon
solution (sodium hexametaphosphate) and distilled water
and stirred sufficiently. The >63 µm fraction was extracted
by sieving. Next, the sediment solution was separated into
four size-fractions on the basis of Stroke’s Law, in sequence
from coarse to fine fractions (31–63, 8–31, 2–8, and <2
µm), by siphoning suspended sediments after deposition
time of respective particle size fractions. The extraction
process of each fraction was repeated at least twice to
obtain purer particle size fractions. The size-separated
samples were oven-dried at a temperature of ∼50◦C and
measured as dry masses. For the <2 µm fraction, the mass of
Calgon was corrected.

Magnetic Measurements
For a total of 100 size-fractionated samples, concentration-
related magnetic parameters were measured: saturation
isothermal remanent magnetization (SIRM), anhysteretic
remanent magnetization (ARM), and backward IRM at
100 and 300 mT in the opposite direction to the SIRM
(IRM−100mT and IRM−300mT, respectively). Hard IRMs
(HIRMs) were calculated as follows: HIRM100 = 0.5 × (SIRM +
IRM−100mT) and HIRM300 = 0.5 × (SIRM + IRM−300mT).
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FIGURE 1 | A map showing the location of the studied core NPGP1302-1B. Cores referred in this study are also shown. In the North Pacific, eolian dust and
volcanic materials are transported by the Westerly jet and the East Asian winter monsoon (yellow shaded arrows).

SIRM and ARM represent magnetizations of all grains
and fine-grained ferrimagnetic minerals (e.g., magnetite),
respectively (Evans and Heller, 2003). HIRM100 and HIRM300
reflect concentrations of magnetic minerals with >100 mT
(e.g., partially oxidized magnetite) and >300 mT coercivities
(e.g., hematite), respectively. S-ratios (S100 and S300) were
calculated using S100 = 0.5 × (1 – IRM−100mT/SIRM) and
S300 = 0.5 × (1 – IRM−300mT/SIRM). S100 and S300 are applied
to estimate the relative significance of magnetic minerals
with <100 mT and <300 mT coercivities, respectively, among
all magnetic minerals (Evans and Heller, 2003). All remanent
magnetization values were measured using a Agico JR-6A
spinner magnetometer.

For selected size-fractionated samples, IRM acquisition
and backfield demagnetization curves were obtained using
a Princeton MicroMag 3900 vibrating sample magnetometer
in the Center for Advanced Marine Core Research, Kochi
University, Japan. IRMs were acquired by applying DC fields
of up to 1 T, with 140 nonlinear field steps. From stepwise
backfield IRM demagnetization, remanence coercivity (Bcr) was
estimated as the field reduced the remanence to zero. Based
on IRM acquisition behavior, principal component analysis on
coercivity distribution was performed using a fitting program
(Kruiver and Passier, 2001).

Electron Microscope Observations
Scanning electron microscopy (SEM) observations were carried
out for magnetic mineral extracts from selected size-fractionated
samples and a volcanic ash layer. After magnetic measurements,
samples were dispersed into distilled water under ultrasonication

for 5 min. The sediment solution was slowly dropped into a
glass vial filled with distilled water, and magnetic minerals were
extracted by a rare earth magnet of 1 T which was placed
next to the vial. This procedure was repeated several times to
gather purer magnetic extracts. The extracted samples were dried
at ∼50◦C in an oven overnight. Finally, the dried magnetic
extracts were mounted using a carbon tape, and then coated with
carbon. SEM observations were performed with a JEOL analytical
field emission SEM (JSM-7610F) coupled with energy dispersive
X-ray spectroscopy (EDS) at Gyeongsang National University,
South Korea.

RESULTS

Magnetic concentration parameters (SIRM, ARM, HIRM100, and
HIRM300) of size-fractionated samples were normalized by mass,
and then multiplied by each mass fraction (f ); representing mass-
normalized and mass-weighted values, respectively. The mass-
normalized values are generally higher in coarser fractions which
take small portions in total mass (Supplementary Figure S1),
indicating higher magnetic concentration. In order to take
account into mass contribution together, the mass-weighted
values were adopted in this study (Figure 2) and relative
abundance of magnetic minerals in each size fraction was
evaluated (e.g., Razik et al., 2014). By normalizing the mass-
weighted values with bulk values, the percentage magnetic
contribution (PMC) was also calculated.

The calculated parameters for the sized fractions in this study
are compared with the results obtained from bulk samples in
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FIGURE 2 | Magnetic concentration parameters of bulk and size-fractionated samples from NPGP1302-1B. (A) Saturation isothermal remanent magnetization
(SIRM); (B) anhysteretic remanent magnetization (ARM); (C) hard (>300 mT) IRM (HIRM300); and (D) hard (>100 mT) IRM (HIRM100). Values are mass-weighted by
multiplying fractional abundance (%). For comparison, the bulk values from Shin et al. (2018) are shown as gray shaded area. Marine Isotope Stages (MIS) are
labeled as numbers on the top. Volcanic ash layers at ∼80 and ∼270 ka are marked by orange bars.

the previous study (Shin et al., 2018). In addition, the relative
significance composition of low and high coercivity minerals was
estimated by comparison of S-ratios.

SIRM and ARM
SIRM values of the sized fractions display similar variations
to bulk SIRM, showing markedly low values in all fractions
during MIS 6, 8, and 10 (Figure 2A). Of the five fractions,
the 2–8 µm fraction has relatively high SIRM values with the
highest average PMC of 31% (Figure 2A and Table 1), revealing
higher contribution (36–38%) during MIS 1 and 9, and lower

contribution (19–27%) during MIS 7 and 8 (Figure 3A). The
finest fraction (<2 µm) does not show distinctively high SIRM
values (Figure 2A), and the average PMC (25%) is lower than
the 2–8 µm fraction (Table 1). Although coarser fractions (8–
31 and 31–63 µm) have slightly lower average PMC values
of 21 and 22%, respectively (Table 1), they occasionally show
significantly high SIRM values and PMC up to 43% (Figures 2A,
3A). In particular, the 31–63 µm fraction exhibits the maximum
SIRM values with PMC of 28–43% during MIS 7 and around
a volcanic ash layer at ∼270 ka (Figures 2A, 3A). The coarsest
fraction (>63 µm) contributes a small portion to the bulk SIRM
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TABLE 1 | Percentage Magnetic Contribution (PMC) of each particle size fraction
to bulk magnetic concentration parameters.

(µm) (%) SIRM ARM HIRM300 HIRM100

<2 Mean PMC
(range)

25 (8–55) 44 (21–63) 26 (10–43) 18 (6–36)

2–8 Mean PMC
(range)

31 (22–38) 33 (22–46) 27 (15–34) 28 (14–42)

8–31 Mean PMC
(range)

21 (13–27) 11 (2–18) 24 (16–31) 25 (18–31)

31–63 Mean PMC
(range)

22 (10–43) 10 (3–25) 22 (6–49) 27 (14–51)

>63 Mean PMC
(range)

2 (0.2–6) 2 (0.1–13) 1 (0–3) 2 (0.2–4)

(Figure 3A and Table 1) and could reflect inclusions of magnetic
grains in host minerals, such as silicates (e.g., Chang et al., 2016;
Chen et al., 2017).

Fine fractions (<2 and 2–8 µm) have high ARM values
(Figure 2B), which is consistent with ARM being more
sensitive to the presence of finer magnetic grains. Their
average PMC dominates the bulk ARM, accounting for 44
and 33%, respectively (Table 1). The two dominant fractions
show opposing fluctuations in some periods (Figure 2B), which
probably reflects fine magnetite of different origins (e.g., biogenic
vs. detrital magnetite). ARM values of coarser fractions (8–31 and
31–63 µm), similarly, vary with those of the 2–8 µm fraction
(Figure 2B), but their average PMC is generally as low as 11 and
10%, for 8–31 and 31–63 µm fractions, respectively (Table 1).

HIRMs and S-Ratios
Bulk HIRM300 and HIRM100 variations resemble that of SIRM,
reflecting a similar input mechanism for both high and low
coercivity minerals (Figures 2C,D). Of the measured parameters,
the bulk HIRM300 does not show a noticeable decrease during
MIS 6, 8, and 10 (Figure 2C) since high coercivity minerals
(e.g., hematite) are resistant to dissolutions (Roberts, 2015). Fine
fractions of <2 and 2–8 µm have relatively constant HIRM300
values (Figure 2C), with average PMC values of 26 and 27%,
respectively (Table 1). The PMC generally increases during
glacials (MIS 2, 6, 8, and 10) (Figure 3C). On the other hand, the
coarser fractions, 8–31 and 31–63 µm, display a relatively large
fluctuation in HIRM300 values (Figure 2C) with average PMC
values of 24 and 22%, respectively (Table 1). Strikingly, the coarse
fractions dominate the bulk HIRM300 with peak values in MIS 7,
as in SIRM, showing PMC of 62–74% (Figures 2C, 3C).

Compared to the bulk HIRM300, HIRM100 variation is more
similar to SIRM variation (Figures 2A,C,D). However, the <2
µm fraction has relatively low HIRM100 values, with an average
PMC of 18% (Figure 2D and Table 1). Meanwhile, HIRM100
values of coarser fractions of 8–31 and 31–63 µm dominate the
bulk values (Figure 2D), showing average PMC values of 25 and
26%, respectively (Table 1). The PMC of the coarse fractions to
HIRM100, exhibiting ∼50–80% together, is distinctively higher
than to other parameters (Figure 3).

The sized fractions have relatively constant S300 ratios in the
range of ∼0.95–0.98, except for significant decreases during MIS

6, 8, and 10. This indicates the dominance of low coercivity
minerals (<300 mT) in all fractions. As shown by relative
fluctuations in SIRM instead of HIRM300 (Figure 4), the S300
decreases during MIS 6, 8, and 10 are associated with a decrease
in low coercivity minerals. The lowest S300 in the <2 µm fraction
supports the preferential dissolution of fine magnetites (e.g.,
Roberts, 2015). S100 of the sized fractions, similarly, changes with
S300, showing decreases during MIS 6, 8, and 10. However, more
distinctly, S100 is lower in the coarse fractions (8–31 and 31–
63 µm), reflecting the greater contribution of high coercivity
minerals (>100 mT). This is consistent with relatively high PMC
to the bulk HIRM100 in the coarse fractions (Figures 3D, 4A).

SEM Observations
SEM photos of magnetic extracts for the <2 µm and 8–31
µm fractions of 231 ka (361 cm depth) in Figure 5. For
the <2 µm fraction (Figures 5A,B), magnetic particles show
various morphologies with frequent occurrences of subangular–
euhedral and cuboidal shapes with smooth surfaces. EDS analysis
reveals that most of the particles are identified as iron-oxides
showing distinctive Fe and O peaks (Supplementary Figure S2).
Most of <100 nm particles are observed as cuboidal iron-
oxides aggregated each other (lower panels of Supplementary
Figure S2). On the other hand, magnetic extracts for the 8–31
µm fraction show angular, irregular, and vesicular morphologies
with 10–30 µm particle sizes (Figures 5C,D). Such typical
morphologies are characteristics of volcanic ashes (e.g., Riley
et al., 2003). Within large alumino-silicates composed mainly
of Al, Ca, and Si, iron-oxides are observed as submicron sized
inclusions (Figure 5D and Supplementary Figure S3). Notably,
the iron-oxide inclusions also have Ti as a major element.

For comparison, magnetic extracts for a volcanic ash layer
(275 ka, 470 cm depth) were observed (Figures 5E,F). As
expected, all the particles observed show similar morphologies
to those in the 8–31 µm fraction. Ti-rich iron-oxides occur in
the large alumino-silicate host (Supplementary Figure S4). Such
morphological and compositional similarities indicate that most
of large particles (>8 µm) including iron-oxides are probably in
volcanic origin.

DISCUSSION

Climate Dependence of Volcanic
Fraction
For the past ∼500 kyr, terrigenous sediments of ODP 1209B
site on the South High of the Shatsky Rise, where our study
core was collected at ∼50 km away (Figure 1), have shown
a bimodal particle size distribution, with modes of ∼4 and
∼20 µm accounting for ∼60–100% and ∼0–40% of the
terrigenous fraction, respectively (Zhang et al., 2019). The major
components of the 4 and 20 µm modes have been identified as
eolian dust and volcanic materials, respectively, based on their
Nd isotopic (εNd) and geochemical (La-Sc-Th) compositions
(Zhang et al., 2019). In the ODP 1209B core, εNd varied
systematically with relative proportion of two size modes, in
which εNd increased toward volcanic end member composition
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FIGURE 3 | Percentage magnetic contribution (PMC) of the size-fractionated samples to bulk magnetic parameters of (A) SIRM, (B) ARM, (C) HIRM300, and
(D) HIRM100. PMC of each fraction is illustrated as cumulative bar chart. The color index is the same as in Figure 2.

with increasing proportion of 20 µm mode size fraction. The
SEM observation results of our size-fractionated samples clearly
confirmed the two main detrital origins, showing differences in
morphologies of magnetic particles (Figure 5). Thus, the 2–8
and 8–31 µm samples of this study are expected to represent
magnetic signals of the eolian and volcanic components,
respectively. In addition, finer (<2 µm) and coarser (31–63 µm)
fractions probably retain the extended magnetic properties of the
two components.

SIRM reflects the total magnetic mineral concentration, and
average PMC of fine fractions (<2 and 2–8 µm) dominantly
contribute to the bulk values (Table 1). Given the dominant

fine eolian component in the pelagic setting (Maher, 2011),
it is natural that the fine fractions make a high magnetic
contribution. However, coarse fractions (8–31 and 31–63 µm)
show a significant PMC of >50% in some cases. For example,
the coarse fractions in MIS 7 make up greater than 60% of
bulk SIRM, with high mass-weighted SIRM values (Figures 2A,
3A), implying significant contribution of volcanic particles to
bulk magnetic concentration as confirmed by SEM observations
(Figures 5C,D). Notably, the PMC of the coarse fractions is more
distinctive in HIRMs than SIRM (Figure 3 and Table 1).

Interestingly, the temporal change in the bulk SIRM and
HIRMs shows positive correlations with PMCs of the coarse
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FIGURE 4 | (A) S300 and (B) S100 of bulk and size-fractionated samples. The lower S-ratios indicates greater contribution of high coercivity magnetic minerals. The
color index is the same as in Figure 2.

fractions (8–31 and 31–63 µm), while the fine fractions (<2 and
2–8 µm) reveal negative correlations (Figure 6). Except for highly
altered MIS 6, 8, and 10 samples that probably suffered magnetite
dissolutions (Shin et al., 2018), PMC of the coarse fractions show
a high correlation coefficient (r2) of 0.87 for SIRM (Figure 6A).
This strongly indicates that volcanic contribution has a close
relationship with temporal changes of magnetic concentration.
Such significance of volcanic contribution on magnetic signal is
consistently found in the nearby core ODP site 1209B (Figure 1).
As shown in Figure 7, Zhang et al. (2019) reported that relative
changes in volcanic particle contribution of the ∼20 µm mode
component at the site 1209B mimics the global oxygen isotope
stack (LR04; Lisiecki and Raymo, 2005) during the last ∼500
kyr. When we compare this volcanic component with magnetic
susceptibility from the site 1209B (Westerhold and Röhl, 2006),
the two records show concurrent variations. This implies that
volcanic particle contribution, rather than eolian dust, is the
critical cause of the magnetic susceptibility variations. Moreover,
the two records are very analogous to bulk magnetic susceptibility
records of the studied core NPGP1302-1B (Shin et al., 2018)
and a nearby core NGC102 (Yamamoto et al., 2007). Yamamoto
et al. (2007) also stratigraphically correlated similar magnetic
susceptibility changes of cores around the Shatsky Rise. All
these consistent records indicate that bulk magnetic signals (i.e.,
magnetic mineral concentration) of northwest Pacific sediments
sensitively responded to volcanic particle contribution.

As Zhang et al. (2019) suggested, the climate-dependence of
volcanic particle contribution can be explained as the relative

effect of dilution by evolving eolian dust flux, as dust input is
enhanced during glacials (e.g., Hovan et al., 1991; Lambert et al.,
2008; Jacobel et al., 2017); volcanic activities alone cannot directly
paced to climate change. Of course, it should be noted that
glacial magnetic signals represent the concentration of remaining
magnetic minerals after magnetite dissolution (Shin et al., 2018).
All particle fractions have low mass-concentration of magnetic
minerals during MIS 6, 8, and 10 (Supplementary Figure S1)
with low S-ratios (Figure 4), suggesting that magnetic minerals
were primarily dissolved. Nevertheless, stronger contribution of
eolian dust is likely well-reflected in higher PMC to HIRM300 of
fine fractions during glacials (Figure 3). Conclusively, our results
provide a more comprehensive understanding of the cause of
climate-dependent magnetic variations: volcanic coarse particles
have strong potency to magnetic concentration parameters of
both low and high coercivity minerals and thus acted as the main
controller of bulk magnetic records in relation to terrigenous
input. Volcanic materials, thus, should be considered as an
essential factor for the interpretation of magnetic signals in the
northwest Pacific, even though they account for a relatively small
portion in sediments than dust.

Magnetic Characterization of the
Volcanic Component
Magnetic properties of volcanic materials deposited in the
northwest Pacific have been identified mostly from intercalated
ash layers in bulk sediments. In general, the volcanic ash
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FIGURE 5 | Scanning electron microscopy (SEM) photos of magnetic extracts for (A,B) the <2 µm and (C,D) the 8–31 µm fractions of the 231 ka (361 cm depth)
sample. (E,F) SEM photos for volcanic ash layer (275 ka, 470 cm depth) are presented for comparison. Representative chemical compositions are shown in
Supplementary Figures S2–S4.

layers are characterized by magnetic spikes, associated with
deposition of abundant magnetic minerals by short-term
events (e.g., Yamamoto et al., 2007; Korff et al., 2016; Shin
et al., 2018). Detailed magnetic analyses on the volcanic ash
layers have also reported their magnetic features, such as
rare antiferromagnetic minerals (Natland, 1993) and abundant
ultrafine superparamagnetic particles (Bailey et al., 2011). In
particular, Zhang et al. (2018) verified that volcanic ash layers
deposited at a northern Pacific site (ODP site 885A; Figure 1)
rarely contain pedogenic hematite and goethite, commonly
present in eolian dust from arid regions, based on diffuse
reflectance spectroscopy (DRS) signals. They also specified
abundant high coercivity (80–100 mT) ferrimagnetic minerals
in the ash layers from coercivity distribution. Along with these
achievements, the particle size separation approach in this
study can further provide magnetic information on the long-
term airborne input of coarse volcanogenic particles in the
northwest Pacific.

Considering the magnetic features of volcanic ash layers,
coercivity distribution of fine (<2 and 2–8 µm) and coarse (8–
31 and 31–63 µm) fractions could provide useful information
on eolian- and volcanic-related magnetic signals, respectively.
IRM component analysis for selected interglacial bulk samples
and their sized fractions, avoiding glacial magnetic alteration,
was performed (Figure 8 and Supplementary Figure S5).
Coercivity spectra of the four sized fractions are all dominated
by component 2, with low coercivity (B1/2 of 45–54 mT;
Figures 8C–F). In the coercivity range, a narrow dispersion
parameter (DP) of ∼0.2 in the finest fraction (<2 µm) is typical
for biogenic magnetite, while wider DP in the other fractions
corresponds to detrital magnetite (Egli, 2004; Yamazaki, 2009).
Despite the dominant contribution of component 2, component
3, with a B1/2 of 93–145 mT, is prominent in the coarse fractions
with ∼22.5% contribution to SIRM (Figures 6E,F). On the other
hand, component 4, which exhibits a higher coercivity (B1/2 of
427–501 mT), is negligible in the coarse fractions.
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FIGURE 6 | Correlation between bulk magnetic concentration (SIRM, HIRM300, and HIRM100) and PMCs of (A) coarse (8–31 and 31–63 µm) and (B) fine (<2 and
2–8 µm) fractions. Glacial samples (MIS 6, 8, and 10), suspected to be altered (open symbols), were excepted for the correlation. PMCs of coarse and fine fractions
reveal positive and negative correlations, respectively, with bulk concentration parameters.

FIGURE 7 | Comparison of global oxygen isotope (LR04; Lisiecki and Raymo, 2005), magnetic susceptibility (MS) of ODP site 1209B (blue; Westerhold and Röhl,
2006; Bordiga et al., 2013 for age construction), particle size endmember (EM) contribution in ODP site 1209B (orange; Zhang et al., 2019), and MS records of
NGC102 (dark gray; Yamamoto et al., 2007) and NPGP1302-1B (gray shaded; Shin et al., 2018). The EM corresponds to volcanic component relative to eolian dust
in terrigenous fraction of ODP site 1209B.

In contrast, the fine fractions display high-field tails in the
IRM acquisition curves (Figure 8A), indicating the presence
of high coercivity antiferromagnetic minerals, such as hematite,

in eolian dust. The high coercivity signal in the fine fractions
could be useful to trace the eolian contribution as demonstrated
using DRS parameters by Zhang et al. (2018). Taken together,
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FIGURE 8 | Remanence acquisition and gradient plots for the 103 ka (164 cm depth) samples. (A) IRM acquisition and backfield decay curves for bulk and sized
fractions altogether; (B–F) coercivity spectra of bulk and each sized fractions. In coercivity spectra, raw data points are indicated by squares; coercivity components
are marked as purple (component 1), green (component 2), blue (component 3), and gray (component 4) lines; and sum of components are red lines fitted to the raw
data. For each coercivity component, mean coercivity (B1/2), dispersion parameters (DP), and contribution to SIRM (cont.%) are specified.
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from the coercivity behaviors of the coarse fractions, volcanic
materials can be characterized by abundant ferrimagnetic
minerals of intermediate coercivity (∼100 mT). Although this
coercivity range is slightly higher than the results from the
ash layers originating from the Kamchatka-Aleutian arcs (i.e.,
the site 885A; Zhang et al., 2018), the coercivity distribution
of our coarse fractions may be somewhat different depending
on the relic of antiferromagnetic minerals in eolian dust
(Supplementary Figure S5).

The IRM acquisition behavior of the bulk sample is similar
to that of the 2–8 µm sample, particularly in the low coercivity
range (Figure 8A). However, as shown in the bulk coercivity
spectra (Figure 8B), the large dispersion of component 2
and the significant contribution of component 3 are more
related to the coercivity distribution of the coarse fractions
(Figures 6E,F). This confirms volcanic particles as an essential
supply source of magnetic minerals. In particular, the abundant
intermediate coercivity minerals (i.e., component 3) in volcanic
particles can yield relatively high coercivity, as consistently
presented by higher Bcr and lower S-ratios in the coarse fractions
(Figures 4, 6A, respectively). This implies that some proxies
for higher coercivity fractions in bulk sediments (e.g., S-ratios
and HIRMs) can be influenced by volcanic contribution. Thus,
the use of such conventional eolian proxies for bulk sediments
should be accompanied by consideration of volcanic contribution
in coarse fraction in the northwest Pacific. In that respect, the
magnetic analysis combined with particle size separation is a
useful tool for characterizing volcanic and eolian contribution
on bulk sediments.

CONCLUSION

Based on particle size-dependent magnetic properties, magnetic
characteristics of volcanic materials and their contribution
to bulk magnetic concentration was evaluated in ∼400 kyr
sediments from the northwest Pacific. Magnetic properties
of fine (<2 and 2–8 µm) and coarse (8–31 and 31–63
µm) fractions were isolated as eolian- and volcanic-related,
respectively. SIRM and HIRMs (HIRM300 and HIRM100) were
significantly contributed to by the coarse fractions, often
showing >50% (up to 74%) of PMC. Moreover, the PMC
of the coarse fractions generally varies in sync with the
respective bulk values of SIRM and HIRMs, implying a close
relationship between volcanic particle contribution and bulk
magnetic concentration. Such a relationship is validated by
covariation between magnetic susceptibility records and the
relative proportion of volcanic components in the terrigenous

fraction. Thus, we suggest volcanic materials as an important
factor of magnetic concentration in the northwest Pacific,
related to climate change. In addition, coercivity spectra of
the coarse fractions reveal that volcanic materials contain
abundant intermediate coercivity (∼100 mT) minerals, which can
significantly influence high coercivity fraction parameters (e.g.,
S-ratios and HIRMs). Therefore, traditional coercivity proxies
should be carefully interpreted in the northwest Pacific, in
consideration with the volcanic contribution.
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