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We performed some refinements to the Boundary Profile eValuation (BPV) method,

developed by Vespe and collaborators (Vespe et al., 2004; Vespe and Persia, 2006;

Vespe, 2016), for the retrieval of vertical atmospheric humidity profiles from Radio

Occultation (RO) observations. Previous BPV models solve typical rank deficiencies in

treating RO data by recurring to parametric dry atmospheric refractivity models, such

as the Hopfield or the CIRA86aQ. The involved parameters were selected by fitting

observed RO Bending Angles (BAs) in the stratosphere where humidity is negligible.

Total refractivity was then obtained from the observed BAs via a variational method.

Such approach furnishes a valid alternative to the usual Abel inversion. Humidity profiles

were finally achieved by subtracting dry refractivity contribution to the total refractivity.

Nevertheless, unphysical behaviors of “negative” values of humidity can occur when

the dry refractivity profiles are extrapolated toward the lower part of the troposphere.

In order to avoid such unphysical behavior, in this work we recur to a second fitting

for the total refractivity data, through a Least Square Error (LSE) method having a

non-negative residual constraint. This is mathematically achieved with a modification

of the usual LSE functional to minimize, by means of an additional exponential fast

increasing term with respect to negative residuals. A Levenberg-Marquardt method

relative to this new functional has been developed too, in order to numerically estimates

the relative minimizers. With this approach, new dry refractivity profiles, more suited to

be extrapolated in the troposphere, are recovered. We tested this new method with a

series of almost 450 of GPS-RO observations from the FORMOSAT-3 COSMIC-1 Space

Mission in 2009. The results show that unphysical negative values for partial water vapor

pressures are removed, without losing, but in most cases even improving, the accuracy of

the retrieved values, as comparedwith data from the European Centre for Medium-Range

Weather Forecasts (ECMWF) and the National Centers for Environmental Prediction

(NCEP) meteorological analysis, the Constellation Observing System for Meteorology,

Ionosphere, and Climate (COSMIC) data analysis, and as the RAwinsonde Observation

(RAOB) balloons excursions suggest.

Keywords: GNSS radio occultation, humidity profiles, BPV method, Abel transform, constrained least square error

method
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INTRODUCTION

Global Navigation Satellite System Radio Occultation (GNSS-
RO) observations have provided in the last 20 years a huge
amount of data suitable to perform global change studies and
operational meteorology on global range (Jin et al., 2012; Bauer
et al., 2015). By treating RO observations with specific techniques,
real time information about atmospheric refractivity vertical
profiles can be achieved (Fjeldbo and Eshleman, 1969; Fjeldbo
et al., 1971; Kursinski et al., 1997). One of the main drawbacks
in the atmospheric sensing by means of RO observations lies
in a rank deficiency problem in deriving the most important
atmospheric parameters, that is, pressure, temperature and
humidity concentrations, from refractivity data alone. In order
to resolve this problem with three unknown, only two equations
are actually available: (1) the Smith & Weintraub microwave
refractivity equation (Smith and Weintraub, 1953), and (2) a
thermodynamic state equation in hydrostatic equilibrium, both
reported in section How to Retrieve Thermodynamic Profiles for
the Troposphere.

This rank deficiency is usually solved by merging observations
with models in “simple” or “direct” fashion (Gorbunov and
Sokolovskiy, 1993) or by applying 1DVAR (NDVAR) techniques
(Healy and Heyre, 2000). Following Kursinski’s classification
(Kursinski and Kursinski, 2013), simple models recover humidity
profiles by determining dry refractivity first and then operate
a simple subtraction from the total refractivity achieved by
RO observations. Dry refractivity can be estimated through
external information, as temperature profiles (Kursinski et al.,
2000; Kursinski and Hajj, 2001), or other GPS data (Ge
et al., 2001; Pacione et al., 2001), or by a priori atmospheric
models (Vespe et al., 2004; Vespe and Persia, 2006). 1DVAR or
NDVAR techniques consist in an optimization procedure, using
background data, forward models and the related covariance
error matrices to statistically match atmospheric state profiles
with observations (Eyre, 1994; Healy and Heyre, 2000). The cost
function to minimize is usually given in this form:

J (x) =
1

2

(

y−H (x)
)T

(E+ F)−1
(

y−H (x)
)

+
1

2
(x− xB)

T B−1 (x− xB) .

Here, y stays for the observed data, while x is the data to
be recovered. In absence of errors and uncertainties we have
y = H (x), that is, H is the forward model linking the vector
variable x to the vector observation y. Rank deficiency occurs
because H gradient is often given by a horizontal rectangular
matrix. In order to reduce the spread of the possible solutions
that minimize J, it is also required that x doesn’t deviate too
much from some previous, a priori information, represented
by the background vector xB. So, a second squared term is
added in the expression of J. Deviations from background
data and observed data are then weighted, respectively, by
the reciprocals of the expected background covariance error
matrix (B) and of the sum of the expected covariance error
matrices due to observations (E) and forward model (F). In

the case of ROs, y may represent atmospheric refractivity or
rawer experimental data such as BAs or excess Doppler shifts
(Kuo et al., 2000) (we describe these quantities in section Radio
Occultation Observations). Various comparative studies (Zou
et al., 2000; Cucurull and Derber, 2013; Gorbunov et al., 2019),
have shown that BAs assimilation should be preferred. A lot of
efforts is nowadays dedicated to a correct estimation of the error
covariance matrices, in particular to error propagation from RO
experimental observations to thermodynamic atmospheric data
(Schwarz et al., 2017, 2018; Li et al., 2019; Innerkofler et al., 2020);
however the main sources of errors in 1DVAR method result in
the uncertainty in background data (Cucurull and Derber, 2013).
Finally, dimension number N usually indicate how many spatial-
temporal parameters are used to describe the RO event. In the
1-dimensional case, ROs are described in terms of elevations, in
the hypothesis of a spherical symmetric atmosphere; for a more
detailed description of the event, such as in numerical weather
prediction forecasting, multidimensional variation is needed.
This increases the complexity of the required background model,
and a considerable mole of data are to be treated, with high
computational cost. For this reason, mixed procedures are often
adopted (Gorbunov et al., 2019).

The Boundary Profile eValuation (BPV) method (Vespe et al.,
2004; Vespe and Persia, 2006) can be considered as a simple
model, even if it avoids the use of external information. The
BPV works in two aspect: (1) it retrieves total refractivity
profiles from bending angles (BA)s data without recurring to the
Abel transform (see section How to Retrieve Total Refractivity
Profiles), but by applying instead a variational method; (2) it
retrieves wet refractivity profiles—that is, refractivity due to the
presence of water vapor—in a simple model fashion. This last
step is performed by considering RO observations that involve
only the stratosphere and the upper part of the troposphere,
where humidity concentration is negligible. In this way, an
accurate recovering of wet refractivity profiles by GNSS-RO
observations alone is possible. Nevertheless, it does not avoid
seldom-negative unphysical estimates about wet pressure, as
most of the simple models.

In the present work, we developed some refinements to the
BPV method in order to avoid such unphysical behaviors. By
imposing a non-negative constraint for the residuals of the fitting
procedure, we assure a non-negative range for wet refractivity
values. Our work differs from Vespe (2016) in two aspects: (1)
total refractivity is now the physical quantity to fit, in place of the
BA; (2) a penalty method approach (Smith and Coit, 1996), based
on amodification of the functional usually employed tominimize
in the Least Square Error (LSE) method, is adopted.

The article is structured as follows. In section Radio
Occultation Observations and The BPV Approach we expose a
brief review about RO observations and the BPV method. In
section LSE Method With a Non-negative Residuals Constraint
we describe in detail the mathematical scheme used to
perform the non-negative residual constrained fitting. In section
Discussion of the Results we apply the new method to a
sample of almost 450 GNSS-RO observations from the COSMIC-
1 mission. Finally, in section Conclusions we comment the
obtained results.
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RADIO OCCULTATION OBSERVATIONS

RO observations primarily consist in tracking and measuring
short wave radio signal arriving at a receiver from a transmitter
during an occultation phase, occurring when one or both the
receiver and the transmitter are falling behind/emerging from
a planet or more generally a celestial body with atmosphere.
During an occultation, ray lines of the electromagnetic field
cross different layers—at different altitudes—of the celestial
body atmosphere, whose physical properties and chemical
compositions sensibly affect radio signal phases and intensities as
registered at the receiver point. By applying opportune inversion
techniques, from the time trends of the measured phases and
intensities it is possible to trace profiles of the physical/chemical
properties of the planet atmosphere. The whole RO observation
thus results in a scanning process of the atmosphere.

On Earth a RO observation is usually performed by a satellite
from a GNSS constellation—often a GPS one—playing the role
of the transmitter, whose emitted signals are detected by a
Low Earth Orbit (LEO) satellite, having a GNSS signal receiver
mounted on it (Figure 1). LEO-LEO ROs, involving signals at
different bands with respect to the L-band of the GPS, are often
considered too (Kirchengast and Hoeg, 2004; Benzon and Høeg,
2016). This investigation method for the Earth’s atmosphere was
first suggested in some works of 1960s (Fishbach, 1965; Lusignan
et al., 1969). However, radio occultation concept was initially
applied to the remote sounding of Mars and Venus atmospheres,
through the Mariner and Pioneer space missions (Fjeldbo and
Eshleman, 1969; Fjeldbo et al., 1971; Kliore and Patel, 1982), and
successively to outer planets as well, with the Voyager missions
(Lindal, 1991). Only with the advent of the GPS constellation,
together with the launch of several LEO satellites, it was achieved
the needed Earth global coverage in order to enhance the existing
atmospheric data by RO observations (Yunck et al., 1988).

Radio wave occultations by a celestial body with atmosphere
mainly result in an excess of the Doppler shift of signal frequency.
This excess, with respect to the usual Doppler shift observed in
vacuum when the transmitter and the receiver are in relative
motion, is due to the deflection of the ray lines connecting the
two satellites from the straight line path, as a consequence of
the atmospheric refraction as schematically depicted in Figure 1

(Fjeldbo et al., 1971; Kursinski et al., 1997). Because the local
atmospheric refraction index depends on its (local) pressure,
temperature and chemical decomposition, it is possible to
achieve some information about these quantities from bending
angles measurements.

The basic approach in bending angles retrievals from Doppler
shift measurements make use of the Geometric Optics (GO)
approximation. By assuming a spherically symmetric distribution
for the atmosphere, Snell’s refraction law results in the Bouguer’s
formula (Born and Wolf, 1970)

rn (r) sinϕ = a, (1)

where ϕ is the incident angle of the ray signal at a point P of
the terrestrial atmosphere with distance r from the Earth’s center
(Figure 1), whereas n (r) is the refraction index for that distance.

The parameter a, known as the impact parameter, is a constant
of the ray path: in geometrical terms, it represents the distance of
closest approach in the absence of any bending.

At the transmitter T and at the receiver R, where n ≃ 1, we
have the following relationships

rT sinϕT = rR sinϕR = a. (2)

From Figure 1, we can see that the angles ϕT and ϕR are related
with the BA γ by

γ = ϕT + ϕR + ϑ − π = sin−1
(

a
rT

)

+ sin−1
(

a
rR

)

+ ϑ − π , (3)

where ϑ is the angular distance between the two satellites, as seen
from the Earth’s center.

In the classical approximation of the Doppler effect—i.e., by

neglecting the relativistic terms v2

c2
–carrier frequencies of the

GPS signals arriving at the LEO satellite fR are subjected to the
following variations with respect to the original frequencies fT :

fR = fT

(

1−
−→
V T
c · −→u T −

−→
V R
c · −→u R

)

, (4)

where
−→
V T ,

−→
V R are, respectively, the transmitter and the

receiver satellite velocities, while −→u T ,
−→u R are the departing

and incoming radio signal directions. Observe that in vacuum,
−→u T = −−→u R = −→u T,R, with

−→u T,R the unit vector connecting the
transmitter with the receiver; in this case (4) becomes

f
′
R = fT

[

1− 1
c

(−→
V T −−→

V R

)

· −→u T,R

]

, (5)

that is, the usual Doppler formula. So, by subtracting (5) from
(4), we obtain the pure atmospheric contribution to themeasured
Doppler effect (Fjeldbo and Eshleman, 1969).

By considering the radial and the transverse components of
−→
V T and

−→
V R, Equation (4) can be rewritten as

1f = fR − fT =
1

c

(

VT,r cosϕT + VT,t sinϕT

+ VR,r cosϕR − VR,t sinϕR

)

. (6)

By measuring Doppler shift 1f by a time differentiation of the
incoming signal phase at the receiver (Kursinski et al., 1997),
Equations (6) and (2) give us the impact parameter a in terms of

the known positions rT , rR and velocities
−→
V T ,

−→
V R of the GPS and

LEO satellites. Bending angles γ are then given by (3) as functions
of a, being the angle ϑ also known from satellites positions.

Hypothesis of isotropic atmosphere can be slightly weakened
by assuming a local spherical symmetry around the point −→r ⊥
of tangent propagation for the ray path (Figure 1), because the
main contribution to the total BA γ comes from this area, usually
having a horizontal extension of 200–300 km (Kursinski et al.,
1997). In this case, distances are to be measured with respect
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FIGURE 1 | Graphical representation of a RO observation. A radio signal path starting from the GPS transmitter T deviates from the straight line by a BA γ toward the

LEO receiver R, due to the refraction of the atmosphere. Impact parameter is denoted by a, whereas ϕ is the incident angle of the ray line on the spherical surface of

constant refraction index n. BA γ and impact parameter a are estimated by Doppler shifts measurements of the carrier frequency, if satellites positions and velocities,

respectively
−→
V T,

−→
V R, and

−→
r T,

−→
r R, are known.

to the local symmetry center, determined for example by local
center of curvature of the Earth WGS84 ellipsoid, or even of the
Geoid, which accurately models the Earth shape. In general, BAs
defined by Equation (3) are often denoted as the effective BAs
(Gorbunov et al., 2019), to be distinguished from the real BAs
when atmospheric spherical symmetry is not verified.

The approach described so far, based on GO approximation,
actually works for ray deviations taking place in the upper part of
the stratosphere. For radio signal sounding the lower stratosphere
and the troposphere, Equation (6) is no more suited. Indeed, the
more complex structures of these atmospheric layers determine a
spreading of wave-lengths, with the resulting multipath effects,
that is, the simultaneous arrival of multiple radio waves along
different ray paths, causing phase signals to change with a very
irregular pattern in time. This effect is particular evident in the
lower troposphere, where water vapor concentrations are not
negligible. In order to resolve most of the multipath ambiguity
and to recover BAs under such conditions, a more detailed
analysis of the measured phase and amplitude signal, based
for example on the wave optic approximation (Sokolowskiy,
2001; Gorbunov, 2002; Jensen et al., 2003; Gorbunov and
Lauritsen, 2004; Gorbunov and Kirchengast, 2015), is required.
Nevertheless, residual multipath effects due to atmospheric
anisotropy are more challenging to treat, because they cannot be
resolved by most of the methods mentioned above.

Ray signals approaching the planet with a given impact
parameter a during an occultation are belt by an angle γ (a) due
to the atmospheric refraction. Such angle can be retrieved by the
refraction index profile n (r) of a spherical symmetric atmosphere
in the following way. The Snell’s law in a differential form reads:

n (r) sinϕ =
[

n (r) + dn
]

sin
(

ϕ − dγ
)

, (7)

where the (differential) BA dγ is defined as the difference between
incidence angle ϕ in Equation (7) and refraction angle. By

developing the term on the right of (7) in a Taylor expansion up
to the first order, we get

n (r) cosϕdγ = dn sinϕ. (8)

By (1), we can rewrite (8) as

dγ = a
n(r)

dn√
r2n(r)2−a2

= a
d[ln(n)]

dr
dr√

r2n(r)2−a2
, (9)

and by integrating (9) between rtop and r⊥, respectively the radius
of the top of the atmosphere, beyond which n ≃ 1, and the
distance of the ray path tangent point (ϕ = π/2) from the Earth’s
center (Figure 1), we get half of the total BA γ . So

γ (a) = 2a
r⊥
∫

rtop

d[ln(n)]
dr

dr√
r2n(r)2−a2

≃

− 2a
+∞
∫

r⊥

d[ln(n)]
dr

dr√
r2n(r)2−a2

.

(10)

Observe that the integrand function is correctly defined for
r > r⊥, since rn (r) > rn (r) sinϕ = a, while it has a
(usually integrable) singularity at the extreme r = r⊥, being
r⊥n (r⊥) = a.

THE BPV APPROACH

BPV method is a useful technique able to retrieve both total
refractivity profiles and the atmospheric wet content as well,
without requiring additional information apart from bending
angles and impact parameters data derived from GNSS RO
observations. A dry atmospheric model for the refractivity, such
as the Hopfield (Hopfield, 1969) or the CIRA86aQ (Kirchengast
and Poetzi, 1999) is required in order to estimate such quantities.
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How to Retrieve Total Refractivity Profiles
In order to retrieve n (r) from (10), one often applies an
inversion formula. By operating a change of variable r −→
x = rn (r) inside the integral on the right of Equation (10),
we get:

γ (a)
a = −2

+∞
∫

a

d[ln(ñ(x))]
dx

dx√
x2−a2

= 2
+∞
∫

a

g(x)x√
x2−a2

dx, (11)

where ñ (x) = n(r (x)). Formula (11) gives the ratio γ (a)
a as the

Abel transform (Bracewell, 1965) of the function g

g (x) = − 1
x
d[ln(ñ(x))]

dx
. (12)

If g (x) x goes to zero when x → ∞, we can apply the
inverse Abel transform in order to retrieve g from the bending
angles γ (a ):

g (x) = − 1
π

+∞
∫

x

d( γ
a )

da
da√
a2−x2

. (13)

Once obtained the function g (x), one gets ñ (x) by inverting (12)
and successively sets n (r) = ñ (x) for r = x

ñ(x )
.

Formula (13) presents some drawbacks when applied to real
cases. Firstly, neglecting actual (local) deviations from refractivity
spherical symmetry can results in negative artifacts error (Ahmad
and Tyler, 1998). A more important source of error which occurs
even in the symmetric case is due to the presence of waveguides,
that is, layers of atmosphere inside which short wave radio signals
are trapped in, usually located at tropical latitudes, just above
oceanic surfaces. From a mathematical point of view, big lapses
of humidity at∼ 2 km of altitude above these zones cause a sharp

decrease of the refractive index profile, andwhen
∣

∣

∣

dn
dr

∣

∣

∣
> n

r , i.e., in

case of super-refraction (Sokolovskiy, 2003), the refractive radius
x = rn (r) is no more monotone. As a consequence, the function
ñ (x) is now multivalued, each ramification giving rise to the
same bending angle profile. From a deeper analysis (Sokolovskiy,
2003; Gorbunov et al., 2019), refractivity profiles recovered by
Abel inversion (13) are actually under-estimated below this
super-refraction quote.

An alternative approach for the inversion problem of
(10), which can take into account super-refraction effects, is
the BPV method as exposed in Vespe and Persia (2006).
It uses variational techniques in order to approach the
actual refractivity n (r) from a first guess n0 (r). A scheme
of the various steps followed by this technique is showed
in Figure 2.

Variational techniques often need a good starting point n0,
in order to work well. Such choice is retrieved by recurring
to parametric dry refractivity models. Hopfield or CIRA86aQ
models, the last one actually a background model but here used
as a parametric function, has been considered. The Hopfield
model relates refractivity, defined as N = 106 (n− 1), to the
altitude h = r − RE, where RE is the Earth radius, by means

of the pressure P0 and the temperature T0 at the surface of the
considered location. It reads

Ndry

(

h
)

=
{

α1P0
T0

(

hd−h
hd

)4
if h ≤ hd

0 if h > hd
,

with α1 = 77.6 K/mbar, whereas hd = 40136 m +
148.72mK−1 (T0 − 273.16 K). The CIRA86aQ is given in tabular
form: the mapping terms latitude and the month of the year are
used as parameters.

Once chosen a dry refraction model ndry (r;α,β), the
parameters (α,β) are selected by fitting the observed BAs with
the BAs obtained by inserting the dry profiles ndry (r;α,β) in (1),
limited to those ray paths scanning atmospheric regions where
water vapor concentrations are negligible. This usually happens
in the stratosphere and in those layers of the troposphere where
temperatures are lower than 250K (Kursinski et al., 1997). This
fitting is performed with an LSE method, with the numerical
solution

(

α0,β0

)

achieved by means of a Levenberg-Marquardt
algorithm (Nocedal and Wright, 2006). The starting point for
the variational iterative algorithm of Figure 2 is then set to
n0 (r) = ndry (r;α0,β0). In order to take into account of possible
super-refraction effects, an additional bump term, localized in the
lower troposphere, can be added to n0 (r). Indeed, starting from
a region of over-estimated refractivity, by a variational method
we can approach the right local minimum without incurring
in the Abel retrieved local minimum, which lies in a region
of under-estimation.

How to Retrieve Thermodynamic Profiles
for the Troposphere
By neglecting compressibility effects on the gaseous of the
atmosphere, air refractivity in the microwave spectra is related
to thermodynamic parameters by the following equation:

N = 77.6
Pdry

T
+ 3.74× 105

Pwet

T2
+ 70.4

Pwet

T
+ 4.03× 107

ne

f 2

+ 1.4W + 0.6I, (14)

where T is the temperature in Kelvin, Pdry, Pwet are the partial
pressures, respectively, of the dry air and water vapor in mbar, ne
is the electron number density per cubic meter, f is the frequency
of the electromagnetic signal in Hertz, whereas W and I are,
respectively, the liquid water droplets and ice aerosol content
in grams per cubic meter. The first term is due to the induced
polarization of the air molecules, the second and the third ones,
respectively, to the permanent and the induced polarization of
the water molecules, the fourth one is the contribute due to the
free electrons mainly in the ionosphere, whereas the remaining
two are aerosol scattering terms. The first two terms correspond
to the original Smith and Weintraub equation; the third term
coefficient is that reported in Thayer (1974), whereas the fourth
term coefficient is taken from Papas (1965). For the scattering
coefficients we refer to Kursinski (1997).
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FIGURE 2 | A schematic description of the variational approach used by the BPV method in order to retrieve total refractivity. More details can be found in Vespe and

Persia (2006).

As we can see from (14), atmospheric dispersion is only
due to the ionosphere in the microwave region. By using a
linear combination of the bending angles from both the L1 and
L2 GPS signals, the ionospheric contribution can be removed
(Vorob’ev and Krasil’nikova, 1994; Kursinski et al., 1997). So,
total refractivity, as estimated from this linear combination of
BAs, does not contain the fourth term. Besides, for realistic
concentrations of liquid and ice aerosols, the scattering terms can
be neglected too (Kursinski et al., 1997). Equation (14) can then
be rewritten as:

Ntot (h) = Ndry (h) +Nwet (h) =
[

77.6
Pdry (h)

T (h)

]

+
[

70.4
Pwet (h)

T (h)
+ 3.74× 105

Pwet (h)

T2 (h)

]

. (15)

By comparing Ndry–the term inside the first square brackets
on the right of (15)—with the ideal state equation for the
dry air

Pdry
(

h
)

= ρdry(h)
mdry

RT
(

h
)

, (16)

we obtain the following relationship between air density ρdry,

measured in kg m−3, and Ndry:

ρdry
(

h
)

= mdryNdry(h)
77.6·R , (17)

where mdry = 0.29 kg mol−1 is the mass per mole of

the dry air, and R = 8.313 J
(

kg mol
)−1

is the universal
gas constant. If we take now the hydrostatic equation for
the dry air

dPdry
dh

= −gρdry
(

h
)

, (18)

by inserting (17) in (18) and by integrating (18), we obtain
another equation among thermodynamic quantities and
refractivity terms:

Pdry
(

h
)

= Pdry
(

href
)

+ gmdry

77.6·R

href
∫

h

Ndry (z) dz. (19)

Here href is a reference altitude with a known value of the partial
pressure for dry air. By placing Ndry = Ntot − Nwet and by
replacing Nwet with the terms inside the second square brackets
on the right of (15), we can rewrite (19) together with (15) in form
of the following system:























77.6
Pdry(h)
T(h)

+ 70.4
Pwet(h)
T(h)

+ 3.74× 105
Pwet(h)
T2(h)

= Ntot

(

h
)

Pdry
(

h
)

+ gmdry

77.6·R

href
∫

h

[

70.4 Pwet(z)
T(z) + 3.74× 105 Pwet(z)

T2(z)

−Ntot (z)] dz = Pdry
(

href
)

.(20)

Obviously, such a system cannot be solved, since we have just
two equations for the three unknowns Pdry, Pwet and T, as
previously stated.

In order to invert (20), some additional information about
Ndry have to be achieved. A first estimation of the dry refraction
index profiles is given by extrapolating ndry (r;α0,β0), recovered
in the previous step for the estimation of the refractivity in the
stratosphere and in the higher part of the troposphere, toward
the lower tropospheric regions. So, we set

ndry
(

h
)

= ndry
(

h+ RE;α0,β0
)

, Ndry

(

h
)

= 106
(

ndry
(

h
)

− 1
)

. (21)

At this point we can obtain Pdry by (19), once set Pdry
(

href
)

. In a
previous version of the BPV model (Vespe, 2016), href = h250 K ,

i.e., the altitude at which T = 250 K, while Pdry
(

h250 K

)

was given
by RAOB data. Here, in order to make the model self-sustained,
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FIGURE 3 | A typical unphysical behavior of the wet pressure profiles by the

previous BPV model. The negative value of the wet pressure is emphasized by

the cyan circle.

we set href = htop, with htop defined as the higher altitude at

which we can estimate Ndry, whereas Pdry
(

h250 K

)

is set equal to
zero. Such a simple choice is motivated by the fact that htop lies on
the higher layers of the stratosphere, reaching a quote of 60 km.
Besides, errors due to upper boundary approximations decrease
exponentially at lower altitude (Kursinski et al., 1997), so that
they can be neglected in investigating the troposphere as in the
present work.

Once estimated dry pressure profiles, temperatures for the
tropospheric region can be obtained by the Smith andWeintraub
formula for the dry refractivity, i.e., the first term on the right
of (15),

T
(

h
)

= 77.5
Pdry(h)
Ndry(h)

. (22)

Finally, we get the wet pressure profile by the wet refractivity
profile Nwet

(

h
)

= Ntot

(

h
)

− Ndry

(

h
)

Pwet
(

h
)

= Nwet(h)T2(h)
(70.4·T(h)+3.74×105)

. (23)

The thermodynamic profiles estimated by means of Equations
(19), (22) and (23) are quite accurate (Vespe et al., 2004);
nevertheless, for what concerns Equation (23), it does not avoid
the occurrences of negative wet pressures, as can be shown in
Figure 3 and in Figures 5, 6 of section Discussion of the Results.
This is essentially due to negative values of wet refractivity that
may happen by applying formula (21), when we extrapolate the
dry refractivity profile down to the tropospheric region.

In order to avoid these negatives values, we need a better
estimation of the dry refractivity profile, in particular more
suited to be extrapolated toward the troposphere. We achieve
this by fitting again the total refractivity profile Ntot

(

h
)

with
the theoretical curves of the parametric refractivity models such
as the Hopfield or the CIRA86aQ, but by imposing this time a

non-negative constraint about the residuals 1n (r) = n (r) −
ndry (r;α,β), limited to the troposphere and the lower layers of
the stratosphere.

Details about the mathematical method employed to perform
such task is reported in section LSE Method With a Non-
Negative Residuals Constraint. Observe that our present work
differentiates from what done in Vespe (2016), since the
constrained LSE fit is now computed on the total refractivity
data rather than on the BA profiles. Once the new optimal
parameters (α1,β1) are retrieved, by inserting them in the first
equation of (21) in place of (α0,β0), we can avoid all the negative
wet pressures occurrences. Besides, as we will see in Section
5, we acquire a general improvement in the humidity profile
estimation, when compared with some experimental data.

LSE METHOD WITH A NON-NEGATIVE
RESIDUALS CONSTRAINT

In this section, we describe a possible approach for the particular
constrained LSE problem exposed at the end of the subsection
How to Retrieve Thermodynamic Profiles for the Troposphere,
by using a penalty method (Smith and Coit, 1996). Let y =
f (α; x) to be a physical quantity depending on the variable
x by means of a parametric function f with parameters
α = (α1,α2, ..,αN). A set of n measured values xi and yi, i =
1, .., n, is given for x and y. We want to find the optimal
parameters α∗ such that the following conditions are achieved:

1. Some or all the residuals 1yi = yi − f (α∗; xi) have to be
non-negative, or at least yi − f (α∗;xi) > −dy, with dy >

0. The quantity −dy denotes an allowed minimal negative
residue, fixed for example by the experimental uncertainties
in evaluating y.

2. Once verified condition 1, fitting for some or all the data yi by
means of f (α∗;xi) has to beminimal in the LSE sense.

In Vespe (2016), a LSE method verifying conditions 1 and 2
was achieved by applying a weighting scheme. Here we expose
another approach, that take into account a different function to
minimize with respect to the quadratic one used in the ordinary
LSE method:

Fλ (α) =
n
∑

i=1

[

σ1,i
2

(

yi − f (α; xi)
)2 + σ2,i

λ2
e−λ(yi−f (α;xi))

]

, (24)

with no conditions to be applied on the parameters α. The
quantity λ is positive. About σ1,i and σ2,i, they assume the values 1
or 0, respectively, if the i-th data yi has to be fitted or not, or if the
if the i-th residual 1yi has to be positive or not. In the following,
we will consider the simplest case σ1,i = σ2,i = 1 for every i,
being the general case easily recoverable from this.

Observe that Fλin (24) is actually given by the sum of the
function F used in the usual LSE problems

F (α) = 1
2

n
∑

i=1

(

yi − f (α; xi)
)2
, (25)
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FIGURE 4 | Refractivity, tropospheric refractivity, wet pressure and temperature profiles for a near-equatorial location. The graphs are obtained by the BPV and the

previous BPV method without the second constrained fitting, for both the Hopfield (left) and CIRA86aQ (right) dry refractivity models. ECMWF, NCEP, COSMIC, and

RAOB profiles are also reported for comparison.
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FIGURE 5 | Profiles of the same quantities of the previous figure, for a middle latitude location. About the wet pressure with the Hopfield model, we observe that the

unphysical behavior for the profile recovered by the previous BPV method is corrected with the second constrained fitting.
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plus a penalty function (Smith and Coit, 1996) given by a series
of exponential terms, with the residuals 1yi = yi − f (α; xi),
multiplied by a factor −λ, as exponents. The value of λ in (24)
has to be chosen very large. Indeed, as λ goes to infinity,

Fλ (α) −→ F∞ (α) =
n
∑

i=1

[

1

2

(

yi − f (α; xi)
)2

+ θ∞
(

yi − f (α; xi)
)]

,

where

θ∞
(

y
)

=
{

0, y > 0
+∞, y ≤ 0

.

So, if α∗
∞ minimizes F∞ –i.e., makes F∞ finite – no negative

residuals can exist. On the other end, as long as the 1yi terms are
positive, F∞ = F and the residuals are minimized according to
the usual LSEmethod. Therefore, for high values ofλ, we can take
α∗

λ as a good approximation of α∗
∞, which solves the ideal case as

described in points 1 and 2. Indeed, working directly with F∞ –or
even starting with Fλ for very large values of λ–is not convenient
from a computational point of view, treating this function with
infinities or extremely high quantities when 1yi ≫ 1/λ. We have
followed this iterative method:

I Find the optimal parameter α∗
0 for the usual LSE problem,

that is, the minimizer for the function F of Equation (25).
Then set 1y(0) ≡ maxi 1yi.

II Fixed a value k > 1, define a sequence
(

λj
)

1≤j≤J
, with λ1 =

1
1y(0)

and λj+1 = kλj.

III Defined 1y(j) ≡ max 1iyi
(j), with 1yi

(j) the i-th residual
at the j-th cycle, and given M the maximal number allowed
by the numerical computing environment (for MATLAB
environmentM ∼ e603), if 1y(j) λj+1 > ln (M), than replace

λj+1 with
ln(M)−1

1y(j )
.

IV Find the minimizer α∗
λj

of Fλj , using the minimizer α∗
λj−1

of the previous step as starting point. For the first step
set α∗

λ0
=α∗

0 .

The algorithm then stops at λ = λJ , when residuals are greater
than the allowed negative quantity -dy.

For a given value of λ, we have applied the Levenberg-
Marquardt algorithm in order to find the minimizer of (24).
Being this method usually adopted for functions of the type F as
in (25) (Nocedal and Wright, 2006), we briefly describe how we
can adapt it to Fλ.

Denoted by δ the increment of α, by applying a first order
development of the Taylor series to f we get f (α + δ;x) ∼=
f (α;x) + ∇α f (α; xi) · δT , so that

Fλ (α + δ) ∼=
n
∑

i=1

[

1

2

(

1yi + ∇α f (α; xi) · δT
)2

+
1

λ2
eλ
(

1yi+∇α f (α;xi)·δT
)

]

,

Then, for the gradient of Fλ (α + δ) with respect to δ we have

∇δFλ (α + δ) ∼=
n
∑

i=1

∇α f (α; xi) ·
[(

1yi +∇α f (α; xi) · δT
)

+
1

λ
eλ
(

yi+∇α f (α;xi)·δT
)

]

∼=
n
∑

i =1

∇α f (α; xi) ·
[(

∇yi +∇α f (α; xi) · δT
)

+
1

λ
e∇λyi

(

1+ λ∇α f (α; xi) · δT
)

]

.

By imposing ∇δFλ (α + δ) = 0, we get

δT =
(

n
∑

i=1
Ji
T · Ji

)−1

·
n
∑

i=1

(

∇α f (α; xi)
)T (

1yi + 1
λ
eλ∇yi

)

, (26)

where

Ji = ∇α f (α; xi)
√

1+ eλ1yi .

Finally, we add the typical Levenberg-Marquardt’s damping term
to the first factor on the right of (26), so that (26) becomes

δT =
(

n
∑

i=1

Ji
T · Ji + β diag

(

Ji
T · Ji

)

)−1

·
n
∑

i=1

(

∇α f (α; xi)
)T

(

1yi +
1

λ
eλ∇yi

)

,

with β a non-negative value.

DISCUSSION OF THE RESULTS

We tested our method with 2009 GPS-RO data from
FORMOSAT-3 COSMIC-1 Space Mission. Approximately
450 RO observations were considered, regarding middle
latitudes and tropics. Refractivity profiles, together with pressure,
wet pressure and temperature profiles, were retrieved by solely
using BAs and impact parameters observed data. We made a
comparison with the previous BPV method without the second
constrained fitting, together with other models as well. In
particular, we considered ECMWF and NCEP meteorological
analysis, COSMIC data analysis, and we compare all of them
with the RAOB data, derived by balloons excursions.

In estimating dry refractivity profiles from the total refractivity
ones, water vapor concentrations result in positive bias with
respect to the real value. This justifies the application of the
constrained fitting as described in section LSE Method With a
Non-negative Residuals Constraint. In particular, we adopted the
following scheme about the coefficients σ1,i, σ2,i in (24):

I We performed the usual fitting of the total refractivity profile
by means of dry refractivity curves for altitudes far above
the 250K quote. With reference of Equation (24), we set
σ1,i = 1, σ2,i = 0 when hi & hT=250 K + 1h, being 1h a
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FIGURE 6 | Even if less frequently with respect to the Hopfield model, wet pressure negative values may occur with the CIRA85aQ as well. In this case too, negative

values disappear when the second constrained fitting is applied.

given height. We suppose that, at these quotes, water vapor
contribution is negligible compared to the other sources of
error for the dry refractivity.

II We performed a fitting with a non-negative-residuals
constraint—σ1,i = 1, σ2,i = 1–for altitudes hT=250 K . hi .
hT=250 K + 1h, that is, when water vapor refractivity is one
of the main sources of error for the dry refractivity.

III We just imposed a non-negative residuals constraint—σ1,i =
0, σ2,i = 1–for altitudes hi . hT=250 K , that is, when water
vapor refractivity is comparable with dry refractivity, so that
total refractivity cannot be fitted by a dry refractivity model.

We remember that the BPV method, as exposed in Vespe et al.
(2004), just applies the usual LSE fitting for altitudes h &

hT=250K .
The critical altitude hT=250 K was achieved by formula (22),

with the assumption that Ndry

(

h
)

= Ntot

(

h
)

as long as the

temperature T
(

h
)

is <250K. The quote where T = 250 K

is achieved for the last time was set as the h(0)
T=250 K quote.

We repeated again this procedure up to convergence: few cycles
are usually required. For what concerns 1h, the extension of
this transition regions, is still a matter of study, together with
its optimal location. By some empirical evidence we choose
1h = 5 km; further researches will be required in order to better
define it.

In Figures 4, 5, we report some examples for the estimated
profiles, at tropical and middle latitudes, respectively. The
elevations hT=250 K and hT=250 K + 1h, as achieved with the
constrained fitting, are reported with horizontal dash lines
in the refractivity profile figures (the hT=250 K elevations, as
obtained by the ordinary fitting, was omitted). In Figure 5,

we can see how the negative values occurrences for the
wet pressure, as acquired by the previous BPV method
with the Hopfield model, are corrected by the refinements
introduced in this work. Unphysical behaviors are less frequent
with the CIRA86aQ; nevertheless, they are corrected too
with this new version of the BPV method, as we can see
in Figure 6.

In Figures 7–9, detailed statistical studies about BPV wet
pressures deviation from RAOB data, concerning, respectively,
northern middle latitudes, tropics and southern middle latitude,
are reported. Polar zones, with low concentrations of water
vapor, were not considered. For what concerns data quality
control, we limit ourselves to reject all those wet pressure
values <-0.01mB. The number of the remaining data, for
each elevation, is reported at the bottom of Figures 7–9.
As one can see, even more than 50% of the data can be
lost in some cases, if a constrained fitting method is not
adopted. On the contrary, no data were rejected when the
constrain was applied. Data loss is more evident with the
Hopfield’s model, for all the latitudes. This is an expected
result, since the CIRA86aQ model.is considered more reliable
than the Hopfield one in estimating the dry refractivity of
the atmosphere.

Boundary Profile eValuation models and techniques perform
differently at varying latitudes. For the tropics, the CIRA86aQ
model improves when the positive residual constrains are applied
(Figure 7, upper left and right). On the contrary, Hopfield
model works better without such conditions. For the northern
middle latitudes, constrained CIRA86aQ estimations are more
biased with respect to the unconstrained ones; nevertheless,
they are less scattered, as one can see on the top-right
of Figure 8. Again, the contrary happens for the Hopfield
model. Finally, for the southern middle latitudes (Figure 9), the
constrained case seems to work better for both the models.
This odd behavior between the constrained-unconstrained cases
may be explaining by noting that, the greater the number
of the rejected data, the better the unconstrained models
perform (compare the graphs at the top and the bottom
of Figures 7–9). So, better performances occurring sometime
for the unconstrained case, may be actually due to a higher
quality of the data samples, with respect to those used in the
constrained case.

Hopfieldmodel seems to work better than the CIRA86aQ both
at the tropics and at the northern hemisphere, in this last case
just for altitude lower than 2.5 km. In the southern hemisphere
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FIGURE 7 | Top: Difference (left) and standard deviation (right) profiles for the wet pressure at Tropics, with respect to the RAOB values. Middle: Covariance error

matrices for the constrained CIRA86aQ case (left) and the constrained Hopfield case (right). Bottom: Number of RO observations considered, in both the constrained

and unconstrained case, for the CIRA86aQ (left), and the Hopfield (right).

differences among the two model are not relevant. On the other
end, the CIRA86aQ model is less biased at northern latitudes
for altitudes above 2.5 Km. In general, quadratic deviation from

the RAOB data are smaller for the Hopfield model, as one can
check by the covariance matrix errors reported in the middle of
Figures 7–9. The fact that the Hopfield model works better than
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FIGURE 8 | Top: Difference (left) and standard deviation (right) profiles for the wet pressure at Northern Middle Latitudes, with respect to the RAOB values. Middle:

Covariance error matrices for the constrained CIRA86aQ case (left) and the constrained Hopfield case (right). Bottom: Number of RO observations considered, in both

the constrained and unconstrained case, for the CIRA86aQ (left), and the Hopfield (right).

the CIRA86aQ may be due to some biased errors, both for the
model and for the BPV “simple fashion” approach in estimating
wet profiles, that compensate each other.

By comparing the BPV results with data by NCEP, ECMWF
and COSMIC, we can immediately verify that the firsts are not
accurate as the latter ones. BPV wet pressure values are in general
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FIGURE 9 | Top: Difference (left) and standard deviation (right) profiles for the wet pressure data at Southern Middle Latitudes, with respect to the RAOB values.

Middle: Covariance error matrices for the constrained CIRA86aQ case (left) and the constrained Hopfield case (right). Bottom: Number of RO observations

considered, in both the constrained and unconstrained case, for the CIRA86aQ (left), and the Hopfield (right).

under-estimated with respect to the RAOB data, in particular for
the tropics and for altitudes below 5 km; this determines higher
values of quadratic deviations as well. Nevertheless, for southern

latitudes, BPV values obtained by the constrained fitting are of
comparable accuracy with respect to those from NCEP, EWMCF,
and COSMIC.
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CONCLUSIONS

This study confirms the role of the BPV method as a stand-
alone technique, capable of provide accurate atmospheric
profiles of important thermodynamic quantities from GPS-RO
observations. With the constrained fitting, as described in section
4, we avoid negative humidity. In particular, losses of more than
50% of the available data can be recovered. As we can see by
the difference profiles on the top-left corner of Figures 7–9, the
constrained fitting determines a general overestimation of the
wet profiles with respect to the previous BPV. Yet the standard
deviations graphs on the top-right corner of Figures 7–9 show
that this overestimation in most cases does not affect the overall
quality of the recovered profiles.

Further improvements are needed to the BPV model in order
to reduce the gap with respect to other meteorological data
source such as the NCEP and the ECMWF ones, together with
COSMIC as well, all of these making use of 1DVAR or NDVAR
approaches. In particular, we have to consider other options for
what concerns rules I, II and III as reported in section Discussion
of the Results, in order to better define the threshold altitude
above which humidity is essentially absent, and maybe a more
refined thermodynamic description could be needed too.

Besides, we believe that BPV results could be assimilated in
a 1DVAR algorithm in which background data are obtained

with the approach described in this work. Future studies will be
dedicated to this task.
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