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Under the urgency of rational water resource allocation and effective urban flooding
control, a multi-objective interval birandom chance-constrained programming (MIBCCP)
model is developed for supporting regional water resource management under multiple
uncertainties and climate change in this study. Two objectives were included in this model,
which are the minimization of total system costs and the maximization of total pollutant
treatment amounts. Themajor advantage of the proposedMIBCCPmodel is that it realized
the effective combined utilization of conventional and nonconventional water sources
under complexities and uncertainties through incorporating compromise programming,
birandom chance-constrained programming, and interval linear programming within a
general framework. This way effectively overcomes water shortage issue and reduces
urban flood frequency under climate change. A water supply management system of the
educational park in Tianjin was used as a study case for demonstration. A variety of
adaptive water allocation alternatives and construction schemes for LID (low-impact
development) projects under RCP4.5 and RCP8.5 (representative concentration
pathway 4.5 and 8.5) scenarios were obtained to deal with possible changes arising
from increasing rainfall and runoff in the future. It is concluded that the proposed MIBCCP
model provided the effective linkage between the utilization of nonconventional water
resources and urban flood prevention and offered insights into the trade-off between
economic benefits and environmental protection.
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INTRODUCTION

With the current rapid improvement in socioeconomic development, industrialization, and
urbanization, urban water scarcity is becoming an overwhelmingly urgent issue on a global
scale, and this is particularly prominent in China (Loomis et al., 2019). For example, the
average annual water scarcity in China is up to 4.00 × 108 m3, nearly two-thirds of China’s
cities are suffering from a water shortage, and 443–525 million city people live with high water
scarcity. Meanwhile, China’s urban water consumption continues to increase at an annual rate of
4–8% over the most recent decade (Wang et al., 2019). The conflict between increased water demand
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and limited available water resources has become particularly
evident in most cities in China. Currently, urban water resource
management patterns mainly focus on the reasonable
exploitation and effective utilization of conventional water
resources (including surface and underground water). In fact,
nonconventional water resources, such as rainwater and
reclaimed water, have significant advantages in regard to water
resource allocation and management (Ye et al., 2018). For
instance, the utilization of rainwater has the effect of reducing
the water supply cost by replacing potable water used for flushing
toilets and watering of gardens, and reclaimed water distributes
for industrial demand with an overall positive environmental
impact. The combination of conventional and nonconventional
water resources from a quantity and quality viewpoint is thus
expected.

In addition to water scarcity, modern urban water resource
management is also confronted with the huge challenges
presented by increasingly frequent urban flooding, which can
cause substantial economic damage and human distress
(Kundzewicz et al., 2018). Over the last decades, annual urban
flooding damage in China has exceeded 10 billion USD, and the
number of flood fatalities is greater than approximately 1,000
(Kundzewicz et al., 2019). Moreover, a series of research on the
water resource management under climate change indicated that
the climate change could aggravate water scarcity seriously and
cause urban flooding frequently through affecting regional
rainfall, temperature, evaporation, and hydrological cycle,
leading to a huge challenge on water resource management
(Shang et al., 2015; Mahmoud and Gan, 2018; Xia et al., 2019;
Zhang et al., 2019). In order to deal with such challenges, the
Chinese government initiated the “Sponge City” Program in
2013, which incorporates (LID) concepts to improve the urban
drainage infrastructure and address urban flooding (Song et al.,
2019; Xu et al., 2019). As a sustainable, innovative, and effective
stormwater runoff control method, LID projects have advantages
in controlling stormwater and urban runoff and storing rainwater
as underground water resources compared with non-LID
projects. However, the high construction cost associated with
these projects may trigger excessive economic burden, which has
a negative influence on the development and application of LID
technologies. Moreover, many factors, including socioeconomic,
meteorological, geographic, and environmental aspects, are
involved in the selection and placement processes of LID
projects, which bring significant difficulties to the formulation
of the LID project optimization models and generation of
effective solutions. Therefore, it is important to develop an
effective method for optimizing LID project implementation
schemes under complexities that improve water use efficiency,
explore nonconventional water resources, and control urban
flooding with a minimum cost.

For urban water resource management, considering system
factors comprehensively, establishing LID projects rationally,
combining nonconventional and conventional water resources
effectively, dealing with the impact of climate change, and
formulating water sources allocations optimization model are
suitable methods for resolving urban water scarcity and flood
control, and such approaches have been the focus of many studies

in recent years (Mainuddin et al., 1997; Shangguan et al., 2002;
Wang et al., 2008; Liu et al., 2011; Sample and Liu, 2014;
Bekchanov et al., 2015; Palanisamy and Chui, 2015; Palla and
Gnecco, 2015; Eckart et al., 2018; Xu et al., 2018; Ye et al., 2018;
Helmia et al., 2019; Huang and Lee, 2019). For instance,
Shangguan et al. (2002) developed a recurrence control model
for regional optimal allocation of water resource for obtaining
maximum efficiency. Liu et al. (2011) presented an optimization
approach for the integrated management of water resources,
including both nonconventional and conventional water
resources. Xu et al. (2018) proposed an optimal water
allocation model for industrial sectors based on water
footprint accounting to optimize the allocation of
nonconventional and conventional water resources in Dalian.
Ye et al. (2018) presented a multi-objective optimization model to
help optimize the allocation of water resources to different water
users in Beijing. Sample and Liu (2014) developed a rainwater
analysis and simulation model to optimize rainwater harvesting
systems for water supply and runoff capture. Eckart et al. (2018)
established a management model to optimize LID
implementation strategies with the objective of minimizing
peak flow. Huang and Lee (2019) proposed a programming
model to solve water shortage of Taiwan under the impact of
climate change. Helmi et al. (2019) developed a modeling tool to
allocate LID projects in a cost-optimized method. However,
above studies mainly sought to establish an optimization
model for water resource allocation or LID projects, which
considered only single objective for optimization, while in the
real practice, there is more than one issue need to be taken into
account simultaneously when designing and executing the water
resource management strategies, for the sake of achieving a
balance among them.

In fact with the increased complexity and our in-depth
understanding in the urban water resource system, it is
apparent that there is no absolute deterministic water
allocation system. Specifically, the water demand exhibits a
random nature that is subject to multiple variables, including
meteorological factors, socioeconomic conditions, and deviations
caused by the subjective judgments and understandings of
humans. For example, the ecological water demand would be
different with the change of runoff and biodiversity. Similarly,
some economic and engineering factors, which are influenced by
the resource availability, technical conditions, and policy
regulations, fluctuate in the small ranges. For instance, the
supply price of transfer water would fluctuate between 8.8 and
9.2 Yuan/m3 due to the impact of different technical conditions.
Such uncertainties lead to significant difficulties in formulating
urban water resource allocation models and generating an
optimal management pattern. Currently, a large amount of
uncertain optimization techniques have been developed by
many researchers with the aim of solving urban water
resource management problems (Huang, 1988; Liu et al., 2008;
Qin and Huang, 2009; Qin et al., 2011; Dai et al., 2018; Xu et al.,
2018; Zhang et al., 2019). For example, Dai et al. (2018) presented
a Gini coefficient–based stochastic optimization model for
supporting water resource allocation on a watershed scale. Xu
et al. (2018) developed a stochastic-based water allocation
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optimization model on a watershed scale for supporting water
supply planning and wetland restoration activities of the
Xiaoqing River watershed. Zhang et al. (2019) proposed an
interval multi-objective multi-stage stochastic programming
model for finding a reasonable water storage scale and
optimizing limited irrigation water resource. Based on the
above studies, it can be concluded that many researchers have
focused on dealing with the randomness inherent in urban water
resource management. However, the above studies mainly
utilized random variables with a known distribution type to
describe the uncertainties involved in the water resource
system, and they rarely observed that water demands in the
real world may be subject to twofold randomness with
incomplete or uncertain information. Specifically, it is first
assumed that the water demands ξ are expressed as the
random variables with the normal distributions, that is, ξ ∼ N
(μ, δ

2), where μ and δ denote the mean value and standard
deviation, respectively. Based on various survey and estimation
results from n group of respondents, n groups of random
variables could be obtained, that is, (μ1, δ1

2), (μ2, δ2
2), (μn, δn

2),
such that μ and δ values are more suitable to be random variables
(based on the collected data above) rather than fixed values as are
traditional random variables (Xu et al., 2014). Hence, the
parameters μ and σ should be described as new random
variables, which are the so-called birandom variables, a
concept first proposed by Peng and Liu (2007). This concept
has been successfully applied to the flow shop scheduling
problem, vendor selection problem, and hydropower station
operation planning problem (Xu and Zhou, 2009; Xu and
Ding, 2011; Xu and Tao, 2012).

As mentioned above, following three aspects of urban water
resource management still need to be improved. First, current
optimization models often pay attention to only one aspect of
water resource allocation or LID project exploration. In fact, it is
necessary to develop a comprehensive optimization model that
incorporates the exploration of LID projects into the urban water
management scheme. Second, because water demands directly
affect the accuracy and rationality of the results due to the
supply–demand constraint, it is important to develop a
birandom optimization method to avoid the deviation caused
by the birandomness of the water demands. Third, the climate
change exerts the influences on the water availability and the
occurrence of urban flood, which should be incorporated into the
optimization model for integrated water resource management.
As such, the main goal of this study was to develop a (MIBCCP)
model under climate change for supporting the urban water
resource management. The proposed model aims to optimize
water resource allocation and address the urban flooding under
uncertainties and different climate change scenarios, while
minimizing the total system costs and maximizing the treated
pollutant amount. The rest of this study is organized as follows:
Materials and Methods introduce the descriptions of the
compromise programming, birandom chance-constrained
programming, and interval linear programming and describe
formulation and the solution procedure of the MIBCCP
model. An overview of the reference education park and the
MIBCCP model for this park are proposed in Case Study. In

Results Analysis and Discussion, the variations in the obtained
solutions and impact of climate change on water resource
management are analyzed and discussed. Finally, the
conclusions summarizing this study are presented in the last
section.

METHODOLOGY

To establish a cost-effective and environmentally friendly water
resource management pattern, multiple objectives for the
programming model should be taken under consideration, so
that the model is capable of tackling the economic and
environmental objectives simultaneously. Moreover, the
estimation and expression of uncertain factors are critical for
generating a rational and reliable management strategy of the
urban water system, as many of the system parameters are
associated with various types of the uncertainties. Therefore,
an inexact multi-objective equilibrium chance-constrained
programming model with the birandom and interval variables
(i.e., MIBCCP) was developed for addressing these issues.

Preliminary Definitions and Descriptions of
Proposed a Multi-Objective Interval
Birandom Chance-Constrained
Programming Model
In this section, some definitions, conceptions, and descriptions
associated with compromise programming, birandom
parameters, and interval numbers are described first in order
to formulate and solve the proposed MIBCCP model.

Compromise Programming
Currently, manymethods are available for solvingmulti-objective
programming problems, among which the compromise
programming is the most commonly used. The solution
algorithm of compromise programming is based on the
concept of a distance scale dp, a point which has the shortest
distance to the ideal solution from the noninferior solution set.
The total performance of all objective functions can be written as
follows:

Min dp � min
⎧⎨⎩∑K

k�1
πp
k(Zmax

k (X) − Zk(X)
Zmax
k − Zmin

k

)p⎫⎬⎭1
/p

(1a)

1< p<∞ (1b)

πp
k > 0 (1c)

∑K
k�1

πp
k � 1 (1d)

where Zmax
k (x) and Zmin

k (x) are the maximum and minimum
values of each individual objective which can be obtained through
the transformation of the original multi-objective programming
that is single objective. The introduction of Zmax

k (x) and Zmin
k (x)

is used to normalize noncommensurable formats and units in
model objectives. Zk(X) � the value of the objective k; k � the total
number of objectives; π

p
k � the corresponding weight of each
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objective. The distance scale dp varies with various p, where p �∞
when decision-makers focus on the specific objective; p � 1 is
corresponded to the decision-makers, considering all the
objectives. Considering the complexity of the MIBCCP model,
the item p is designed as 1 for the simplicity in this research.

Introduction of Birandom Variable following the
Normal Distribution
Birandom variable, a concept first proposed by Peng and Liu
(2007), is a useful tool to deal with problems with twofold
randomness and has been successfully applied to many fields
(Xu and Zhou, 2009; Xu and Ding, 2011; Xu and Tao, 2012). In
this study, the random variable following the normal distribution
is considered as the example. For any ω, ξ(ω) is a birandom
variable with normal distribution and is expressed as
N(μ(ω), σ2(ω)), where μ(ω) and σ(ω) are random variables,
rather than fixed values of general random variable.

Definition 2.1. A n-dimensional birandom vector ξ is a map
from the probability space (Ω, A, Pr) to a collection of
n-dimensional random vectors such that Pr{ξ(ω) ∈ B} is a
measurable function with respect to ω for any Borel set B of
the real space Rn. Especially, ξ is called a birandom variable as
n � 1.

Example 2.1. A birandom variable ξ is assumed to follow the
normal distribution, if for each ω, ξ(ω) is a random variable with
normal distribution, denoted by N(μ(ω), σ2(ω)), where μ(ω), σ(ω)
are the random variables defined on the probability space (Ω,
A, Pr).

Lemma 2.1. Let ξ � (ξ1, ξ2, . . ., ξn) be a birandom vector and f
be a Borel measurable function from Rn to R. Then f(ξ) is a
birandom variable.
Let ξ1 and ξ2 be two birandom variables defined on the probability
spaces (Ω1, A1, Pr1) and (Ω2, A2, Pr2), respectively. Then ξ � ξ1 + ξ2

is a birandom variable on (Ω1 × Ω2,A1 ×A2, Pr1 × Pr2) defined by ξ

(ω1, ω2) � ξ1 (ω1) + ξ2 (ω2), (ω1, ω2) ∈ (Ω1 × Ω2).

Interval Number
The interval number is composed of the lower bound and upper
bound, which is depicted in Eq. 1, where the items a− and a+ are
the lower and upper bounds of a ±

ij , respectively. The lower and
upper bounds represent minimum value and maximum value of
a ± , respectively. Two major advantages of the interval number
are the low requirement of data information and the interval
optimization model is solved without excessive computational
burden (Huang et al., 1992).

a ±
ij � [a−ij , a+ij] (2a)

Let a ± and b ± be two interval numbers defined as
a ± � [a−, a+] and b ± � [b−, b+], respectively. Some
calculation equations of two interval numbers are defined as
follows:

a ± + b ± � [a− + b−, a+ + b+] (2b)

a ± − b ± � [a− − b−, a+ − b+] (2c)

a ± × b ± � [a− × b−, a+ × b+] (2d)

a ±

b ± � [a−
b+
,

a+

b−
] (2e)

ka ± � [ka−, ka+] (2f)
1
a ± � [ 1

a+
,

1
a−
] (2g)

ka ± � [ka−, ka+] (2h)
1
a ± � [ 1

a+
,

1
a−
] (2i)

Multi-Objective Interval Birandom
Chance-Constrained Programming
As stated in the Introduction section, the uncertainties associated
with the urban water resource management system not only
exhibit the random characteristics but also fluctuate in the small
ranges. Therefore, in this study, an integrated uncertain multi-
objective optimization model including the birandom parameters
and interval numbers (MIBCCP) is developed for tackling two
types of uncertainties.

Minimize f ±
1 � C ±

1 X ± (3a)

Minimize f ±
2 � C ±

2 X ± (3b)

Subject to:

A
≈ (ω)X ± ≤ B

≈ (ω) (3c)

D ± X ± ≤ E ± (3d)

X ± ≥ 0 (3e)

C ±
1 , C ±

2 , A
≈ (ω), D ± ≠ 0 (3f)

where two objective functions f ±
1 and f ±

2 , decision variable X ± ,
and coefficients C ±

1 , C ±
2 , A ± , D ± , and E ± are expressed as

interval forms. The coefficients A
≈ (ω) and B

≈ (ω) are birandom
variables following normal distribution, where they are described
as A

≈ (ω) ∼ N(~A(ω), σ2A) and B
≈ (ω) ∼ N(~B(ω), σ2B), respectively.

The mean values of stochastic variables also are described as
normal random variables, that is, ~A(ω) ∼ N(μA, σ2A′ ) and
~B(ω) ∼ N(μB, σ2B′ ), respectively. The covariance magnitudes
(i.e., σ2A and σ2B) are assumed as fixed values, since the
variations in the deviation value are limited.

The first and critical step of solving model 3 is to combine two
objective functions into one objective through designing various
weight coefficients (i.e., w1 and w2).

Minimize f ± � w1p
f max
1 − f1

f max
1 − f min

1

+ w2p
f max
2 − f2

f max
2 − f min

2

(4a)

w1 + w2 � 1 (4b)

where w1 is the corresponding weight of f1; w1 is the
corresponding weight of f2; fmax

1 , fmax
2 , fmin

1 , and fmin
2 are the

maximum and minimum values of each individual objective
which can be obtained through the transformation of the
original multi-objective programming, that is, single objective.
In this study, depending on local conditions, we consulted 30
local managers with various backgrounds, including the
environmental protection bureau, economic development
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commission, and civil affairs department. According to the above
managers’ preferences, w1 and w2 were regarded as the weight
coefficients of economic objective and environmental objective,
and nine groups of weight coefficients (i.e., w1 � 0.1 and w2 � 0.9,
w1 � 0.2 andw2 � 0.8,w1 � 0.3 andw2 � 0.7,w1 � 0.4 andw2 � 0.6,
w1 � 0.5 andw2 � 0.5,w1 � 0.6 andw2 � 0.4,w1 � 0.7 andw2 � 0.3,
w1 � 0.8 and w2 � 0.2, and w1 � 0.9 and w2 � 0.1) were designated.
Among these, the first three groups were proposed by the
managers from economic development commission, who tend
to give priority to economic growth; the latter three groups were
regulated by the managers from environmental protection
bureau, who prefer the improvement in environmental quality.
The rest of the groups correspond to the managers from civil
affairs department, who focus on the coordinated development of
economic growth and environmental protection.

Next, the constraint with birandom variables (3c) is converted
into its interval equivalent based on the birandom equilibrium
chance-constrained algorithm. The selection of the equilibrium
chance measure is because it is a real number and is convenient
for decision-makers to rank potential solutions (Peng and Liu,
2007). The original stochastic constraint could be reformulated as
follows:

A
≈ (ω)X ± ≤ B

≈ (ω)5Che{A≈ (ω)X ± ≤ B
≈ (ω)}≥ 1 − αr

5Pr{ω ∈ Ω
∣∣∣∣∣∣Pr{A≈ (ω)X ± ≤ B

≈ (ω)}≥ 1 − αr}≥ 1 − αr

5μAX
± + Φ−1(αr)

�����������������
(X ± )TσAX ± + (σB)2

√
+Φ−1(αr)

�������������������
(X ± )TσA′X ± + (σB′)2

√
≤ μB, ∀r

(5)

where αr represent predetermined probability violation levels. The
principle of designing αr value is ensuring its ranges are wide
enough. In order to generate a variety of decision alternatives and
provide more choosing opportunities to decision-makers, a
relatively wide range of designed parameter is necessary.
Referring to the studies (Xu et al., 2009; Wang et al., 2018), in
this study, the constraint violation level is designed as 0.01, 0.05,
and 0.1, respectively.

Then, the interactive two-step algorithm proposed by Huang
et al. (1992) is used for transforming the intermediate interval
linear programming model into two submodels, which
correspond to the upper and lower bounds of objective
function values, respectively. The submodel corresponding to
the lower bound of objective function is formulated first as (Xu
and Zhou, 2009; Xu and Tao, 2012):

Minimize f − � C−X− (6a)

Subject to:

μAX
− +Φ−1(αr)

����������������
(X−)TσAX− + (σB)2

√
+Φ−1(αr)

�����������������
(X−)TσA′X− + (σB′)2

√
≤ μB, ∀r

(6b)

D+X− ≤ E− (6c)

X ± ≥ 0 (6d)

Based on obtained solutions from model 6, the submodel
representing the upper bound of the objective function f + is
formulated as follows:

Minimize f + � C+X+ (7a)

Subject to:

μAX
+ +Φ−1(αr)

����������������
(X+)TσAX+ + (σB)2

√
+Φ−1(αr)

�����������������
(X+)TσA′X+ + (σB′)2

√
≤ μB, ∀r

(7b)

D−X+ ≤ E+ (7c)

X+ ≥X− (7d)

Finally, the solutions of objective values and decision variables
under various αr values are obtained, that is, f ±

1,opt � [f −1,opt , f +1,opt],
f ±
2,opt � [f −2,opt , f +2,opt] and X ±

opt � [X−
opt ,X

+
opt], respectively. The

MIBCCP model developed in this study can not only reflect
two distinct objectives including the economic and
environmental aspects but also describe uncertain parameters
as the birandom variables and interval numbers, leading to the
interval solutions under various weight combinations and
violation levels for supporting the decision-making process.
Figure 1 shows the procedures for formulating and solving an
MIBCCP model, which are summarized as follows:

Step 1: Investigate the water resource management system and
recognize system structure and components, respectively.
Step 2: Identify all types of uncertain variables as the birandom
variables and interval numbers and determine the objective
function and constraints in the optimization model.
Step 3: Establish anMIBCCPmodel based on step 1 and step 2.
Step 4: Combine two objectives into a single objective based on
the compromise programming method.
Step 5: Convert the birandom constraints into their respective
interval equivalents based on equilibrium chance-constrained
measure.
Step 6: Transform the interval model into two submodels
through an interactive two-step algorithm, which
correspond to the lower bound and upper bound models,
respectively.
Step 7: Solve two submodels and generate the final solutions of
objective values and decision variables under various
conditions.

CASE STUDY

Overview of the Study Area
To demonstrate the advancement of the proposed optimization
model for optimizing the allocation of water resource and
addressing urban flooding with minimal LID project
construction cost, an education park water system in Tianjin,
China, was taken as an example. As shown in Figure 2, the
reference park is a national demonstration zone of vocational
education reform and innovation in China, located at latitude
38°34′−40°15′N and longitude 116°43′−118°4′E, and it covers an
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area of 37 km2 with a total population of 0.2 million. The annual
rainfall is about 480 –520 mm, 75% of which is concentrated in
the months of June, July, and August. As a demonstration area
constructed with “three-zone linkage” (educational zone,
residential zone, and industrial zone), the reference park
clearly has high requirements in regard to water availability
and water supply safety. However, its existing water provision
is incapable of meeting the scale expansion needs of the park in
the future, which is mainly reflected in the following aspects: i)
water scarcity is an urgent problem in this area. The water
resource per capita is 160 m3/a, which is only about 7% of the
average level in China; ii) the major water source for this park is
the local reservoir, and no alternative sources are available. As
such, this single water source will affect the water supply security;
iii) the capability of water conservation and retention has
declined due to the decrease in puddle and lake areas;
moreover, increased concrete areas has also reduced the
penetration of rainwater into the soil. The on-site survey result
indicated that this park often undergoes flooding, which would be
exacerbated under climate change; iv) intrinsic uncertainties are

associated with the water resource system of this park, including
the volatility in water demands and fluctuations in the prices of
water resource. The current water resource management plan
neglects the uncertain features and potential risk caused by
climate change that can affect the accuracy and rationality of
the water allocation strategy. Therefore, it is important that an
effective water resource optimization model is formulated to help
mitigate and/or solve the above issues.

Impact of Climate Change on the Study Area
Over the last decades, climate change has significantly aggravated
water scarcity and intensified frequency of extreme weather
events (such as urban flooding and droughts) in China (Niu
et al., 2008; Yu et al., 2008; Guo et al., 2019). Hence, it is necessary
to detect future changes in rainfall over a region by using the
simulation techniques in order to identify the influence exerted by
climate change and generate an optimal water resource
management strategy. PRECIS is a regional climate model
system developed at the Met Office Hadley Centre, United
Kingdom (Rao et al., 2014). It is advantageous in simulating

FIGURE 1 | Main procedure of formulating and solving a multi-objective interval birandom chance-constrained programming model.
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the change trend of climatic variables due to its easy-to-use
operation, high computational precision, and wide suitability.
In this study, the average annual rainfall in the reference park was
predicted under four periods (2025, 2050, 2075, and 2100) and
two emission scenarios (RCP4.5 and RCP8.5) by the PRECIS
model, which are shown in Table 1. From Table 1, it can be seen
that the average annual rainfall shows an upward trend among
four periods under the impact of climate change in the future.

Description of the Water Resource System
Figure 3 presents the water network in the studied region. Based
on the natural conditions, geographical position, and surface
runoff of the reference park, the water resource management
system for this park is conceptualized as 12 nodes, including
four water sources, six water users, and LID, and non-LID
projects. The major water sources are transfer water, tap water,

reclaimed water, and rain water, which are used for living,
industry, tertiary industry, construction, ecology, and other
water users. Considering a water-saving plan, green
ecological requirements, and traditional water source
allocation principles of the city of Tianjin, this study made
some adjustment as follows: i) “planning of recycled water
utilization of Tianjin” highlights that the utilization of
reclaimed water should be considered for livelihood water
with the maximal value of 30 L/d per capita. Hence, the
water sources for livelihood water would be transfer water,
tap water, and reclaimed water. ii) According to “technical
specifications for construction and community rainwater
utilization engineering,” rainwater can be used for green
space irrigation and road watering. Therefore, the demand
for ecology water could be met by reclaimed water and
rainwater, which are harvested via the LID and non-LID
projects in this study. iii) Other water users should include
the water source loss caused by water transfer, including transfer
water loss and tap water loss.

Formulation of the Multi-Objective Interval
Birandom Chance-Constrained
ProgrammingModel Under Climate Change
As mentioned in the above sections, the generation and execution
of a rational water resource management strategy under climate
change, including the determination of the system components,
design of the system operation pattern, and generation of water
allocation alternatives, are directly related to the coordinated
development of local socioeconomy and environmental factors.

Therefore, the MIBCCP model for tackling the water supply
problem of the park was formulated, as shown in Figure 4. This
model was used to identify and determine the optimal water
allocation strategy under climate change, which could enhance
the economic efficiency, reduce environmental water pollution,
and avoid the negative effects caused by various uncertainties
associated with the water resource management system. The
formulation and solution procedures of the MIBCCP model in
this study are summarized as follows:

Step 1: Investigate the water resource management system and
recognize system structure and confirm the impact of climate
change.
Step 2: Identify all types of uncertain variables as the birandom
variables and interval numbers and determine the objective
function and constraints in the MIBCCP model based on
step 1.
Step 3: Establish the MIBCCP model depended on step 2.
Step 4: Solve the MIBCCP model and generate the solutions of
objective values and decision variables under different
conditions.
Step 5: Analyze and discuss the results obtained in step 4 and
support managers to make a trade-off between the economic
benefits and environmental benefits, identify the relation
between the system cost and the joint constraint violation
risk, and deal with the impact of climate change.

TABLE 1 | Average annual rainfall under various periods and scenarios.

Item Emission
scenario

Period

2025
(mm)

2050
(mm)

2075
(mm)

2100
(mm)

Average
annual

RCP4.5 512.58 593.57 695.24 823.24

Rainfall RCP8.5 766.76 880.56 1,029.55 1,214.87

FIGURE 2 | Demonstration of study area.
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Objective Functions
i. Economic objective

minimize f ±
C � ∑N

n�1
∑M
m�1

CA ±
n,mgAn,m +∑I

i�1
∑J
j�1

CX ±
i,j gX

±
i,j (8a)

where f ±
C � construction costs and water resource allocation

costs (RMB); CA ±
n,m � construction price of project n in area m

(RMB/m2). n (g � 1, 2, . . ., N) � index of the project type; n � 1
represents non-LID projects; n � 2 represents LID projects; m
(m � 1, 2, . . ., M) � index of the area type; m � 1 represents
pavement;m � 2 represents greenbelt;m � 3 represents roofs;m �
4 represents square; An,m � decision variables representing the
area of project n at area m (m2); CX ±

i,j � water transferred cost
from water source i to water user j (RMB/m3); X ±

i,j � decision
variables representing water amounts transferred from water
source i to water user j (m3), i (i � 1, 2, . . ., I) � index of
water resource type; i � 1 represents transfer water; i � 2
represents tap water; i � 3 represents reclaimed water; i � 4
represents rainwater; j (j � 1, 2, . . ., J) � index of water user type;
j � 1 represents livelihood; j � 2 represents industry; j � 3
represents tertiary industry; j � 4 represents construction; j �
5 represents ecology; j � 6 represents other water user, as shown
in Figure 2, when i � 1, j � 1, 2, 3, and 6; when i � 2, j � 1, 2, 3, 4,
and 6; when i � 3, j � 1, 2, 3, 4, 5, and 6; when i � 4, j � 5. The
economic target (8a) was designed to realize the minimization of
the construction costs related to LID and non-LID projects and
water resource allocation costs.

i. Environmental objective

maximize f ±
E � ∑N

n�1
∑M
m�1

LgK ±
m gA2,m (8b)

where f ±
E � total treatment amount of total suspended solids

(TSS) (ton); L � the amount per unit area of TSS in the study area
(t/m3); K ±

m � TSS treatment efficiency of LID projects at area m.
The environmental objective (8b) endeavors to maximize the
total treatment amount of TSS.

Constraints
i. Constraint for water resource availability

X ±
1,1 + X ±

1,2 + X ±
1,3 + X ±

1,6 ≤Q ± (8c)

X ±
2,1 + X ±

2,2 + X ±
2,3 + X ±

2,4 + X ±
2,6 ≤Q ± (8d)

X ±
3,1 + X ±

3,2 + X ±
3,3 + X ±

3,4 + X ±
3,5 + X ±

3,6 ≤Q ± (8e)

X4,5 ≤QYK (8f)

where Q ±
W � transfer water availability (m3); Q ±

Z � tap water
availability (m3); Q ±

ZS � reclaimed water availability (m3); QYK �
rainwater availability (m3). The constraints (8c) to (8f) regulate
the water amounts, including the transfer, tap, reclaimed, and,
rainwater, so they do not exceed their maximum availability.
ii. Constraint for the water supply–demand balance

X ±
1,1 + X ±

1,2 + X ±
1,3 ≥QS

≈
(8g)

X ±
1,2 + X ±

2,2 + X ±
3,2 ≥Qg

≈
(8h)

FIGURE 3 | Regional water supply system.
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X ±
1,3 + X ±

2,3 + X ±
3,3 ≥Qds

≈
(8i)

X ±
2,4 + X ±

3,4 ≥Qj

≈
(8j)

X ±
3,5 + X4,5 ≥Qe

≈
(8k)

X ±
1,6 + X ±

2,6 + X ±
3,6 ≥Qq

≈
(8l)

where QS

≈ � total demand of livelihood water (m3); Qg

≈ � total
demand of industrial water (m3); Qds

≈ � total water demand of
tertiary industry (m3); Qj

≈ � total demand of construction water
(m3);Qe

≈ � total demand of ecological water (m3);Qq

≈ � total water
demand of other users (m3). The constraints (8g) to (8l) serve to
regulate the allocated water amounts from each water resource to
be higher than or equal to the required water amounts.
iii. Constraint of conventional water resource utilization(X ±

1,1 + X ±
1,2 + X ±

1,3 + X ±
2,1 + X ±

2,2 + X ±
2,3 + X ±

2,4)≤R ±
T gGDP (8m)

X ±
1,2 + X ±

2,2 ≤R ±
I gMAVI (8n)

X ±
1,3 + X ±

2,3 ≤R
±
DSgMAVDS (8o)

where GDP � gross domestic product of the reference park (104

RMB); R ±
I � maximum conventional water resource availability

of the gross domestic product (m3/104 RMB); MAVI � added
product of industry (104 RMB); R ±

I � maximum available
conventional water amounts of the added industrial product
(m3/104 RMB); MAVDS � added product of tertiary industry
(104 RMB); R ±

DS � maximum conventional water resource
availability of the added tertiary industrial product (m3/104

RMB). The constraints (8m) to (8o) restrict the allocated
water amounts of transfer water and tap water not to exceed
their utilization limitations of the GDP, added industrial
products, and added tertiary industrial products, respectively.
iv. Constraint of reclaimed water reuse rate(X ±

3,1 + X ±
3,2 + X ±

3,3 + X ±
3,4 + X ±

3,5 + X ±
3,6)

ηg(Qs + Qg + Qds + Qj) ≥ μ ± (8p)

FIGURE 4 | Water supply management diagram for the educational park in Tianjin.
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where μ ± � reuse rate of reclaimed water; η � sewage discharge
coefficient. The constraint (8p) regulates the sewage water
amounts to be reclaimed following a designated ratio.
v. Constraint of the LID projects

A1,1 + A1,2 � AP (8q)

A2,1 + A2,2 � AG (8r)

A3,1 + A3,2 � AR (8s)

A4,1 + A4,2 � AS (8t)

∑N
n�1

∑M
m�1

Fn,mgAn,mgQyh � Qys (8u)

QYK � Qys (8v)

where Ap � available area of the pavement in the lark, m2; AG �
available area of the greenbelt in the lark, m2; Ap � available
area of the roof in the lark, m2; Ap � available area of the square
in the lark, m2;Qys � rainfall runoff of the lark, m3; Fn,m � runoff
coefficient of projects n at the construction area m; Qyh �
average rainfall of the lark during one year, m3; Qyx � storage
volume of rainfall, m. The constraints (8q) to (8t) are used to
control the construction area of the LID projects in the
pavement, greenbelt, roof, and square areas. The constraints
(8u) to (8v) regulate the rainfall runoff and the rainwater
availability, respectively.
vi. Other constraints

X ±
1,6 � θTsg(X ±

1,1 + X ±
1,2 + X ±

1,3) (8w)

X ±
2,6 � θTag(X ±

2,1 + X ±
2,2 + X ±

2,3 + X ±
2,4) (8x)

An,m ≥ 0 (8y)

X ± ≥ 0 (8z)

where θTs � transmission loss coefficient of transfer water; θTa �
transmission loss coefficient of tap water. The constraints (8w)
to (8x) regulate the transmission losses of the transfer water
and tap water, respectively. The constraints (8y) to (8z) require
the decision variables to be greater or equal to zero. Based on
compromise programming and stochastic equilibrium chance-
constrained programming methods described in Materials and
Methods, two objectives (including economic and
environmental objectives) were first combined into a single
objective; then, the birandom constraints (including water
supply–demand balance constraints) were converted into
their interval equivalents; next, the interval form objective
function and constraints were transferred to their respective
two deterministic forms. Finally, the interval solutions under
various constraints violation levels (i.e., 0.01, 0.05, and 0.1)
were obtained, that is,

f ±
C opt � [f −C opt , f

+
C opt],f ±

E opt � [f −E opt , f
+
E opt],A ±

n,m opt �
[A−

n,m opt ,A
+
n,m opt], and X ±

i,j opt � [X−
i,j opt ,X

+
i,j opt], respectively

Data Information
The model parameters can be divided into two types in this study,
which included engineering parameters and water resource
system parameters.

Engineering Parameters
Engineering parameters composed of construction costs, runoff
coefficients, TSS treatment efficiencies, and available areas of LID
and non-LID projects, which are shown in Table 2. The available
areas are subjected to the park-scale limitation and remain
unchanged, where they are expressed as deterministic values
that came from Tianjin Statistics Bureau. The construction
cost and TSS treatment efficiency have significant variations
caused by policy regulations and technical condition, where
they exhibited the uncertain characteristics with known upper
and lower bounds. Accordingly, it is essential to define them as
the interval numbers.

Water Resource System Parameters
According to on-site survey results, historical data record (from
2010 to 2018), Tianjin Statistics Bureau, and Tianjin Statistics
yearbook, water resource system parameters include water
provision cost, available water amount, and users’
requirements, and their detailed data information is displayed
in Table 3. Among them, users’ requirements are affected by
population, production scale, and local meteorological condition.
Therefore, they are designed as the birandom variables with
normal probability distribution. The water supply cost and
available water amount own the small variation range and
thus are assumed to be the interval number.

RESULTS ANALYSIS AND DISCUSSION

Results Analysis
Table 4 displays the optimal solutions of the MIBCCP model
under different constraint violation levels (i.e., α) and different
weight combinations. Based on the description of the interval
linear programming in the Methodology section, the solutions
for the two objective function values and some decision

TABLE 2 | Parameters associated with the low-impact development and
non–low-impact development projects.

Item Type of project

LID projects Non-LID projects

Runoff coefficient 0.3 0.9
Available pavement area (m2) 9,000 9,000
Available greenbelt area (m2) 3,200 3,200
Available roof area (m2) 14,000 14,000
Available square area (m2) 5,600 5,600
TSS treatment efficiencies of the pavement [0.85, 0.92] 0
TSS treatment efficiencies of the greenbelt [0.85, 0.92] 0
TSS treatment efficiencies of the roof [0.85, 0.92] 0
TSS treatment efficiencies of the square [0.50, 0.70] 0
Construction costs in the pavement
(RMB/m2)

[168.12, 222.96] [132.64, 188.32]

Construction costs in the greenbelt
(RMB/m2)

[190.43, 294.53] [147.95, 196.54]

Construction costs in the roof (RMB/m2) [225.87, 336.29] [194.32, 298.40]
Construction costs in the square (RMB/m2) [443.55, 588.81] [398.16, 544.10]

TSS, total suspended solids; LID, low-impact development; non-LID, non–low-impact
development.
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variables could be presented as interval numbers. For instance,
when α � 0.1, w1 � 0.1, and w2 � 0.9, the TSS treatment amounts
would range from 31.6 × 103 to 34.2 × 103 tons. The system
costs would change from 35.75 to 43.77 million RMB. The
transfer water amount allocated to livelihood would fluctuate
from 6.07 to 8.47 million m3. The solutions of the two
objectives correspond to the upper bound of the
environmental benefit and the lower bound of the system
costs, which are obtained under the most optimistic
conditions (e.g., high TSS treatment efficiency as well as low
construction and water allocation prices) when the interval
decision variables (e.g., water resource allocation amounts) are
at their lower bounds; although the solutions corresponding to
the lower bound of the environmental benefit and the higher
bound of the system costs are associated with the most
conservative conditions when the water resource allocation
amounts reach their higher bound levels. In fact, the flexibility
and adjustability of the interval decision variables are
beneficial for the decision-maker when inserting more
implicit knowledge (e.g., socioeconomic conditions) into the
optimize model so that they can formulate a more satisfactory
and applicable decision scheme. Moreover, some interval
decision variables indicate that there is no difference
between their upper bound value and lower bound value.
For example, when α � 0.1, w1 � 0.1, and w2 � 0.9, the
solutions of 8.00 million m3 and 1.44 million m3 are the tap
water amounts allocated to industry and tertiary industry
users. This is because these decision variables are insensitive
to the variations in interval parameters.

Considering that the obtained solutions are affected by the
interactive influence of the above two factors (weight coefficient
combination and violation level), for the sake of reflecting the impact
exerted by each factor, the variation trend of the solutions was
analyzed under the context of changes to one factor as the other
factor remains unchanged. First, when the three violation levels were
maintained as stable (α � 0.1), the selection of the construction
schemes exhibited an obvious difference under various weight
combinations. The high w1 value would help to raise the
economic benefits; otherwise, as w2 climbs, the environmental

benefits would increase. For instance, the non-LID projects
are favored when the system costs are more of a concern, where
w1 � 0.9 and w2 � 0.1. Under α value of 0.1, the difference in values
between the non-LID project construction area and LID project
construction area for pavement, greenbelt, roof, and square areas
were 9.0 × 103, 3.2 × 103, 14.0 × 103, and 5.6 × 103m2, respectively.
Conversely, with the change in weight combinations from w1 � 0.9
andw2 � 0.1 tow1 � 0.1 andw2 � 0.9, the difference in values would
be 3.8×103, 3.2×103, −14.0×103, and 5.6 × 103m2, respectively. This
variation is because LID projects can bring increased environmental
benefits. Moreover, selection of the water allocation strategy is also
dependent on the weight coefficients. For example, it is established
that thewater demand of the tertiary industry is satisfied by tapwater
and reclaimed water with the values of 144 and 38.01 million m3,
where w1 � 0.1 and w2 � 0.9. However, when the system focuses on
the economic benefit (w1 � 0.9 and w2 � 0.1), reclaimed water with
its low allocation price would be the preferred source, and thus, the
water demand of the tertiary industry would be provided in total by
reclaimedwater. A similar situationwas also reflected in the different
climate change scenario and time period. For example, under the
RPC 4.5 scenario, when w1 � 0.1 and w2 � 0.9, tap water would be
used to meet the water demand of the construction industry in 2025,
with the values of 123.5 millionm3.Whenw1 � 0.9 andw2 � 0.1, the
water demand of the tertiary industry would be provided in total by
reclaimed water due to its high economic characteristic. The
function of weight coefficients was to provide different water
resource management schemes for managers. If the
environmental quality is relatively poor and needs to be
improved, managers should focus on the environmental benefits
and choose the scheme under the high w2. Conversely, they could
prefer to increase the economic benefits and select the scheme under
the high w1.

Moreover, the variable situations of the obtained solutions
under the different fixed weight coefficient combinations are
discussed in order to examine the influences caused by
violation level design on the generated decision schemes. First,
when two weight coefficients are maintained as stable (w1 � 0.9
and w2 � 0.1), as the increase in the probabilistic level, the total
water amounts supplied to four water users were decreased. For
example, at the three α levels of 0.01, 0.05, and 0.1, the water
amounts transferred to meet the demands of livelihood were
18,496.3, 18,435.9, and 18,403.6 × 103 m3, respectively; similarly,
the water amounts allocated to industry and the rainwater
amount collected by LID and non-LID projects increased from
9,333.0 and 11,866.8 × 103 m3 to 9,775.8 and 11,782.9 × 103 m3,
respectively. Meanwhile, the results own the same trends under
climate change. For example, under the RPC 8.5 scenario, when α

increases from 0.01 to 0.1, the water demand of the construction
industry provided by reclaimed water was reduced in 2,100, being
from 1,288.4 × 103 to 1,235.2 × 103 m3; the tap water allocated to
industry would decrease to 3,920.8 × 103 from 4,160.6 × 103 m3.
The main reason for this result is that the decrease in α value
meant the constraints with the birandom variables would be
strict, such that the water demand amounts would increase. On
the contrary, the increase in the violation level of αmeans that the
satisfied extent of the constraint has become weak, leading to a
decrease in the water demand.

TABLE 3 | Parameters related to the water resource system.

Parameters Value

Interval parameters
Supply price of transfer water [8.8, 9.2] RMB/m3

Supply price of tap water [7.2, 7.8] RMB/m3

Supply price of reclaimed water [4.3, 4.7] RMB/m3

Supply price of rain water [2.2, 2.8] RMB/m3

Available amount of transfer water [11,000, 14,000] 103 m3

Available amount of tap water [30,000, 35,000] 103 m3

Available amount of reclaimed water [15,000, 18,000] 103 m3

Birandom parameters
Parameters Probability distribution

Total water demand of livelihood N ∼ (μ, 23.38) μ ∼ (1,829, 16.26)
Total water demand of industry N ∼ (μ, 19.09) μ ∼ (1,168, 13.39)
Total water demand of tertiary industry N ∼ (μ, 8.61) μ ∼ (175, 6.41)
Total water demand of construction N ∼ (μ, 7.41) μ ∼ (117, 5.61)
Total water demand of ecology N ∼ (μ, 19.01) μ ∼ (1,158, 13.34)
Total water demand of other users N ∼ (μ, 23.38) μ ∼ (578, 10.01)
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TABLE 4 | Part of solutions of multi-objective interval birandom chance-constrained programming model under various α values and weight combinations.

Item Water allocation amount (103 m3)

Transfer water allocation Tap water allocation Reclaimed water allocation

A w1 w1 Usera Userb Userc Userf Usera Userb Userc Userd Userf Usera Userb Userc Userd Usere Userf

0.1 0.1 0.9 [607.31, 846.56] 0 0 [48.58, 67.72] 7,751.7 8,000 1,440 1,235.2 1,474.2 4,578.8 3,782.9 380.1 0 2,349.7 3,908.5
0.9 0.1 [607.31, 846.56] 0 0 [48.58, 67.72] 12,330.5 3,920.8 0 0 1,300.1 0 7,862.1 1,820.1 1,235.2 0 4,082.6

0.05 0.1 0.9 [608.38, 848.05] 0 0 [48.67, 67.84] 7,722.5 8,000 1,440 1,253.7 1,473.3 4,629.6 3,812.1 399.9 0 2,224.8 3,933.6
0.9 0.1 [608.38, 848.05] 0 0 [48.67, 67.84] 12,352.1 4,004.1 0 0 1,308.5 0 7,808 1,839.9 1,253.7 0 4,098.4

0.01 0.1 0.9 [610.38, 850.83] 0 0 [48.83, 68.07] 7,667.8 8,000 1,440 1,288.4 1,471.7 4,724.7 3,866.8 437.2 0 1,990.6 3,980.7
0.1 [610.38, 850.83] 0 0 [48.83, 68.07] 12,392.5 4,160.6 0 0 1,324.2 0 7,706.2 1,877.2 1,288.4 0 4,128.1

Item Construction area (103 m2) Values of objectives System costs(106 RMB) Rainwater
amount
(103 m3)

Pavement Greenbelt Roof Square Economic
objective
(106 RMB)

Environment
objective
(104 ton)

Water
allocation

cost

Construction
costA w1 w2 Non-

LID
LID Non-

LID
LID Non-

LID
LID Non-

LID
LID

0.1 0.1 0.9 6.41 2.59 3.20 0 0 14.00 5.60 0 [35.74, 43.77] [31.6,34.2] [7.15, 10.17] [28.60, 33.60] 9,333.0
0.9 0.1 9.00 0 3.20 0 14.00 0 5.60 0 [34.05, 41.97] 0 [6.62, 9.55] [27.43, 32.42] 11,682.7

0.05 0.1 0.9 6.92 2.08 3.20 0 0 14.00 5.60 0 [35.77, 43.80] [30.7,33.2] [7.13, 10.15] [28.64, 33.64] 9,487.0
0.9 0.1 9.00 0 3.20 0 14.00 0 5.60 0 [34.14, 42.07] 0 [6.62, 9.55] [27.53, 32.53] 11,711.8

0.01 0.1 0.9 7.89 1.11 3.20 0 0 14.00 5.60 0 [35.81, 43.86] [28.8,31.2] [7.13, 10.08] [28.71, 33.74] 9,775.8
0.9 0.1 9.00 0 3.20 0 14.00 0 5.60 0 [34.33, 42.29] 0 [6.62, 9.55] [27.71, 32.74] 11,766.4

LID, low-impact development; non-LID, non–low-impact development projects.
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The changes in the combinations of weight coefficients and
violation levels exerted an influence on the decision variables,
but they also influenced the objective value. The economic and
environmental objectives under various weight combinations
and violation levels were estimated and are shown in Figure 5A.
From Figure 5A, it was apparent that regardless of the α levels,
the values of two objectives both keep the same trend with the
change in weight combinations, considering the obtained
solutions are affected by the interactive influence of the
above two factors (w and α); thus, in order to reflect the
impact exerted by w, the variation trend of the solutions was
analyzed under a stable constraint violation, which was selected
as 0.1. Specifically, when w1 increased from 0.1 to 0.8 and w2

simultaneously decreased from 0.9 to 0.2 under α � 0.1, the
economic objective and environmental objective remained
unchanged with the values of 35.75, 43.77 million RMB and
31.6, 34.2 ×103 tons. Whenw1 andw2 changed to 0.9 and 0.1, the
two objectives decreased especially fast to 34.05, 41.97 million
RMB and 0 tons. This indicated that the values of two objectives
were insensitive to the weight shift before w1 reaches 0.8. Only
when w1 � 0.9 and w2 � 0.1 could the solution of environmental
objective would decrease, which means the decision-makers
considering environmental benefits are not the key factor for
determining the optimal water resource allocation strategy.
Meanwhile, the solution of economic objective corresponding
to the total cost of the system would decrease, which represents
the decision-makers focus on the economic benefit and aim to
reduce the system costs.

In order to further reflect the sensitive range of objective
functions, two objectives values under different weight
coefficients (changing between from w1 � 0.8, w2 � 0.2 and,
w1 � 0.9, w2 � 0.1) were estimated and displayed in Figure 5B. As
demonstrated in Figure 5B, it was apparent that the values of two
objectives decreased fast only when w1 shifted from 0.87 to 0.89
and w2 ranged from 0.11 to 0.13, respectively. For example, under
an α value of 0.1, TSS treatment amounts are 31.6, 34.2 ×103 tons,
26.7, 28.9 ×103 tons, and 0 ton under the three weight coefficient
combinations (i.e., w1 � 0.87 and w2 � 0.13, w1 � 0.88 and w2 �
0.12, and w1 � 0.89 and w2 � 0.11). The total system costs also
showed the similarly downward trend with the values of 35.75,
43.77, 35.27, 43.29, and 34.05, 41.97 million RMB. Hence, if the
managers wanted other results for system costs and treatment
amount of TSS, they could adjust the parameters of the
optimization model by choosing different w1 and w2 values
between the above range.

Apart from the weight coefficient combinations, the values
of two objectives were also influenced by the levels of α. As
shown in Figure 5A, various α values resulted in different
solutions. The value of economic objective decreased with
the increase in α value. In contrast, the value of
environmental objective increased with the growth level of α.
For example, when w1 � 0.1 and α increased from 0.01 to 0.1, the
total treatment of TSS exhibited an upward trend from 28.8,
31.2 ×103 tons to 31.6, 34.2 ×103 tons. Inversely, the costs of the
system decreased to 35.75, 43.77 million RMB from 35.71,
43.85 million RMB. This is because the α level represents the
constraint violation risk of water supply–demand balance. The

low α level corresponded to a low violation risk with a high
water demand, leading to a high water allocation amount,
which caused an increase in the system cost. Conversely, a
high α value was associated with a high violation risk, which was
accompanied by a low water supply amount. The variation in
the α level provides a variety of water resource management
schemes to the managers, which reflected the trade-off between
the system economy and risk. Generally, the water demand can
be divided into two categories: rigid demand and flexible
demand. For example, the industrial water demand must be
satisfied in its entirety subjected to its production
characteristic. Conversely, the living water demand has a
high elasticity and is able to reduce the water requirement
through a series of water-saving measures under the water
shortage scenario. The elastic characteristics of water demand
allow the managers to design the water provision schemes
according to local situation. Specifically, for the area where
the economic development is relatively backward and
simultaneously suffers from water shortage, it is suitable to
select the scheme under the high α level which is capable of
increasing the economic benefits and decreasing the water
provision amounts, although it also may result in the high
system failure risk. Conversely, the managers could choose the
strategy under the low α level so that the water supply security
would be enhanced by raising water supply amounts and
system costs. Tianjin, as one of the most prosperous cities in
China, always faces severe water shortage and thus has the
superiority on economic development and the inferiority on
water resource availability at the same time. Therefore, it is
suggested that a compromise alternative (i.e., α � 0.95) be
adopted as the decision basis for the generation of final
water resource management scheme in this study, which is
helpful in realizing the balance between system economy and
failure risk.

Discussion
In order to evaluate the influence caused by climate change on the
water resource management, the generated runoff of the studied
region and LID project implementation scheme were estimated
under the two climate change scenarios (RCP4.5 and RCP8.5)
with four periods (2025, 2050, 2075, and 2100), which were
displayed in Figure 6. As shown in Figure 6, under fixed α

level, the runoff of the park and area of LID projects would
increase from 2025 to 2100 under both two scenarios. For
example, with an α value of 0.1, when the period changes
from 2025 to 2100, the runoffs in the RCP4.5 and RCP8.5
scenarios would increase from 696.7 to 1,510.0 million m3 to
1,610.26 and 2,704.3 million m3; meanwhile, the areas of LID
projects would be upward from 17.35 and 27.4 thousand m2 to
28.8 and 31.8 thousand m2, respectively. That is because the
climate change could lead to the growths in regional rainwater and
runoff, which might trigger the rainfall flood. The similar results
were also reported by other studies (Zahmatkesh et al., 2014; Yoon
et al., 2015; Guo et al. (2019a)). For instance, Zahmatkesh et al.
(2014) found that climate change led to the increase in the urban
stormwater runoff volume of the Bronx River watershed, New York
City. Yoon et al. (2015) proposed a methodology for the evaluation
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of the overflow probability of urban streams under climate change
in the Uicheon Basin of Korea and obtained results showed that
100-year peak flow in the future would increase by 58.1% compared
with historical conditions. Moreover, to deal with the increase
in the flooding risk caused by climate change, the LID project

is recommended as climate mitigation measures in this
research, which was capable of alleviating the adverse
impact of increased stormwater based on the collection and
retention facilities of the rainwater. The obtained results are
consistent with the related studies, such as Guo et al. (2019b),

FIGURE 5 | Economic and environmental objective values under various α values and weight combinations. (A) Weight of economic objective is from 0.1 to 0.9; (B)
Weight of economic objective is from 0.81 to 0.89.

FIGURE 6 | Variations in the runoff and low-impact development projects areas under two climate change scenarios. (A) RCP 4.5 scenario; (B) RCP 8.5 scenario.
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Morvarid et al. (2019), and Hou et al. (2019). Specifically, it is
concluded that the LID projects are beneficial to reduce the
flooding risk and cope with the stormwater management issue
arising from heavy rainfall under climate change. On the other
hand, the above studies formulated the urban water
management model with the aid of hydrological software
(i.e., SWMM), which has excellent performance in
describing the hydraulic connections and relationships
among various water sources and users. In this study, an
MIBCCP model based on compromise programming,
birandom chance-constrained programming and interval
linear programming is proposed for identifying the
uncertainties associated with the urban water resource
management system and generating a variety of water
allocation patterns reflecting the trade-off between system
economy and reliability; however, it also has difficulties in
obtaining more accurate solutions due to oversimplified
hydrologic and hydraulic equations. Therefore, it is
necessary to enhance the accuracy and applicability of the
proposed model through incorporating the output of some
hydrological models into the optimization process.

Moreover, the MIBCCP model still needs to be improved,
especially in the following three aspects. First, the objective
function in this study is assumed as a linear form; in fact, system
cost could exhibit the economy-of-scale feature, and the relationship
between water supply cost and distance may be nonlinear, rather
than the linear one. This will lead to a nonlinear objective function.
Because the focus of this research is to apply birandom variables and
interval numbers for supportingwater resourcemanagement issue, it
is thus desired to examine the possibility of the integrated model of
MIBCCP and nonlinear programming in the future. Second, the
compromise programming is used to combine two objectives into an
integrated one. In fact, many types of multi-objective methods are
available, such as the genetic algorithm and the interactive
approximation algorithm. How to select an appropriate solution
method through the comparison analysis is very critical. Third, two
traditional objectives are considered in the MIBCCP model. In fact,
other objectives, including the ecological stability and social
acceptance, also obtained more attentions and thus deserved
further research.

CONCLUSION

Under the urgency of rational water resource allocation and
effective urban flooding control, a (MIBCCP) model under
climate change is developed in this study. The MIBCCP
model incorporates compromise programming, birandom
chance-constrained programming, and interval linear

programming within a general framework, where each
technique offers a unique contribution toward the
enhancement of the model capability in tackling the
complexities and uncertainties. A water supply
management system of educational park in Tianjin was
used to demonstrate the applicability of the proposed
method. A variety of water allocation patterns are obtained
through adjusting predetermined constraint violation levels
and weight combinations, which indicated that MIBCCP was
useful in helping local managers gain in-depth insights into
the water management system under climate change, realize
the utilization of nonconventional water source and
application in LID projects, and analyze the trade-offs
between system economy and reliability, as well as
establish the cost-effective environmentally friendly water
provision strategies. Meanwhile, optimal construction
schemes for LID projects under two scenarios were
identified by the MIBCCP model to deal with the rainfall
flood control issue under climate change. The successful
application in the park is expectable for providing a good
demonstration to the water management problem in other
regions of China. In the future, high-precision hydrological
simulation models and other multi-objective programming
methods should be incorporated into the proposed model for
tackling more complex issues.
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