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Leptospirosis outbreaks in various parts of the world have been linked to changes in

the weather. Furthermore, the effects have been shown to occur at different lags of up

to 10 months, affecting the performance of simulation models that predict leptospirosis

occurrence. In Malaysia, the link between different weather parameters, at different time

lags, has yet to be established despite an increasing number of cases in recent years.

In this study, a combination of data mining and machine learning is used to analyze,

capture, and predict the relation between leptospirosis occurrence and temperature,

rainfall, and relative humidity using the Seremban district in Malaysia as a case study.

First, the optimal time lags for rainfall were determined using graphical exploratory data

analysis (EDA) while non-graphical EDA was used for temperature. Then, an artificial

neural network (ANN) model is developed to classify the combination of selected features

into disease occurrence and non-occurrence using back-propagation training, optimizing

the number of hidden layers and hidden nodes. The success is measured using accuracy,

sensitivity, and specificity of each model. EDA has shown that leptospirosis occurrence

in Seremban is highly correlated with weekly average temperature at lag 16 weeks and

weekly rainfall amount at lag 12–20weeks. Using these selected features, the ANNmodel

achieved the highest accuracy, sensitivity, and specificity at 84.00, 86.44, and 79.33%,

respectively. Overall, the EDA approach has increased the accuracy of the predictive

model by 13.30–31.26% from the baseline models.

Keywords: artificial neural network, exploratory data analysis, predictive modeling, leptospirosis, meteorological

data
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1. INTRODUCTION

1.1. Leptospirosis and Environmental
Factors Influencing Transmission
Leptospirosis is a zoonotic disease caused by bacterial infection,
i.e., by Leptospira with clinical symptoms, such as fever,
headaches, muscle pains, and meningitis (Slack, 2010). The
bacteria can be found in animals, such as rodents, dogs, pigs,
and cattle (Mgode et al., 2015). More than 300 serovars have
been identified worldwide and over 250 serotypes have been
classified as pathogenic, which can cause diseases in people in
varying severity (Levett, 2001; Lehmann et al., 2014). Human
infection of leptospirosis occurs through direct contact with the
product of infected animals, such as urine. Infection can also
occur indirectly through contact with contaminated water or
soil that contain pathogenic Leptospira species, while human to
human transmission is considered rare (Chadsuthi et al., 2012).

Vector-host to human transmission is influenced by many
environmental factors. Rural areas tend to present a higher risk
compared to urban areas due to a larger number of animal
reservoirs in agricultural and forested areas, as well as a higher
level of transmission between wild and domestic animal hosts
(Ellis, 2015; Mutalip et al., 2019). In contrast, urban leptospirosis
is relatively easier to control by controlling the reproduction of
rats due to availability of food and harborage (Grassmann et al.,
2017), i.e., by proper management of dilapidated or abandoned
house and public services including waste disposal. An unclean
environment is always associated with the transmission of
leptospirosis due to possible presence of contaminated water
and soil (Schneider et al., 2013). Many studies have reported
that remote rural areas with limited access to clean drinking
water and sanitation to be more conducive to human infection
(Maciel et al., 2008; Schneider et al., 2012, 2013). Besides,
leptospirosis has been identified as an occupational disease
where humans acquire infection primarily from exposure from
mining, sewer maintenance, livestock farming, agricultural,
and military maneuvers (Haake and Levett, 2015). In urban
areas, incidence related to occupational exposure is preventable
by implementation of control measures, such as by using
personal protective equipment. More frequently, cases occur
from participating in recreational and water-related activities,
such as hiking, caving, and extreme sports (Mutalip et al., 2019).

At the same time, transmission is highly sensitive to climate
and weather. Leptospira are known to thrive in warm and wet
tropical and subtropical environments (Ridzlan et al., 2010).
In Argentina, 76% of confirmed leptospirosis cases from 1999

to 2005 were recorded during warmer months (Vanasco et al.,
2008). Leptospira were reported to survive longer, until up to 20
months when stored at 30◦C, compared to 10 months at higher
temperatures (Thibeaux et al., 2017). The bacteria have also

been shown to survive at a low temperature, which is 4◦C, and
acidic environment for at least 20 months and remain harmful

(Evangelista and Coburn, 2010; Andre-Fontaine et al., 2015).
However, the bacteria also require high humidity and are killed
by temperatures >50◦C (122◦F) (Manap, 2015).

Furthermore, heavy precipitation and flooding can trigger
outbreaks as they can cause mobilization of the bacteria closer

to human habitation (Chadsuthi et al., 2012). During flooding,
the main risks arise as a result of population displacement to
temporary placement that creates situations of poor sanitation,
overcrowding, and contamination of food or water sources;
besides, during severe disasters, populations may be forced to
remain in temporary shelters for months or years, increasing
exposure to contaminated water (Cook et al., 2008). Second,
flooding may cause increases in outbreaks since contaminated
water may be displaced over long distances (Cook et al., 2008;
Lau et al., 2010). Lastly, extreme weather not only could affect
the bacteria directly but also could influence human and animal
behavior. For example, higher temperatures may attract humans
and animals to take part in water-based activities, such as
swimming and drinking. This in turn encourages human contact
with the animal reservoir through sharing of water resources
(Dufour et al., 2008).

1.2. Time Series Modeling and Prediction
of Leptospirosis
All these factors reflecting the complexity in the transmission
of leptospirosis become a major challenge for control strategies.
However, an increasing number of studies have used mapping
and time series modeling approaches to identify associations
between different weather and environmental parameters, and
allow future prediction of leptospirosis risk (Dhewantara et al.,
2019).

Desvars et al. (2011) introduced the first approach to
investigate the correlation between meteorological factors and
seasonality of leptospirosis in the Reunion Island (Indian
Ocean) using the Auto-Regressive Integrated Moving Average
with eXplanatory variable (ARIMAX) time series model. The
explanatory variables used were rainfall, temperature, and global
solar radiation. Autocorrelation and partial autocorrelation were
calculated to represent seasonal and cyclical trends in time
series of leptospirosis cases as well as to optimize the ARIMAX
parameters: lag order, degrees of differencing, and moving
average order. The study found that at the monthly scale,
leptospirosis is affected by monthly total rainfall with a lag of
2 months, and by mean temperature and solar radiation of the
same month as the case. By using these three meteorological
parameters, the best performing model explained 67.7% of
the variance of the leptospirosis cases. The same approach
was used by Chadsuthi et al. (2012) to predict the seasonal
pattern of leptospirosis using historical rainfall and temperature
in northern and northeastern Thailand. Using ARIMAX, they
found that monthly total rainfall at lag 8 months was highly
correlated with the number of leptospirosis cases in the northern
region and produced the lowest root mean squared error between
the prediction and observed. The RMSE is lower than that of
the ARIMAX model using the combination of monthly total
rainfall and mean temperature. However, in the northeastern
region, the combination of monthly total rainfall at 10-months
lag and temperature at 8-months lag were more associated with
leptospirosis incidences. This suggests that the time lag may
be different at different locations; the study further suggests
consideration of other parameters, such as concentrations of
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oxygen and iron in water or soil and water pH (Xue et al., 2010;
Parker and Walker, 2011).

A negative binomial regression model was used by Coelho
and Massad to predict the daily number of leptospirosis cases
in São Paulo, Brazil, also using rainfall and temperature, and
additionally, minimum and maximum relative humidity (Coelho
and Massad, 2012). The study found a significant correlation
between the number of cases of leptospirosis and rainfall at
the lag of 14–18 days. Using a similar approach, the Oceanic
Nino Index and sea surface temperature used as additional
variables were found to have a significant association at the
4-months lag in New Caledonia (Weinberger et al., 2014).
These studies demonstrate that consideration of weather and
climatic parameters beyond temperature and precipitation may
be important. Compared to the findings of Chadsuthi et al.
(2012), there is a large difference in the time lag of the
meteorological variables. The reason is that Coelho and Massad
(2012) hypothesized that the transmission of leptospirosis can
be affected by rainfall in the range of 1 month prior. On the
other hand, Chadsuthi et al. (2012) considered lags between 1
and 12 months. This is because a seasonal pattern was observed
in Thailand, whereby higher cases were found during the rainy
season across multiple years.

Joshi et al. (2017) used time series analysis to identify the lag
effect of daily temperature (minimum, maximum, and mean),
minimum relative humidity, cumulative rainfall, solar radiation,
and total hours of sunshine prior to the initiation of leptospirosis
transmission using Poisson time-series regression, among other
methods. The study found the leptospirosis cases were associated
with minimum temperature, rainfall, and solar radiation from
0 to 11 weeks prior. Poisson time-series regression was again
used by Deshmukh et al. (2019) in Wardha district, India
using temperature, rainfall, and humidity. They found relative
humidity at no lag, while rainfall at 1 month lag was positively
associated with leptospirosis incidence.

A recent study in Negeri Sembilan, Malaysia used
similar predictors, i.e., temperature, rainfall, and relative
humidity to predict weekly leptospirosis incidences using
a machine learning classification algorithm (Rahmat et al.,
2019). Using autocorrelation function and artificial neural
network (ANN) with back-propagation, the study showed
positive association of temperature, cumulative rainfall,
and relative humidity at a 3-months lag, with the highest
accuracy achieved of 70%. This study and the others have
demonstrated the importance of time lag in the weather
variables, on the predictability of leptospirosis occurrence at
different locations.

In most of these studies, the optimal time lag was obtained
using cross-correlation analysis, (Desvars et al., 2011; Chadsuthi
et al., 2012; Weinberger et al., 2014; Rahmat et al., 2019),
which is an efficient method to quantify the association
between independent variables. However, the only information
a correlation analysis result provides is the strength and direction
of the relation. This has limited potential in feature extraction
for machine learning, in contrast to exploratory data analysis
(EDA, Radford et al., 1983) that instead allows analysis for
patterns in the inputs, thereby allowing selection of more

generalized/informative features for the machine learning model
(Ho Yu, 2010).

In this study, we used EDA in place of cross-correlation
to conduct feature selection for an ANN implementation of
leptospirosis prediction. Several works have been reported
in the literature related to the implementation of EDA in
machine learning for other applications. Jones and Linder (2016)
implemented EDAwith a Random Forest classification algorithm
to predict vote choice based on ideology. The goal of their
model was to find the homogeneous partitions as well to
classify the age of voters with respect to the type of political
ideology. The implementation of EDA helps the Random Forest
algorithm detect the interaction and non-linearity without
prespecification and produce a low generalization error. Another
study by Mueez et al. (2018) used EDA to help improve
prediction of the success of apps released to the Google
Play store. No studies have implemented EDA application
in predictive model development for disease prediction, thus,
the implementation in this study is a new contribution to
this field.

2. MATERIALS AND METHODS

2.1. Study Area
Negeri Sembilan is a state that lies on the western coast of
Peninsular Malaysia. Negeri Sembilan consists of seven districts,
which are Seremban, Jempol, Jelebu, Kuala Pilah, Tampin,
Rembau, and Port Dickson. The state borders Selangor on the
north, Pahang in the east, and Melaka and Johor to the south.
Negeri Sembilan has one of the highest records of leptospirosis
disease cases in the country (Tan et al., 2016), with the Seremban
district having the highest number of cases between 2011 and
2017. The Seremban district is mainly urban and developing
areas and the total number of population in Seremban was
606,000 in 2017 (Department of Statistics Malaysia, 2018).
Between 2011 and 2017, the incidence rates were on average
13.08 per 100,000 people based on suspected cases notified to the
Ministry of Health.

2.2. Data Collection
2.2.1. Human Leptospirosis Cases
The leptospirosis cases data were retrieved from the State
Department of Health, Negeri Sembilan. The dataset consists of
the number of cases by week between 2011 and 2017 as well as the
locations of the cases within the Seremban district. The number
of cases are aggregated into four analysis regions based on
Euclidean distance proximity to four rainfall stations, which are
at Hospital Seremban in the Seremban city (henceforth referred
to as Seremban City), Sikamat, Mantin and Ladang Perentian
(henceforth referred to as Perentian for brevity) stations as shown
in Figure 1. The distance between each case to all four rainfall
measuring stations are computed, and the case is assigned to the
analysis region of the closest station. The weekly occurrences are
relabeled on binary units. The binary value represents either the
occurrence (1) or non-occurrence (0).
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FIGURE 1 | The location of rainfall and weather stations in Seremban, Negeri Sembilan. The weather station also provides rainfall data in addition to temperature and

relative humidity. The cases falling within each analysis boundary are analyzed with respect to rainfall observations from the station within the same boundary, while the

same temperature and relative humidity data from Hospital Seremban station are used in all the analysis regions.

2.2.2. Meteorological Data
Rainfall, temperature, and relative humidity data were retrieved
from the Malaysia Meteorological Department weather station
at Seremban City. Data from additional three rainfall stations
Sikamat, Mantin, and Perentian as shown in Figure 1 were
obtained from the Department of Irrigation and Drainage. Since
only the Seremban City station provides temperature and relative
humidity data, this study uses the same temperature and relative
humidity data for all the analysis regions. The data were retrieved
in daily format and aggregated from daily to weekly total for
rainfall and weekly average for relative humidity. Meanwhile,
temperature data were aggregated to the weeklyminimum,mean,
and maximum. Finally, five different lag sets were produced
by lagging the meteorological variables by 4, 8, 12, 16, and
20 weeks. Each lag set contains 364 observations, representing
364 weeks.

2.3. Feature Selection: EDA
Visualization via a histogram and the probability density function
(PDF) is used in the graphical approach on rainfall while k-
means clustering is used in the non-graphical EDA on the
temperature variables. In the preliminary analysis, temperature
was also subjected to the graphical EDA; however, the dataset
did not produce learnable patterns. For example, all the different
lag datasets showed similar histograms, did not show normality,
and/or showed many outliers resulting in high skewness.
Hence, a non-graphical EDA approach was introduced. As
for relative humidity, there was non-stationarity observed in
the time series that did not allow generalization over the full

analysis period, hence, EDA was not implemented. Instead,
the lag for relative humidity was determined through test
and error.

2.3.1. Analysis of Histogram and Probability Density

Function
In the graphical EDA method, first, histograms were constructed
to visualize the distribution of the number of leptospirosis cases
per week, with respect to the weekly total rainfall as shown
in Figure 4. The histogram is also used to indicate the mode
value of the distribution. The PDF was also constructed from
the histogram to assess the normality of the distribution. Several
criteria were used in the analysis of each histogram and PDF.
The first criterion is that histogram should resemble the bell-
shaped curve of a normal distribution graph. The analysis of
normal distribution reveals the consistency and variance in
the dataset, and this consistency allows us to standardize our
descriptions of data (Louangrath, 2015). To illustrate if the
mean value of the weekly total rainfall to affect a high number
of cases of leptospirosis is around 100 mm per week, while
standard deviation is 15 mm per week, and the data are normally
distributed, we are able to conclude that the number of cases
will sharply decrease when the total rainfall exceeds 115 mm, i.e.,
the mean plus standard deviation. The second criterion is that
the dataset must have a higher central tendency, which can be
identified by a lower difference between mode and mean. The
optimal time lag for rainfall is inferred from the lag set that meets
at least one of these criteria.
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FIGURE 2 | Clustering of temperature data by using k-mean clustering. The

colors represent the five different clusters.

2.3.2. k-Means Clustering and Centroid-Based

Occurrence Likelihood
Clustering is a method that is frequently used in pattern
recognition tasks (Baraldi and Blonda, 1999; Fan et al., 2018). It
can help identify patterns in datasets withmore than one variable.
In our study, clusters of minimum, mean, and maximum
temperatures will signify the different types of temperature
variability in a week. k-Means clustering is used and the first
step is to predefine the number of clusters, k. Second, the
centroid for each cluster is initialized randomly. For every data
point (minimum, mean, and maximum temperature values),
the distance is computed from the centroids according to the
Euclidean distance and the observation values are assigned to
the closest cluster. The third step is to identify new centroids by
calculating themean of all data in each cluster. Finally, the second
and third steps are repeated inmultiple iterations until there is no
significant change on the new centroids.

Finding the best number of clusters is necessary for better
separation between data. To do so, the sum of within sums of
squares resulting from different numbers (k) of clusters from 1
to 10 are calculated using all minimum, mean, and maximum
temperature variables in one single analysis. The number of
clusters that produce the lowest value of sum of within sum
of square is selected. Based on the formula (equation 1), Xi

represents the data while Cj represents the centroid for each
cluster and n is the total number of data. Figure 2 shows the data
clustering with k = 5.

S =
k∑

j=1

(

n∑

i=1

((Xi − Cj)
2) (1)

Next, the variability within each of the clustered weather
condition is analyzed for probabilities of disease occurrence.
Within each cluster, the centroids represent different thresholds
values for mean temperature, maximum temperature, and

TABLE 1 | All temperature conditions that can be considered in each weather

condition cluster.

Parameter

Type of

condition

Maximum

temperature

Mean

temperature

Minimum

temperature

Condition 1 0 0 0

Condition 2 0 0 1

Condition 3 0 1 0

Condition 4 0 1 1

Condition 5 1 0 0

Condition 6 1 0 1

Condition 7 1 1 0

Condition 8 1 1 1

TABLE 2 | Margins of probabilities for every exceedance/non-exceedance

category.

Categories Likely cases

do not occur

Undefined category Likely cases occur

Margin 0–35% 36–64% 65–100%

minimum temperature, while other observation values either
exceed or are below these threshold values. As there are three
parameters, the observation values can be categorized into 32

possible conditions that describe whether or not each of the
minimum, mean, and maximum temperatures within the cluster
exceed the threshold. For each set of temperature values, there is
an associated occurrence or non-occurrence of leptospirosis case,
and therefore, the probability of occurrence can be calculated
for each of the eight variations of weather conditions in each
cluster. This is summarized in Table 1. A binary number
with “0” represents the observations lower than the threshold
value, whereas the binary number “1” indicates an observation
exceeding the threshold value.

The final step in this method is to classify across each
condition into three occurrence/non-occurrence categories,
which is “confirm disease occurs,” “confirm disease does not
occur,” and “undefined category” based on the calculated
probability, and using a predefined set of margins for each
category as shown in Table 2. Then, the total number of
incidences under each category can be calculated across all
clusters in each lag set. The optimal time lag to be used for the
predictive model is selected based on the lag set that has lowest
incidences of undefined categories, indicating better separation
between confirmation of disease occurring vs. not occurring.

2.4. ANN Model Development
This section discusses the development of ANN model and
optimization of the model parameters, such as the types
of activation function for the hidden and output neurons,
normalization of the input layer, and lastly, the number of hidden
neurons. Figure 3A shows an overview of the model from input
to classification of the output.
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FIGURE 3 | ANN model development. (A) The complete ANN predictive model. V1 through V5 is total rainfall per week, mean, maximum, and minimum temperature,

relative humidity, respectively. (B) Performance of predictive model for each region based on the number of hidden neurons.

2.4.1. Hidden Layer: Activation Function
The first parameter selection occurred in the hidden layer, which
plays an important role to train the input data supervised by
the target data. The sigmoid function was selected as it is
suitable for classification problems even if it has the weakness
of vanishing the error gradient. To minimize this effect, a linear
function is used in the output layer where the size of the error
is determined. This function prevents a zero gradient, as the
derivative of a linear function is always constant that is equal
to 1, thus, the model will keep learning until it reaches the
optimized output.

2.4.2. Normalization and Activation Function
The input data need to be normalized before being used in
training. Normalization transposes the input variable into a data
range appropriate for the activation function. In the function,
there is a range on the x-axis that allows the model to perform
aggressive learning, that is between −3 and 3. Thus, to bring
input data close to this region, the input needs to be normalized.
In this study, this was done by re-centering between negative
values to positive values (−1 to 1). The reason for this selection
is that the sigmoid function used for the activation function is
not symmetrical at the origin, and the value of y axis might
not have the same sign with the x axis, which can cause a slow
convergence. The search for the solution to the non-convex
optimization problem is using a gradient-based approach and
this gradient depends on the input value times the weight. As
the input data prior to normalization is in the positive range,
and if the input data are normalized following the output range
of sigmoid function (range from 0 to 1), a bigger change is
required in the value of weights between the input and hidden
layer to shift the input to the correct target of either close to 0
or 1. However, if normalization centralizes to values of the input
around 0, as is done in this study, the learning becomes faster
as the fluctuations in the weights in achieving convergence will
become smaller.

2.4.3. Hidden Layer: Number of Hidden Neurons
There are several ways to determine the number of neurons in
the hidden layer of ANN model (Panchal and Panchal, 2014;
Gazzaz et al., 2015). The appropriate number of neurons can
largely affect the final output, and when wrongly selected, it can
lead to overfitting or underfitting. The rule of thumb of Gazzaz
et al. (2015) is used as shown in Equation (2). I is the total
number of inputs, H is number of hidden layers, and O is the
number of outputs. The rule provides a reasonable range for the
number of hidden neurons, which can increase the performance
of ANN. This study considers to use only a single hidden layer
with multiple hidden neurons.

2(
√
I)+ O ≤ H ≤ 2(I)+ O (2)

2.4.4. Split-Validation
To prevent the model from under- or overfitting, the input and
output data were divided into training, validation, and testing
datasets. The validation dataset is for estimating how well the
model has been trained, whereas the testing dataset is used to
estimate the model properties, such as prediction or classification
error, and the accuracy, specificity, and sensitivity of the model
to classify the data. The Levenberg–Marquardt function was
selected as the network training function, and 3,000 iterations
were used as the stopping criteria. The Levenberg–Marquardt
function is a fast algorithm for updating the weight of the neuron
during training as was shown in previous studies (Abhishek et al.,
2012; Mustafidah et al., 2014).

There are two considerations in splitting the datasets for
training, validation, and testing: first, the total number of samples
in data, and second, the number of parameters that needs to
be selected during training (Borovicka et al., 2012). If there is a
large number of samples, the split ratio should favor increasing
the number of datasets for training so that the model performs
adequate learning. In contrast, if the model has many parameters,
the split ratio should favor increasing the size of the validation set.
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TABLE 3 | Definitions for model performance measures.

Case data

Yes No

Model prediction Yes Hit False alarm

No Miss Correct rejection

TABLE 4 | Definitions for model performance measures.

Parameter Formula

Accuracy (h + q)/(h + q + m + f)

Sensitivity h/(h + m)

Specificity q/(q + f)

h, number of hits.

q, number of correct rejections.

m, number of misses.

f, number of false alarms.

In this study, only one model parameter is required for tuning,
which is the number of hidden neurons; therefore, emphasis
is given to the training set by selecting 80% of the dataset for
training, 15% for testing, and 5% for validation.

2.5. Performance Measurement
The confusion matrix or contingency table (Table 3) is used to
evaluate the accuracy, sensitivity, and specificity of the model
(Table 4). Accuracy is the percentage of success for the model to
predict correctly whether the cases did or did not occur in a given
week. Meanwhile, sensitivity measures the effectiveness of the
model to predict correctly when the cases occurred (Nery et al.,
2017). It also can be known as the probability of detection (POD).
Lastly, specificity is the measure for successfully predicting
that cases did not occur during the weeks that they did not
(Lalkhen and McCluskey, 2008). All three model performance
measures are equally important in producing a robust model and
therefore the model development should aim to have these scores
in a balance.

2.6. Robustness Test
Developing a machine learning algorithm requires regularization
mechanisms to reduce overfitting and improve generalization. In
other words, a model should be able to predict leptospirosis cases
without only depending on the given sequence dataset. Multiple
approaches can be used to test for model robustness, such as
randomization or permutation test, and Jackknife and Bootstrap
estimators (Walsh, 2000). These methods involve either sampling
or scrambling the original data numerous times. In this work,
a randomization test was implemented due to multiple input
variables and their non-random pattern (Walsh, 2000). The
order of data is scrambled from hundreds to thousands of times
depending on the probability of observing the original datasets.
The general consensus is around 1,000 samples for the test at
95% confidence interval, while 5,000 samples for test at 99%
confidence interval. Commonly, 95% confidence intervals have
been chosen for random sampling, unless the number of the

original dataset is small (Edgington and Onghena, 2007). First,
1,000 samples were generated by scrambling the bases at random
(shuffling them like a deck of cards). Then, all the random
samples are tested with the four fitted models to produce new
outputs. Lastly, the model outputs are analyzed for the ability
of each model to generalize the input datasets by comparing the
receiver operating characteristic (ROC) curves between the fitted
and randomized input models. Another metric of performance
considered is variance. Models with a very high variance may be
overfitting the training data and not be adequately generalized for
data that it has not seen before (Valentini and Dietterich, 2004).

2.7. Receiver Operating Characteristic
The ROC curve is used to determine a threshold value for
separating the ANN output into 0’s and 1’s. The ROC is a
probability curve that reflects the relationship between sensitivity
(or total positive rate) and 1—specificity (or false positive rate).
The area under this curve (AUC) represents the scalar measure
of separability between each class. The selection of the threshold
will affect sensitivity and specificity concurrently and in opposite
ways. The optimal threshold is based on maximizing the AUC, as
the threshold is varied between 0.3 and 0.9 at 0.01 interval.

3. RESULTS AND DISCUSSION

This section is divided into three parts, which are discussion
of the baseline models, EDA-based time lag selection for the
meteorological input, and discussion on the performance of
the proposed predictive model by using the selected time
lagged predictors.

3.1. The Baseline Model
In selecting the best algorithm for the study, it is critical
to develop a baseline of performance to compare a no-effect
hypothesis model to alternatives that are more complex. Other
researchers from different fields have used other terms, such
as “naïve model” and “null model” (Addy et al., 2012; Schwab
and Starbuck, 2013). In this work, four baseline models have
been developed to represent one for each region of analysis and
used as reference or control for this study with features or input
parameters that are not selected through EDA. In other words,
these baseline models take in meteorological data without any
time lags as input.

First, the four baseline models are trained using a different
number of neurons ranging from 6 neurons until 11 neurons,
which are the range of values determined using Equation
(2).There are trends that can be summarized from the
performance of all models as the number of neurons increased
as shown in Figure 3B. The predictive model in Sikamat region
shows a significant increase from 40 to 66.70% when the number
of neurons increases from 6 to 10. A similar trend can be
observed for Seremban City, where the accuracy increases from
40 to 62.30% as the number of neurons increases to 9; however,
the accuracy starts to decrease to 60.01% when the number of
neurons increases to 10. In contrast, there is fluctuation in the
accuracy of the model for Mantin and Perentian as the number
of neurons increases toward 10.
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Overall, across all four models, a higher accuracy is achieved
with a higher number of neurons, demonstrating how a higher
number of neurons can increase the complexity of the model and
at once handle the complexity of input data. However, further
addition of hidden neurons can increase the complexity to the
point of negatively impacting the learning process of the network.
This is evident in all models where all accuracy reduces after the
10th (ninth neuron for Seremban City). Based on this analysis,
10 neurons were selected to be used in the predictive model
development for all four analysis regions.

Table 5 shows the overall results for all four models in the
baseline configuration, i.e., using the input data without time
lags for all meteorological variables and 10 hidden neurons.
The results show that model accuracy of only around 55–67%
is achieved. This shows that temperature, rainfall, and relative
humidity from the same week of the disease occurrence does
not allow for the best prediction. Three models have AUC values
above 0.5, which are Seremban City, Mantin, and Sikamat, while
the model from Perentian recorded the lowest reading, which
is 0.4807. This suggests that rainfall or temperature during the
same week may not completely explain human contact with
contaminated water. For example, people may have the tendency
to stay indoors instead of doing outdoor activities during rainy
days, and therefore, could be less exposed to leptospirosis
infection. Besides, the transmission of Leptospira will take at least
1 month after heavy rain (Triampo et al., 2007). In conclusion,
time lag for each meteorological variable may be needed to
improve the predictive model.

3.2. Exploratory Data Analysis
3.2.1. Exploratory Data Analysis on Rainfall
Figure 4 shows the histogram and PDF of rainfall data for all
four analysis regions at lag 4–20 weeks, analyzed following the
two criteria for the best time lag selection: a bell-shaped curve
and/or the tendency to be center. The figure shows cumulative
rainfall at lag 4 and 12 to have bell-shaped curves. However, the
distribution of rainfall at lag 4 did not exponentially decrease after
the mean, and instead increased near the tail of the distribution.
The rainfall at 12-weeks lag further satisfies the second criteria
with a very similar mean and mode. At all lags, the histograms
show that there are higher probabilities for leptospirosis to occur
when rainfall is between 100 mm until 250 mm/week. This
amount of water may cause areas in the region to start ponding.
Furthermore, Leptospira can survive in a time period even longer
than 12 weeks (Wasiński and Dutkiewicz, 2013).

In Perentian (Figure 4), the best bell-shaped curve is identified
with rainfall at lag 16 weeks. Although there is also an acceptable
distribution at lag 20 weeks, there is an obvious increase in
probability at very high values. To avoid bias selection during
training process, this dataset cannot be selected as input variable.
Besides, the tendency to be center is also met by the 16 weeks
lag. When comparing the lag time between Seremban City and
Perentian, the difference is 4 weeks even if they are neighboring
locations. However, Perentian is more industrialized, whereas
Seremban City is more residential. Seremban City thus could be
supported by a more efficient drainage infrastructure and have a

better cleanliness level than Perentian, where the Leptospira can
be contained and therefore survive for longer.

For Sikamat and Mantin regions (Figure 4), the histograms
and shapes of distribution are harder to analyze. Therefore, the
analysis was focused on the central tendency and the existence
of outliers. The reason for this may be that the number of
diseases recorded in these regions is smaller compared to those in
Seremban City and Perentian, and the smaller the sample, the less
accurate is the probability distribution. For the Mantin region,
almost all lag sets do not show normality. Lag 8 and 16 weeks
clearly shows a large distance between the mean and mode values
and a bimodal distribution, respectively. Lag 12 weeks is relatively
normally distributed but has increases in both tails. This leaves
lags 4 and 20, and the latter is selected based on a higher tendency
to be center. For the Sikamat analysis region, the data with lag
12 weeks meet the bell-curved shape distribution, despite a slight
increase after 350 mm, and thus was selected.

In conclusion, the EDA results show that distribution at
different time lags will take different shapes. A set of decision
criteria, i.e., bell-shaped curve and central tendency allows
information to be extracted from the data and consequently
features to be selected for the subsequent ANNmodel.

3.2.2. Exploratory Data Analysis on Temperature
Each lag set was clustered based on the similarity of minimum,
mean, andmaximum temperature of the week. The sum of within
sum of square with different number of cluster was analyzed from
1 until 10 clusters, whereby the clusters with higher values will
have a greater internal variability. The results (Figure 5) show the
sum of within sum of square to rapidly decline between 2 and 5
clusters and tapers off afterwards, indicating an optimal number
of five clusters to classify the data.

Next, each lag set was divided into five clusters and the
centroids representing different threshold values for mean
temperature, maximum temperature, andminimum temperature
were calculated (Table 6). Within each cluster, the observations
are further subdivided into eight conditions as shown in Table 1.
For each condition, the number of observations (weeks) where
leptospirosis occurred were converted into probability values and
categorized according to the margins as shown in Table 2. This
results in Table 7 that shows the number of incidences across all
five clusters and eight conditions, of likely positive confirmation,
likely negative confirmation, and undefined cases. Identification
of the lag set with the lowest incidences of undefined cases could
allow for a better prediction due to the higher classification power
based on the three temperature parameters. Table 7 shows that
the dataset for the 8-weeks lag consists of the highest frequency
of likely cases occurring, which is nine incidences. However, it
also consists of the highest frequency of undefined category with
22 incidences. Furthermore, lag 4 and 20 shows 15 incidences
of likely cases do not occur, which is higher compared with the
other lags. The dataset that has the lowest frequency of undefined
category is lag 16 weeks with 17 incidences. Thus, this time lag
was selected for temperature data including minimum, mean,
and maximum temperature.

A maximum temperature of 28.76◦C was found to be the
most optimal for transmission of Leptospira. This is based on
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TABLE 5 | The performance of baseline models with no lag in input.

Study location Total rainfall Mean, maximum, and minimum temperature Relative humidity Accuracy (%)/AUC

Seremban City No lag No lag No lag 60.01/0.6371

Mantin No lag No lag No Lag 55.43/0.5113

Perentian No lag No lag No lag 52.73/0.4807

Sikamat No lag No lag No lag 66.70/0.6989

FIGURE 4 | The distribution of the number of cases of leptospirosis against the cumulative rainfall at varying lags. The black dotted line indicates the mean, whereas

the yellow dotted line represents the mode of the cumulative rainfall from 2011 until 2017. The black line indicates the probabilities distribution function graph.

the selected cluster 3 in lag 16 weeks (Table 6), in which there
are more conditions (referring to Table 1) with a high possibility
(more than 70%) for leptospirosis occurrence compared to the
other clusters. Our finding is aligned with previous studies that
have shown 28◦C until 30◦C to be the best temperature for
Leptospira growth (Adler and de la Peña Moctezuma, 2010;
DebMandal et al., 2011; Sakhaee and Gholam, 2011; Khan et al.,
2012). Although a lag of 16 weeks is seemingly long, Leptospira
can survive 152 days in fresh water with cellular aggregation
(Wynwood et al., 2014). Besides, temperature may also correlate
to the transmission of leptospirosis by affecting the human and
animal behavior.

3.3. Performance of Predictive Model With
Feature Selection
After selection of the best time lag for temperature and rainfall
data, these features are used in the ANN model, first to identify
the lag for relative humidity. Table 8 shows that almost all
models produce more than 50% accuracy when using the relative
humidity in the same week (no lag), with exception of Perentian
at 43% accuracy. Mantin shows the highest performance, which is

69%. However, all models produce between 72 and 84% accuracy
when the humidity data are between 12- and 20-weeks lags. At
shorter lag times, the accuracy achieved is only from 40 to 73%
at 8 weeks, and 40 to 70% at 4 weeks. The lag for humidity is
similar in range with the rainfall and temperature lags, and may
be due to its dependence on both parameters. Furthermore, the
optimal lag time for relative humidity is similar to that found
by Joshi et al. (2017) who suggested that survival of Leptospira
in the environment is dependent on humid conditions, although
the authors also suggested that their observed decreases in cases
with increases in humidity at 0 lag could be attributed to reduced
human outdoor activities. As EDA was not implemented with
relative humidity data, more detailed insights could not be
derived from this work.

The overall performance of all four models was evaluated
in terms of accuracy, sensitivity, and specificity (Tables 9, 10).
The range of accuracy achieved by these models is between 80
and 83.99%. Note that 178 weeks were correctly predicted by
model for Seremban City, 171 week for Mantin, 185 week for
Perentian, and 173 weeks for Sikamat. In terms of misses, models
for Seremban City, Mantin, Perentian, and Sikamat incorrectly
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FIGURE 5 | The sum of within sum of square with different numbers of clusters. The sums are calculated using all minimum, mean, and maximum temperatures from

Hospital Seremban station.

TABLE 6 | The threshold for mean, minimum, and maximum temperature datasets.

Time period Cluster Threshold mean temperature Threshold maximum temperature Threshold minimum temperature

Lag 4 weeks Cluster 1 26.80 28.1 25.50

Cluster 2 27.40 28.20 26.30

Cluster 3 26.10 27.2 24.9

Cluster 4 28.10 29 26.80

Cluster 5 28.80 29.50 28

Lag 8 weeks Cluster 1 26.72 27.88 25.54

Cluster 2 27.34 28.36 26.19

Cluster 3 26.08 27.24 24.70

Cluster 4 28.10 29.02 26.89

Cluster 5 28.93 29.62 28.12

Lag 12 weeks Cluster 1 26.20 27.32 24.97

Cluster 2 26.98 28.19 25.69

Cluster 3 27.51 28.27 26.64

Cluster 4 28.07 29.17 26.63

Cluster 5 28.77 29.44 27.99

Lag 16 weeks Cluster 1 26.12 27.26 24.82

Cluster 2 26.79 27.77 25.79

Cluster 3 27.86 28.76 26.74

Cluster 4 27.22 28.51 25.76

Cluster 5 28.77 29.47 27.92

Lag 20 weeks Cluster 1 27.25 28.54 25.76

Cluster 2 26.10 27.24 24.82

Cluster 3 26.80 27.78 25.81

Cluster 4 28.78 29.49 27.93

Cluster 5 27.86 28.75 26.77

Frontiers in Earth Science | www.frontiersin.org 10 November 2020 | Volume 8 | Article 377

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Rahmat et al. Exploratory Data Analysis for Leptospirosis

TABLE 7 | The total number for all incidences under different probability margin categories for all the lag sets.

Dataset (Lag time in weeks) Likely cases occur category Undefined category Likely cases do not occur category

4 7 18 15

8 9 22 8

12 6 20 12

16 8 17 14

20 6 19 15

TABLE 8 | Model accuracy at different time lags of humidity data.

Time lag

Study location No lag (%) Lag 4 weeks (%) Lag 8 weeks (%) Lag 12 weeks (%) Lag 16 weeks (%) Lag 20 weeks (%)

Seremban City 52 40 43 80 78 76

Mantin 69 70 73 77 80 79

Perentian 43 40 40 84 75 72

Sikamat 57 54 57 75 73 80

classified occurrences in 36, 43, 29, and 41 weeks, respectively.
The analysis of the ROC identified a threshold of 0.56 for
Seremban City for best classifying the output into “0” and “1,”
while 0.54 for Mantin, 0.48 for Perentian, and 0.58 for Sikamat,
respectively.We can summarize that thesemodels aremore likely
to have the ability to predict the week where the cases are likely
to occur because all specificity values are below 80%, whereas
sensitivity values are always above 80%.

Even though models from Seremban City, Sikamat, and
Mantin share similar accuracy, they slightly differ in performance
in terms of sensitivity and specificity. This difference can be
understood from ROC, whereby Seremban City has an AUC of
0.8706, while Sikamat has 0.8451 and Mantin only has 0.8392.
Seremban City has a higher AUC because of its number of weeks
when cases occur is higher than the number of weeks when cases
do not occur. This may contribute to a higher true positive rate
over false-positive rate by the model compared to the models for
Mantin and Sikamat.

The highest sensitivity among the analyzed regions was
achieved in Perentian, which is 86.44%. The model is also
optimized as it scores 79.33% in specificity, which is also
highest among other models. Overall, the EDA approach has
increased the accuracy of the predictive model by 19.99, 24.57,
31.26, and 13.30% from the best performance by the baseline
model for Seremban City, Mantin, Perentian, and Sikamat
model, respectively.

Heavy rainfall is a natural cause of flooding, and we found
that the weekly rainfall amounts between lag 12 and 20 weeks
to be the most efficient input variable to predict the occurrence
of leptospirosis. However, this time lag is seemingly long and for
stagnant water to remain in the duration is improbable. However,
there are other factors that can possibly explain the lag in the
transmission, such as indirectly through poorer sanitation and
hygiene (Victoriano et al., 2009; Schneider et al., 2013). The
lower the sanitation or hygiene level, the higher it is the chance
to increase the rodent population and their rates of infection.
Flooding may cause poorer sanitation and hygiene levels, with

flood waters carrying all types of debris, microorganisms, and
drowned animals. Even though flood recession can occur within
days, and especially is the case for Seremban with the smaller
rivers, the unsanitary environment that results could remain
depending on the rehabilitationwork after floods. Besides, animal
carcass can become the vector for transferring the bacteria.
Another consequence of heavy rains is that the water-soaked
soil can provide an advantageous environmental condition for
Leptospira to live longer (Zitek and Benes, 2005).

3.4. The Robustness of the Predictive
Model
Based on Figure 6, all four fitted models are robust to a
randomized input as the AUC of fitted models lies within the
maximum and minimum AUC of the random tests. The average
AUC for 1,000 randomized runs of the model for Mantin,
Seremban City, Perentian, and Sikamat, which are 0.8388, 0.8700,
0.8899, and 0.8447, respectively, are very close to the performance
of the fitted models. The range of differences are 0.0004 until
0.0006. Building robust ANN models never comes without a
cost (Mhamdi et al., 2017). It is clearly shown in Figure 6

that the model for Seremban City is robust as it recorded the
second smallest variance, which is 6.6379e-05, even though the
prediction accuracy is not as high as the model from Perentian,
which has the highest AUC value. The model for Perentian
achieves a variance of 6.2717e-05, which indicates less dispersion
and higher consistency.

4. CONCLUSION

This is the first study to implement machine learning using ANN
with EDA for leptospirosis prediction. Our analysis has shown
that meteorological time lags vary even in neighboring regions
within a district. It is important for development of predictive
models to consider and understand the relationship between
input and output data, and through EDA, the accuracy of the
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TABLE 9 | The performance of each model in terms of accuracy, specificity, and sensitivity.

Study location Accuracy (%) Sensitivity (%) Specificity (%) AUC Sum of rainfall Mean, maximum, minimum temperature Relative humidity

Seremban

City
80.00 83.17 74.67 0.8706 Lag 12 weeks Lag 16 weeks Lag 12 weeks

Mantin 80.00 80.00 79.33 0.8392 Lag 20 weeks Lag 16 weeks Lag 16 weeks

Perentian 83.99 86.44 79.33 0.8904 Lag 16 weeks Lag 16 weeks Lag 12 weeks

Sikamat 80.00 80.84 78.67 0.8451 Lag 12 weeks Lag 16 weeks Lag 20 weeks

TABLE 10 | Confusion matrix for each predictive model.

Observation data Observation data

Seremban City Disease occur Disease not occur Mantin Disease occur Disease not occur

Proposed model prediction Disease occur 178 38 Proposed model prediction Disease occur 171 31

Disease not occur 36 112 Disease not occur 43 119

Observation data Observation data

Perentian Disease occur Disease not occur Sikamat Disease occur Disease not occur

Proposed model prediction Disease occur 185 31 Proposed model prediction Disease occur 173 32

Disease not occur 29 119 Disease not occur 41 118

FIGURE 6 | Receiver operating characteristic (ROC) curve and area under this curve (AUC) values for fitted models vs. randomized test.

prediction model is improved from 52.73 to 83.99% for the
Perentian model, from 60.01 to 80.00% for Seremban City, 55.43
to 80.00% forMantin, and 66.70 to 80% for Sikamat. Through our
model development approach, we demonstrated that it is possible
to produce highly sensitive models as an early warning before
outbreaks happen, at the same highly specific models, which can
help the public health in terms of preserving resources.

Our prediction of leptospirosis achieves more than 80%
accuracy. However, the models with the trained ANN
architecture and parameters are not able to identify which
input provides a higher weight or influence on the output.

This is because the ANN is a black box model, which was
developed in terms of its inputs and outputs, without any
knowledge of its internal workings. As a result, this could
have limited the understanding to be gained on the impact
of hydrometeorological variables to the transmission of
leptospirosis. However, this limitation was controlled by
investigating the input dataset by using EDA for discovering
and selecting the most useful information. As a result, the
resultant EDA-ANN can be perceived more as gray box rather
than black box modeling. Besides, multiple approaches within
the EDA were used to analyze and capture the patterns in input
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data, suggesting that a one-size-fits-all solution is not a suitable
assumption for feature selection involving datasets with high
complexity, such as weather variables.

Several other improvements can be done in this study to
increase the understanding of the relationship between predictors
and transmission of leptospirosis and increase the performance
and effectiveness of the predictive model. First, this study could
expand on the type of predictors, such as measures of the stage of
sanitation and hygiene, the vulnerability of the target population,
and the exposure of humans to the bacteria or rat population.
Second, a further study can also be done to compare ANN
with other predictive models either using mathematical model
or machine learning, such as Auto-ARIMA, ARIMAX, Transfer
Function, Support Vector Machine, Bayes Belief Network, and
deep learning, to assess how the algorithm selection can affect the
predictive model accuracy.
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