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Open fractures can affect petrophysical properties of their host rock masses, as well as
fluid transport and storage, so characterization of them is important to both industrial and
research scientists. X-ray Computed Tomography (CT), a non-destructive technique for
3D imaging of various materials, shows such fractures well in rock samples. However,
separation and characterization of fractures in CT data is complicated when a scanned
sample contains narrow and intersecting fractures, because narrow fractures become
blurred when thinner than the scanner resolution and their value approximates that of the
matrix, and because intersecting features are difficult to individually characterize. In this
paper, we present a new approach for an objective and efficient characterization of the
fracture network inside CT scans of rock samples. We have developed algorithms,
implemented as Python scripts, that measure fracture aperture-related parameters,
and that separate connected fractures and fracture intersections within CT images of
the sample. The CT images are composed of stacks of 2D images in the plane parallel to
X-Y (equally spaced), where each pixel has a value related to the attenuation of the X-rays
within the materials that make up the sample at that location and is generally displayed
using a gray-scale colormap. As the gray values in the reconstructed images drop within
fractures, our algorithm is able to identify such drops and record the lowest gray value in
every drop as a Fracture Trace Point (FTP). For every FTP, parameters related to the local
fracture width and the three-dimensional orientation of the FTPs surrounding it are
measured. A second step involves the separation of individual fractures and their
intersections points. This allows information about a number of FTP measurements on
the same fracture (or intersections) to be combined to characterize that feature. We
demonstrate that our methods better quantify fractures and their intersections through
analysis of an experimentally-deformed granite sample, within which we characterize
fracture size, orientation, and intensity. The methodologies can be also used to
characterize sub-planar features in other types of datasets. Python implementations of
our algorithms are freely available on GitHub repositories.
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INTRODUCTION

Open fractures are three-dimensional (3D) structures that are
typically planar-like. The fracture walls also typically have rough
and irregular surfaces that strongly affect how natural fluids can
flow through or be stored in them. Fluids flow through them on
convoluted paths that follow the minimum resistance generated
by the local pressure gradients, which strongly depend on the
local fracture aperture and roughness (Liu et al., 2016; Luo et al.,
2016; Makedonska et al., 2016; Zambrano et al., 2019). Number of
fractures, their sizes and geometries also impact generation of
space and connections thus the storage and transmissivity of
fluids (Long and Witherspoon, 1985; Hyman et al., 2016; Liu
et al., 2016; Makedonska et al., 2016; March et al., 2018). To truly
characterize these fracture properties, it would be best to observe
them in their undisturbed state through the surrounding rock
mass – in other words to image their geometry in 3D rather than
physically breaking them apart.

X-ray Computed Tomography Technique
A 3D imaging technique commonly used in geology is X-ray
Computed Tomography (CT). This is a non-destructive
methodology that allows various types of geological
information to be extracted from 3D images of solid objects
(Wennberg et al., 2009; Kyle and Ketcham, 2015; Voorn et al.,
2015; Schmitt et al., 2016). The interior of the scanned sample is
imaged by analyzing the attenuation of X-rays due to scattering
and absorption as they pass through the sample, which is
measured by the detector of the X-ray CT scanner.

For geological materials, the dominant physical processes
responsible for X-ray attenuation are the photoelectric effect
and Compton scattering (Ketcham and Carlson, 2001). These
processes are primarily a function of the atomic number (Z)
of the sampled material they are passing through and so are
most sensitive to differences in composition. Thus, CT
images are ideal for exploration of the 3D distribution of
different phases in geological samples. The outcome of a
scanning and reconstruction operation is a two-dimensional
stack of equally-spaced images, which can be assembled by
specific software into a three-dimensional image where the
basic unit is called a voxel (volumetric picture element). Each
voxel has a unique gray value that is related to the
attenuation of the X-rays within the material making up
the core at that location. An example of the gray scale
variation within a scanned rock is displayed by the
different phases of a felsic lava in Figure 1A. However, an
absolute correlation between gray values and the attenuation
coefficient of the materials is not possible. This is because
scanning artifacts (particularly Beam Hardening, a common
artifact that makes scan borders brighter for every phase) and
effects of scanner resolution, such as the Partial Volume
Effect (Ketcham, 2006), mean that any phase will present a
different gray value in different parts of the scan, even
though its attenuation coefficient is a constant (Ketcham
and Carlson, 2001).

Different CT configurations may be used depending on the
scale of interest and on the information the work is designed to

extract: synchrotron-hosted systems can image small samples (<
1 cm), and generate voxels in the range of nm-µm (Withers, 2007;
Fusseis et al., 2014); micro(desktop)-CT (µCT) is typically used
for geological hand specimen (i.e., centimeter)-sized samples
generating images with a voxel size of ∼10–20 µm3 (Voorn
et al., 2015); while medical CT scanners can easily scan core
sized samples generating voxels in the mm range (Williams et al.,
2017; Williams et al., 2018).

The analysis of CT images commonly follows this workflow:
pre-processing, segmentation, labeling, and quantification.
During the pre-processing phase, the image is commonly
cropped and filtered to reduce both the size of the data (with
a corresponding decrease in computation time) and image noise
for a better segmentation of the feature of interest (FOI)
(Figure 1B). To best separate the FOIs during the
segmentation process, the image is binarized into two
materials around a threshold, where voxels with a gray value
within the threshold will be set to a value of 1, and all others to 0
(Wildenschild and Sheppard, 2013) (Figure 1C). In the next step,
the objects with value of 1 (i.e., the FOIs) are separated and each is
assigned a different label value (Figure 1D) so that individual
measurements may be performed on each labeled object during
the last step of the analysis (Kaestner et al., 2008; Wildenschild
and Sheppard, 2013). Three-dimensional characterization of
number, size, orientation, geometry, and shape of the FOIs
can then be undertaken (Ketcham, 2005; Voorn et al., 2015;
Schmitt et al., 2016).

METHODS

The work described in this paper was carried out to optimize
fracture separation and characterization in the complex fracture
networks typically found in CT images of natural materials. We

FIGURE 1 | 2D slice of 3D Computed Tomography (CT) image of a felsic
lava scanned at 140 keV with a medical CT scanner and a voxel size of
0.4 mm3 (A). The image was filtered with a mean filter (B) and the oxides were
segmented (C) and labeled (D).
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investigate the capabilities of the algorithms developed through
analysis of a fractured granite rock imaged with a medical CT
scanner with a voxel size of 0.097 mm × 0.097 mm × 0.4 mm.

Limitations of Computed Tomography for
Fracture Analysis
Separating narrow planar features through segmentation of FOIs
in CT scans is a common problem in the image analysis of rock
samples. Small features are typically blurred to some extent due to
the Partial Volume Effect (PVE), which increases their gray value
and thus reduces their contrast with the surroundings (Ketcham
and Carlson, 2001; Ketcham, 2006; Ketcham et al., 2010; Voorn
et al., 2013). PVE is a consequence of the true resolution of the
scanner, which can be described in one- and two-dimensions by
measuring the Line Spread Function (LSF) or Edge Response
(ER), and the Point Spread Function (PSF), respectively (Smith,
1997; Smith, 2003; Ketcham, 2006). Therefore, using a classical
methodology of thresholding based on greyscale, these features
can only be separated if we set the threshold above brighter (high
gray value) voxels. This operation increases the amount of noise
in the binary image and widens larger fractures, which could
result in overestimation of the true rock porosity, creation of
artificial connections, and loss of small features if the local
background value is within the threshold range applied.

Previously, a few approaches have been proposed to
overcome this problem (Peyton et al., 1992; Johns et al.,
1993; Verhelst et al., 1995; Christe, 2009; Ketcham et al.,
2010; Voorn et al., 2013), but these all suffer from one or
more of the following limitations; i) they are not easily
applied to complex datasets (e.g., they are only able to
properly analyze one fracture in a whole 3D image), ii) they
require expensive commercial software, or iii) long computation
times, iv) they are not automated, and v) they are not based on
published code. For this reason, we are publishing the
documentation and the associated Python source code for a
methodology we have developed for the analysis of simple or
complex networks of fractures in CT data. The algorithm we
implement and demonstrate through analysis of a real
dataset allow the extraction of local fracture information
(aperture and orientation) efficiently and quickly, even if a
high threshold gray value causes widening of bigger
structures and loss of small features in a darker background.

CT images of natural samples typically contain complex
networks of intersecting fractures that are difficult to define in
three dimensions. The main difficulty is separating individual
fractures and performing discrete measurements for every planar
feature in the system. Two or more fractures connected in three
dimensions (3D) are typically labeled as a single object and
characterized as a whole. During measurement of the
segmented FOIs, unique values describing size, shape, and
orientation of every label (object) are returned. If these
measurements refer to a substantial number of such
“composite objects”, the results will be biased, and the
geological interpretations limited. The algorithm we have
developed examines a binary image of a fracture network and
performs a 2D skeletonization of each slice (Lee et al., 1994). It
can then deconstruct connected fractures in this skeletonized

binary image and isolate individual fractures in intricate systems
so that reliable and detailedmeasurements can be performed. Our
approach also allows fracture intersections to be described and
explored, which can facilitate better understanding of fluid
transmission in rocks (Long and Witherspoon, 1985; Liu et al.,
2016).

The algorithms presented in this work are implemented in
Python, an open-source programming language widely used in
the scientific community for various computing purposes,
including image processing, and can be executed from the
command line (Oliphant, 2007; Van der Walt et al., 2014;
Gouillart et al., 2016). The source codes of the algorithms
applied in this paper are available online (https://github.com/
fscpp) in the repositories named “Fracture-Trace-Point-
Analysis” (Fracture Trace Point Analysis) and “Fracture-
Separation-Analysis” (Fracture Separation Analysis), and we
encourage collaborative application of them to characterize
planar features in new datasets.

Fracture Trace Point Analysis
Despite the blurring caused by the PVE, the gray value generally
falls below “background” within open fractures (Figure 2). The
code takes advantage of this by running a series of horizontal and
vertical traverses across each slice of the CT image, identifying
each drop in gray value as the signal of a fracture if it presents a
valley and two adjacent peaks. For each drop, the pixel with the
lowest gray value is marked as a “Facture Trace Point” or FTP.
The algorithm can pick all the possible valleys in the signal;

FIGURE 2 | 1D hypothetical gray value profile across two open fractures
of different widths showing the parameters measured in our approach: full-
width-half-maximum (FWHM), peak height (PH), missing attenuation (MA),
and edge response (ER). Red dotted lines indicate the FWHM level,
which is set at a gray value halfway between air and matrix values (blue and
green dotted lines, respectively). Note that FWHM cannot be determined for
fractures with gray values above the FWHM baseline.
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however, depending on the FOI to characterize, the user
intervenes by providing a binary image and selecting to focus
only on the fractures of interest. The total dataset of FTPs
contains the local centers of all fracture traces in the images,
which are then separated for further analysis.

Fracture Aperture
Every drop in the gray value comprises two peaks and one valley,
the latter corresponding to the FTP. Several methods have been
previously proposed to calculate the aperture of a fracture. The
standard method is based on the “Full-Width-Half-Maximum
(FWHM)”, which assumes the fracture width at the half-height
between the air and the rock matrix gray values (Figure 2). The
method is reliable for features larger than the scanner resolution
and close to the air value (Peyton et al., 1992; Ketcham, 2006;
Ketcham et al., 2010). However, this method may not work when
the fracture is narrower than the scanner resolution, which can be
described (in pixels) by the Point Spread Function (PSF), Line
Spread Function (LSF), or Edge Response (ER) (Smith, 1997;
Smith, 2003; Ketcham, 2006; Ketcham et al., 2010). The ER is easy
to measure and yields a simple description of the one-
dimensional resolution of the instrument based on the
distance of blurring (i.e., smoothing) occurring along the
(theoretically sharp) transition between two different materials
(e.g., air-matrix). More precisely, the ER is the distance (in pixels)
between 10% and 90% of this transition. LSF is another one-
dimensional parameter of resolution and corresponds to the
derivative of the edge response. PSF is a 2D parameter of
resolution containing information about the resolution in all
directions, but it is difficult to measure (Smith, 1997; Smith,
2003).

Two alternative methods that rely on using the loss (blurring)
of the signal to compute the aperture of a fracture are the Missing
Attenuation (MA; Johns et al., 1993) and Peak Height (PH;
Verhelst et al., 1995) methods. These methods were evaluated
by Keller (1998), Van Geet and Swennen (2001), Vandersteen
et al. (2003), Mazumder et al., (2006), and Ketcham et al. (2010).
MA considers the area of the drop, whereas PH is the measure of
the height between the matrix value and the FTP (Figure 2). Both
parameters can be used to convert the area and height of the
anomaly (i.e., attenuation deficit) to the true size of the fracture
because they are approximately linearly correlated (Johns et al.,
1993; Van Geet and Swennen, 2001; Ketcham, 2006). MA can be
applied on heterogenous samples and is less noisy for wide
fractures but (similarly to FWHM) it is influenced by the
direction of measurement and must be corrected for the
apparent dip effect if the traverse is not orthogonal to the
fracture. Conversely, PH cannot be applied to features larger
than the sample resolution, thus requiring a prior calibration.
Since this parameter is dependent on the height of the negative
anomaly, it is only reliable for homogeneous materials that
present peaks of similar gray values. PH is, however, less noisy
than MA for small apertures and does not require corrections for
the orientation of the fracture (Vandersteen et al., 2003; Ketcham,
2006; Mazumder et al., 2006; Ketcham et al., 2010).

During each traverse, our code records the 3D location (x, y,
and z) of every FTP. The ER (10–90% of the valley-peak distance),

and the FWHM (px), PH (dimensionless), and MA
(dimensionless) related to the drop are then analyzed
(Figure 2). Even if small structures are hidden because they lie
in a low gray value area where they are surrounded by a matrix
that has a value within the threshold applied, the FTPs related to
these features can always be detected as long as they have a peak-
valley-peak structure. A subsequent step measures the three-
dimensional orientation of any of these voxels in order to
convert the apparent aperture to the true one.

The sample we analyzed here is not homogeneous and
unsuitable for PH analysis, so the latter method was not
considered for aperture measurements from that dataset.

Fracture Orientation
The separated fracture trace points are recorded in a new 3D
image that is subsequently queried for a voxel-by-voxel
orientation analysis. A cubic crop of customized size (set by
the user to an appropriate value for the dataset) is set around
every FTP, including all neighboring FTPs (Figure 3). The three-
dimensional arrangement of these neighborhood FTPs is
investigated using a Principal Component Analysis (PCA).
PCA is a widely-applied computational method that detects
the principal structures in complex datasets (Shlens, 2014). We
apply it first by computing the covariance matrix for the FTPs
inside the cropped cube. The three-dimensional data yield a 3 × 3
symmetrical matrix (M), representing the covariance between
dimensions

M � ⎡⎢⎢⎢⎢⎢⎣ var(x, x) cov(x, y) cov(x, z)
cov(y, x) var(y, y) cov(y, z)
cov(z, x) cov(z, y) var(z, z)

⎤⎥⎥⎥⎥⎥⎦. (1)

The three principal components (i.e., eigenvectors) of M [PC1,
PC2, PC3] are determined. These principal components are
orthogonal to one another and describe the variance of the
data: PC1 indicates the direction of the main distribution

FIGURE 3 | (A) 3D example of a plane fitted to a cloud of FTPs by
principal component analysis (PCA) and (B) the reference system applied for
each slice (black) of the 3D image of the rock core (brown). The 3 axes of the
first (red), second (blue) and third (green) principal component vectors
are shown in the left image. The normal of the plane is the green vector (PC3).
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mean, PC2 the second direction, and PC3 the third (Woodcock,
1977; Vollmer, 1990). As a result, PC1 and PC2 are vectors lying in
a plane that best fits the data points and PC3 is the normal of that
plane (green vector in Figure 3A). We define a reference system
with two vectors parallel to north and a zenith (“+y” and “−z,”
respectively, in Figure 3B) and extract the orientation (dip angle
and dip direction) of the analyzed FTPs by measuring the angles
between PC3 and these vectors. Many rock cores come from
(near) vertical boreholes, so depth increases along the long axis of
the core (i.e., the z-axis). For this reason, we set the north vector
on the y-axis and the zenith on the z-axis (+y and −z vectors,
respectively, in Figure 3B).

Outcome of the Fracture Trace Point Analysis
At the end of the analysis, the measurements performed on the
FTPs are stored in text files reporting the location (image x, y, z),
the gray value of the FTP, the Edge Response (ER) value,
aperture-related parameters (FWHM, MA, PH), and
orientation for every fracture trace point. To give an idea of
the amount of data that can be generated, consider a sample with
CT volume of 100 × 100 × 100 voxels (image x-, y-, z-axis)
containing a single fracture perpendicular to the x-axis. In this
case, 100 fracture trace points will be analyzed in each slice, and
there will be around 104 FTPs. This amount of data allows a very
detailed and local characterization of the studied fracture system.

Fracture Separation Analysis
A second algorithm analyzes a binary image containing
connected fractures. It implements several processes to identify
and separate intersections and individual planar features so these
connected features can be individually characterized. Several
inputs need to be provided by the user in order to best fit the
analysis to the shape of the features to separate.

Separating Intersections and Fracture Segments
For every slice of the binarized image, a 2D skeletonization is
performed (Figure 4A) (Lee et al., 1994). This minimizes the
subsequent computation time by reducing the number of non-
zero values, simplifies the geometry of the structures (so they

assume a linear aspect), and preserves the continuity of the
fractures along the z-axis (which does not happen with a 3D
skeletonization that shrinks the image along every axis). The
results of this processing are referred to as a “fracture trace”. A 3 ×
3 window is then centered on the x-y position of each fracture
trace pixel and isolates the local structure inside the window area.
The number of regions present in the window is related to shape
of the structure inspected. For pixels relating to a single fracture,
one (in case of fracture tips) or two regions are measured
(Figure 4B); while three or more labels are measured if there
is a connection between fractures within the window (Figures
4C,D). In the latter case, the pixels in the window are removed
from the image, which thereafter leads to disconnected two-
dimensional fracture segments (Figure 4E). Once the whole
fracture system is decomposed in this way, individual planar
features are reconnected by examination of similarities between
fracture sections.

Connecting Fractures
Once intersections have been removed and fractures separated
into segments, the algorithm estimates slice-by-slice the 2D
centroid and 2D orientation (by means of the first principal
component PC1) of each segment. The centroid is the average
position of the segment, calculated as the mean coordinates of its
constituent points. At each intersection, the segments enclosed in
a small 2D window centered at the intersection are analyzed. The
segments are paired (set to the same value) provided they meet
geometrical and orientation criteria. In detail, the segments
present in the window are inspected in twos and the
algorithm creates all the potential pairs if the difference in
orientation between these is lower than a user-defined
threshold (orientation criteria). Then, the algorithm
decomposes the cropping window in quadrants of Cartesian
planes where the connection is the origin. Generally, the
disassembled segments lie in different quadrants, as do their
centroids. Thus, the algorithm chooses the pair of segments
whose centroids lie in diagonal quadrants, since they
commonly belong to the same structure (geometrical criteria),
and labels them with the same value. Additionally, the algorithm:

FIGURE 4 | Hypothetical 2D slice of 3 intersected lines (A). (B–D) 3 × 3 windows centered at different positions exhibit the number of labeled regions that can
surround a central FTP. This is 2 in the case of a single linear feature (B); 3 around bifurcating segments (C); and 4 in the case of two cross-cutting lines (D). If 3 or more
regions are measured, the one-value pixels, i.e., the fracture intersection, are removed, and the image is divided in fractures segments labeled with different values (as
shown by the different colors in (E)).
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(i) measures the local orientation of the segments close to the
intersection (customizable in pixels) for a more robust
pairing of irregular features (i.e., non-planar and/or
bending FOIs);

(ii) performs a check of the connections already made in the
previous slice in order to preserve the three-dimensional
continuity of the fracture pairing; and

(iii) checks if segments are parallel to one another and so, even if
they fit the both orientation and geometry criteria for pairing,
they are not paired because they lie on two different planes.

The thresholds and window sizes requested as inputs by the
algorithm should be chosen by the user to best describe the
geometry of the FOIs under analysis. For example, the two-
dimensional shape of the fractures and vicinity of intersections
points can affect the value of the thresholding parameters applied
(e.g., orientation thresholding and window size, respectively).

After all segments have been linked in each slice, new
centroids and orientations are measured. The algorithm then
uses these data to connect the features in 3D. Every element
present in the nth 2D slice is compared to the closest one in the
(n+1)th slice by means of k-nearest neighbors (k-NN)
(Mladenović and Hansen, 1997; Maneewongvatana and
Mount, 1999). If a connection is not established by this
rigorous correlation method, the algorithm then considers
connections based on centroid distance. The assumption is
that fracture segments that lie in the same plane in 3D are
close to one another. Therefore, the segment in the nth slice
can be paired with the related one in the next slice if the latter
presents a similar orientation, a similar size, and its centroid is
within a specific distance from the first. Slice-by-slice, 2D
segments are paired along the z-axis until all the 2D fracture
traces lying on the same plane are uniquely labeled (Figure 5B).

Finally, the orientation of each individual fracture can be
measured using the third principal component (PC3), which
corresponds to the fracture’s normal direction.

Pixels related to the removed intersections can also be paired
in 3D and labeled by checking all those connecting two different
fractures along the z-axis. In this way, their orientation can be
computed using the first principal component (PC1), which
describes the line that best fits these connection points.

RESULTS AND DISCUSSION

In combination, the FTP detection and fracture separation
methods we have designed and coded yield characterizations
of fracture systems that are substantially more detailed than any
previously described. In this work, every point in the separated
fractures and fracture intersections is related to its closest FTP
using the k-NN algorithm, but only the FTPs within a specific
distance threshold (6 pixels radius) that are not already paired are
used for subsequent analyses. This ensures that local structural
variations are only assessed and compared for individual features.

Test Sample
The test dataset we use here to demonstrate the algorithm’s
capabilities is a fractured granite imaged with a Siemens
medical X-ray CT scanner SOMATOM Definition AS with a
beam energy of 120 keV and a voxel resolution of 0.097 mm ×
0.097 mm × 0.4 mm. The sample was imaged within 512 × 512 ×
180 voxels; of those 180 slices, only 160 were of reasonable quality
for extracting quantitative information (slices at top and bottom
of the core were darker and blurred). Then, 100 test slices were
chosen in the most fractured part of the sample to demonstrate
the capabilities of our algorithms and provide a small dataset that

FIGURE 5 | 3D binary image (five slices) of (A) open and connected fractures detected in CT scans of drillcores collected during the Alpine Fault, Deep Fault Drilling
Project (Toy et al., 2015) (B). The network has been skeletonized and broken apart into 2D fracture segments that are analyzed and connected in 3D using geometrical
and orientation similarities explained further in the text. Different colors indicate different labels.
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future users can easily practice with on personal computers. The
test data can be downloaded from the repository named “Test-
sample-and-scripts” on Github. The image was first processed
using the commercial image processing software Avizo®
(Thermo-Fischer Scientific, 2018) through the following steps:
a filter was used to remove beam hardening artifacts; a region of
interest (ROI) with a size of 370 × 370 × 100 voxels was cropped
(Figure 6A); a binary image of the fractures was obtained
(Figure 6B); from this image FTPs were detected and
individual fractures separated (Figures 6C–E).

A total number of 29 fractures were detected in the sample. Of
these, the largest 5 account for ∼96% of the volume of the system
(Figure 6E). Since these five features provide a substantial
number of data points (FTPs) to analyze and the
characterization of all the fractures is beyond the scope of this
paper, only these 5 features are examined in further detail. They
are assigned the names F-1, F-2, F-3, F-4, and F-5, in order of
decreasing size.

Fractures Aperture and Roughness
Filtering of the data is necessary to obtain a reliable correlation
between missing attenuation (MA) and true aperture. To set an
appropriate filtering protocol, first, the width of the edge response
(ER) was measured in traverses across several fractures, yielding
an average ER value of ∼11 px. From previous studies is known
that FWHM measured on features bigger than the scanning
resolution value and close to air value should reflect the true
fracture aperture of the FTP at that position (Johns et al., 1993;
Van Geet and Swennen, 2001; Ketcham, 2006; Ketcham et al.,

2010). Consequently, FTPs with an ER higher than 11 px in size
and a low gray value were considered in this calibration. The
apparent dip effect for FWHM and MA was also corrected for,
using a local orientation computed by principal component
analysis.

In the end, the corrected FWHM and MA from the filtered
FTPs were plotted and a linear best fit was made to the data. This
can be used to assess the fracture aperture from the MA recorded
in smaller fractures, where FWHM cannot be used (Figure 7).

FTPs data were grouped for each fracture by means of k-NN
and, using the linear fit equation from Figure 7, the aperture was
measured for every FTP lying on the fracture plane. The
arithmetic means (am) and standard deviations (σa) of the
apertures were measured (Table 1). F-1 is the largest fracture,
both in terms of size and mean aperture (0.313 mm); followed by
F-2 (0.184 mm). F-3, F-4, and F-5 have similar apertures, in the
range 0.125–0.134 mm.

FIGURE 6 | 2D slice of the granite sample (A) and the related binary image of the fractures used in the analysis (B). The binary image was skeletonized and analyzed
in order to disassemble the fracture system into segments (C) then these segments were re-connected when they were recognized to lie on the same fracture plane
based on criteria described in Fracture Separation Analysis (D,E). The skeleton of the segments (C,D) has a theoretical width of 1 pixel; however, for visualization
purposes, their width was slightly increased.

TABLE 1 | Mean apertures and standard deviations (both in px and mm) for the
analyzed fractures, and their calculated roughnesses.

Fracture Aperture
(am) ± σa (px)

Aperture
(am) ± σa (mm)

Roughness
(σa/am)

F-1 3.23 ± 1.83 0.313 ± 0.178 0.568
F-2 1.90 ± 1.32 0.184 ± 0.128 0.694
F-3 1.36 ± 0.98 0.132 ± 0.095 0.720
F-4 1.29 ± 0.91 0.125 ± 0.088 0.705
F-5 1.38 ± 0.97 0.134 ± 0.094 0.702
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The surface roughness (or just roughness) is the deviation of a
surface from a perfect planar geometry. A variety of 2D and 3D
methods and parameters exists to measure roughness
(Gadelmawla et al., 2002). In this work, we have measured the
roughness of the separated fractures in the same way as suggested
by Zimmerman et al. (1991) and applied by Keller (1998), as the
ratio between the fractures’ standard deviations and the
arithmetic means of their apertures (σa/am). In the case of a
perfectly parallel-sided fracture, the standard deviation value is
zero, therefore roughness is also 0. The results of this analysis
(Table 1) show that F-1 has the least rough surface (0.568) within
the 5 inspected fractures, and that F-3 is the roughest (0.720). F-2,

F-4, and F-5 have similar, intermediate values of roughnesses
(around 0.700).

Fracture Intensity
Fracture intensity is one of the most important parameters to
describe a distribution of fractures, but it is not always easy to
characterize. Several standards that have been developed to
describe the intensity in one, two, and three dimensions are
explained in more detail by Dershowitz and Herda (1992). In this
work, fracture intensities are estimated by a method where, for
each slice, total fracture trace length is divided by the rock trace
plane area (Figure 8). This yields P22 which is accepted as a
reliable 2D measure of intensity, and can also return information
about how fractured a rock sample containing open or closed
fractures is along the z-axis (Dershowitz andHerda, 1992; Aliverti
et al., 2003). P22 was measured both for individual fractures and
for the entire set of fractures to better understand the way that
individual fractures impact the bulk dataset.

We find that the intensity of the bulk fracture system within
this sample increases along the z-axis (black line in Figure 8), but
that this increase can be attributed to the combined effect of the 5
largest individual fractures. The other 24 small fractures
identified within the sample, and colored in gray in Figure 8,
are fairly smooth and not subjected to further no analysis since
their contribution to the global density profile (in black) is
negligible. However, of the large fractures, only F-1 and F-2
transect the whole sample, whereas F-3 and F-4 develop at slices
∼10 and ∼40, and end around slice 70 and 90, respectively, and F-
5 extends from slice ∼65 to the bottom of the sample. The
appearance and disappearance of these large fractures has a
significant impact on the bulk 2D fracture intensity.

The 3D fracture intensity can also be approximated by the
parameter P32, which is the area of fractures per unit volume of
rock (Dershowitz and Herda, 1992). It can be computed by

FIGURE 8 | Two-dimensional fracture intensity variation across the core (P22) for the whole fracture system (black line) and individual fractures (colored lines). P22 is
measured for each slice as the total fracture trace length divided by trace plane area (mm/mm2).

FIGURE 7 | MA vs FWHM plot showing the correlation between the
FTP’s apertures and the anomaly magnitude.
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summing the area of all the voxels contained in fracture traces
and dividing them by the total volume of the scanned rock. In our
sample, P32 is equal to 7.36 × 10−3 mm−1, indicating a moderately
damaged rock (Rogers et al., 2015).

Fracture Orientation
It is difficult to precisely estimate the individual orientations of a
set of (sub)-planar FOIs that are connected in a binary image.
This is because all the sub-structures making up an object are
included in the analysis. If a single label includes two
intersecting or bifurcating fractures, the orientation measured
is the average of these two features, rather than that of any
individual feature. We have recognized that it is possible to
separate and measure the orientations of the intersecting
features by defining a 3D cropping window around each
FTP. We measure the local orientation of each FTP only
within this window. The method is robust except in very
close proximity to intersection points, when FTPs belonging
to other fractures fall within the cropping window and can affect
the analysis. However, the number of FTPs related to these
connection points are dependent on the size of the cropping
window and extremely small if compared to the ones recorded
in the fracture planes.

We illustrate orientation distributions of the poles to planes
measured at each FTP and on individual planes in the test sample
in Figure 9. The dominant trends of the poles to plane for the FTP
orientations (in an arbitrary reference frame) are ENE-E, and two
lesser concentrations trend ESE and S. The dips of all features are
generally greater than 60° (i.e., their poles mostly plunge < 30°).
Measuring poles to planes from individual fractures (Figure 9B)
provides similar results to the FTPs local analysis but reveals
small features that are partially hidden in the former analysis.
Indeed, poles trending SSE and NW were not evident in the very
small number of data points derived from the FTPs local analysis
(Figure 9A). Larger structures comprise more FTPs, so the
contour plots (Figure 9A) are somewhat biased, but they still
provide important information about the minor structures in the
system.

Additionally, local strike and dip variations of each fracture
can be explored using the orientation measurements of their
FTPs. We measured both the standard deviations and arithmetic
means of the dip angles and dip directions (σda, σdd) of the FTPs of
individual fractures. The results for the biggest fractures are
shown in Table 2. The dip angles estimated for F-1 exhibit
the highest variation (∼8°), while those for the other fractures
are similar and smaller (between ∼4° and ∼6°). Conversely, the
strike direction angle considerably varies in F-3 and F-5 (70.5°

and ∼53°, respectively); while, F-1, F-2, and F-4 have similar
values ranging from a minimum of ∼39° to a maximum of 45°.

Intersections
During the fracture separation analysis, intersections are removed
from the binary image, but the algorithm records their
coordinates so that they can be inspected and characterized in
similar ways to fractures. Intersection points are grouped based
on the labels they are connected to, and their orientation is
computed as the best fitting line (PC1) by principal component
analysis. The results are plotted (Figure 10A), in a way that
highlights intersection length (along the z-axis) using both the
color and size of the diamonds, revealing that only 3 have
substantial lengths, of 60, 52, and 41 voxels. All the
intersections plunge steeply, and most trend between S and
NW. In order to check the accuracy of the measurements
made on fractures and intersections, the orientations of the
latter were also geometrically calculated as the intersection
lines between the planes they are connecting (Figure 10B).
These two approaches return similar results, and the data
cluster in the same region of the stereonet, validating our
automated analytical method.

Apertures were also calculated using MA (as described in
Fractures Aperture and Roughness) for FTPs identified to be
related to intersections by the k-NN algorithm (Table 3).
Since our aim is to show the applications of the methods
involved in this paper, rather than describing all possible
FOIs, the aperture was calculated only for the biggest
intersections, which are named by their size: I-1, I-2, and I-3.

FIGURE 9 | Stereoplots of the poles to planes measured on the (A) FTPs and (B) separated fractures. The color and size of the poles in (B) reflect those of the
fracture measured (cf., Figure 6).
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These features connect the five large fractures analyzed above, in
particular: I-1 connects F-1 and F-2; I-2 connects F-1 and F-3;
and, I-3 connects F-2 and F-5. The mean apertures of these
intersections are, respectively, 0.276 mm, 0.182 mm, and
0.172 mm. The mean apertures of all other intersections range
from a minimum of 0.036 mm to a maximum of 0.502 mm.

Advantages and Constraints
The methods described in this paper provide a different and more
detailed characterization of fractures in CT images than any
preceding study. Particular advances we have made include:

(1) The FTP algorithm allows the tracking of the fractures
through the images, and the preservation of the structures
that would have been hidden by high thresholding values in
other analyses.

(2) This algorithm also extracts a substantial amount of local data,
referenced in CT space, that can be used to compute critical
fracture parameters, such as mean aperture, roughness, and
fracture intensity. These data could also be analyzed in ways we
have not described, and thus further applications may be
developed by those who use our script in the future.

(3) It is possible to extract information about the orientations of
different features from either a whole connected system or
individual FOIs by means of the orientations measured at
the FTPs.

(4) Fracture aperture parameters such as MA, PH, and FHWM
are automatically recorded from a whole CT dataset. In case
of calibrated cores, PHmay also be used to better characterize
smaller features.

(5) The fracture separation algorithm separates the skeleton of
individual features inside a system made up of more
structures (e.g., fractures). This allows a better
characterization of the FOI orientations inside the system.

(6) The algorithm is flexible and the input threshold values for
pairing segments in 2D and 3D can be defined by the user, based
on the geometries present in the image, for a better analysis.

(7) The source code implementing our algorithm is made freely
available to the research community. This allows for
comparative evaluation and further development of the
approaches in the future.

Disadvantages in the algorithms applied:

(1) The binary image used for filtering the FTPs must be only
composed of fractures. If pores and/or noise are present,
FTPs related to these features will be included in the data and
bias the analysis. Image denoising filters (Figure 1B), which
can reduce the noise inside the image, and morphological
(e.g., closing) and/or shape-based filters, which can remove
pores from binary images, are not currently implemented via
our Python scripts but should be applied manually before
using our algorithms.

(2) Large fractures may create some noise during the FTP
analysis, providing some FTPs orthogonal to the real
fracture trace. These points represent the extension of the
fracture that returns a wide valley-shaped signal. However,
the number of these points is low if compared to the FTPs
lying on the true fracture plane.

(3) The fracture separation analysis is sensitive to orientation
and geometry, so performs better if the FOIs have a geometrical
shape (i.e., linear in 2D) and are not parallel to the x-axis of the
2D image. The way the algorithm measures 2D fracture trace
dip means fractures comprising segments that are close to
horizontal but with opposite dip azimuths will not be
rejoined even though they probably are one feature. To
overcome this, we recommend manual observation of the
image before implementing the Python script. If the user
observes that most fractures are parallel to the x-axis, all
slices should be rotated by 90° around the z-axis before
analysis, so these fractures will be orthogonal to x.

(4) Since the pairing process occurs only at intersection points
and the size of the segments is a critical parameter for the 3D
pairing, the features in the binary image must be continuous

TABLE 3 | Mean apertures and standard deviations (both in px and mm) for the
analyzed intersections.

Intersection Aperture
(am) ± σa (px)

Aperture
(am) ± σa (mm)

I-1 2.84 ± 2.11 0.276 ± 0.205
I-2 1.88 ± 1.85 0.182 ± 0.179
I-3 1.78 ± 1.22 0.172 ± 0.119

TABLE 2 |Mean aperture and standard deviation of the dip angle and dip direction
measurements of the FTP orientations belonging to the individual fractures
analyzed.

Fracture Dip angle
(oda) ± σda

Dip direction
(odd) ± σdd

F-1 70.9 ± 7.8 274.1 ± 41.3
F-2 76.4 ± 5.5 248.3 ± 39.1
F-3 81.0 ± 5.9 324.7 ± 70.5
F-4 80.1 ± 4.4 264.1 ± 45.0
F-5 82.2 ± 4.4 76.3 ± 53.2

FIGURE 10 | Equal area, lower hemisphere stereographic projections
illustrating (A) the orientations of lines of best fit to the separated fracture
intersections found during the fracture separation analysis. (B) Stereonet of
the same lines of intersection calculated from the intersections of the
bounding planes. Lengths of the intersections are illustrated both by color and
symbol size.
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both in 2D and 3D in order to avoid gaps that subdivide
individual features and bias the analysis.

(5) To maintain continuity through 3D pairing, the fracture
separation algorithm uses the k-NN algorithm and the
segment orientations to inspect the points surrounding the
connection in both the slice under analysis and the previous
one. Consequently, the script works better if fractures have
distinct orientations, are not too physically close to other
intersection points in 2D, and/or are not spatially overlapping
between slices. The latter situation is particularly a problem for
images comprising non-cubic voxels, as are commonly generated
by medical CT scans, thus cubic voxel images are preferable for a
such analysis. We cannot quantify the effect in our test dataset
since only a non-cubic voxel scan exists; but, in future, sensitivity
tests of the algorithm should be carried out on scans of the same
sample with cubic and non-cubic voxels.

Computation Time
The analyses we report here were carried out on a 6-core Intel
Core i7-8750H @ 2.2 GHz processor with 32 Gb RAM
memory. On this platform, the FTP algorithm collected a total
of ∼116,000 FTPs from an image of size 370 × 370 × 100 in
approximately 35 s. The time required for subsequent analysis of any
dataset will be influenced by the size of the image (more and larger
rows and columns to inspect) and the number of FTPs recorded.

The fracture separation algorithm is slower than the FTP
one, but the processing time achieved for our trial dataset was
still short, at approximately 6 min. This running time is
highly influenced by the size of the image, the number of
orientations and spatial coordinates collected. The final
processing time increases exponentially for both large
images and complex structures. On a cubic image of
1000 × 1000 × 1000 voxels, the computation time of the
fracture separation analysis can be more than 12 h, while the
FTP analysis is less than 8–10 min (for a computer with the
same processor described above). However, the computation
time can be improved, for both the algorithms, by
optimization of the Python code in future.

CONCLUSION

We have created an algorithm that detect fracture trace points
(FTPs), and separates and recombines fractures in 3D CT
datasets. We have demonstrated the individual and combined
capabilities of the FTP and fracture separation approaches to
characterize the fracture network in a trial dataset. The algorithm
represents a substantial advance over previous works particularly
because:

(1) In three-dimensional X-ray CT scans of rocks, tight fractures
are difficult to extract. To separate these features with
standard thresholding techniques, the threshold range of
gray values has to be increased, which leads to widening of
large features, creation of artificial connections, and loss of

small features into a darker background. Our FTP algorithm
overcomes this problem by automatically isolating fracture
traces and measuring local aperture-related parameters and
one-dimensional fracture intensity in the gray scale image.
Additionally, other information about the pixels
surrounding each FTP are used to record local
orientations. These can be used to better define the
geometry of the fracture system studied even if
individual features cannot be analyzed.

(2) It has previously been difficult to individually inspect
connected fractures in a scanned rock. We have
developed a method to separate connected fractures so
that the orientations, sizes and shapes of individual
fractures can be described.

The algorithms run quite fast and can potentially be
applied individually or in combination on other CT
datasets. The data generated could also be queried in ways
not described in this paper to assess other aspects of fracture
systems in future studies. For example, our algorithms could
be applied to one set of fractures imaged at a range of different
voxel resolutions to test whether the fracture parameters it
measures display fractal behavior (c.f., Hirata, 1989; Miller
et al., 1990).
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