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Effective volcanic hazard management in regions where populations live in close proximity to
persistent volcanic activity involves understanding the dynamic nature of hazards, and
associated risk. Emphasis until now has been placed on identification and forecasting of
the escalation phase of activity, in order to provide adequate warning of what might be to
come. However, understanding eruption hiatus and post-eruption unrest hazards, or how to
quantify residual hazard after the end of an eruption, is also important and often key to timely
post-eruption recovery. Unfortunately, in many cases when the level of activity lessens, the
hazards, although reduced, do not necessarily cease altogether. This is due to both the
imprecise nature of determination of the “end” of an eruptive phase as well as to the possibility
that post-eruption hazardous processes may continue to occur. An example of the latter is
continued dome collapse hazard from lava domes which have ceased to grow, or sector
collapse of parts of volcanic edifices, including lava dome complexes. We present a new
probabilisticmodel for forecasting pyroclastic density currents (PDCs) from lava dome collapse
that takes into account the heavy-tailed distribution of the lengths of eruptive phases, the
periods of quiescence, and the forecast window of interest. In the hazard analysis, we also
consider probabilistic scenario models describing the flow’s volume and initial direction.
Further, with the use of statistical emulators, we combine these models with physics-based
simulations of PDCs at Soufrière Hills Volcano to produce a series of probabilistic hazardmaps
for flow inundation over 5, 10, and 20 year periods. The development and application of this
assessment approach is the first of its kind for the quantification of periods of diminished
volcanic activity. As such, it offers evidence-based guidance for dome collapse hazards that
can be used to informdecision-making around provisions of access and reoccupation in areas
around volcanoes that are becoming less active over time.
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INTRODUCTION AND MOTIVATION

The ability for communities around volcanoes to recover from
volcanic unrest hinge on well-judged and timely decisions about
land use, as well as access to some areas around volcanoes for
reasons of work, attending personal property, and/or potential
reoccupation. However, identifying and defining, as such, “the
end” of an eruption is notoriously difficult (Siebert et al., 2011;
Ogburn et al., 2015). Furthermore, hazard assessments that
account for diminishing activity, cessation in eruptive activity
and/or the establishment of new post-eruption background
activity levels are hard to develop given that the processes
involved are poorly understood, and are necessarily
characterized by high uncertainties. To our knowledge no such
hazard assessments have been carried out for any eruptions so far.

This work is motivated by the need for reassessing the hazards
from the Soufrière Hills Volcano (SHV), Montserrat, given the
now extended state of quiescence of the volcano since 2010.

Recent Eruptive History at Soufrière Hills
Volcano
The eruption has been characterized throughout by alternating
periods of active lava dome extrusion (months–years),
punctuated by sequences of Vulcanian explosions (up to VEI
3) (Wadge et al., 2014b). The last phase of dome growth ended on
February 11, 2010 after an explosion removed about 20% of the
248 · 106 m3 dome (Stinton et al., 2014; Cole et al., 2015).
Sporadic, small dome collapse PDCs and rockfalls generated

by progressive collapse of the remaining dome and crater area
occurred until 2013, and have subsequently phased out almost
entirely. In the period 2016–2020 there were typically less than 10
rockfalls/year. The volcanic activity therefore, as observed at the
surface, has been very low since 2010. This quiescence now
represents the longest pause since the 1995 eruption began.
Deep but low-level residual seismicity, low level degassing and
slow inflation (Figure 1) indicates that the volcanic system is still
in a state of unrest. The causal processes for this continued unrest
are hard to elucidate. Although for a while it was interpreted as
representing continued pressurization of the system, it is now
considered possible that current unrest is at least in part the
manifestation of ongoing visco-elastic response to the initial
emplacement of magma in the crust (Scientific Advisory
Committee of the Montserrat Volcano Observatory, 2019).

In this work we try to address the issue of hazard
assessment, specifically tuned for the current situation
within this long hiatus period or potentially (still to be
shown) post-eruption scenario. We focus specifically on
hazards associated with lava dome collapse as these are
recognized to be a key high-impact hazard that could still
occur with little or no warning. We recognize that in the case of
a re-start of eruptive activity, other precursory activity might
be the first to manifest—such as ash venting or explosive
activity. This work does not address the question of
forecasting which events are most likely to occur, either
during a continued hiatus period or after a re-start. Instead
we address the question of how likely are dome collapse
hazards to occur and, if so, where and when.

FIGURE 1 | Seismic, Global Positioning System (GPS), and SO2 monitoring data for the period January 1, 1995–November 7, 2019. Extrusive phases and
pauses are in shown red and green, respectively. Top: Number of seismic events detected by the seismic system. Middle: Radial ground displacement of
continuous GPS (cGPS) stations MVO1 (red) and GERD (blue) smoothed with 7-days running mean filter, Black: GPS Height of HARR. Bottom: Measured daily
SO2 flux, filtered with 7-days running median filter. Green: Correlation Spectrometer (COSPEC), Blue: Differential Optical Absorption Spectroscopy
(DOAS), White: Traverse data, Red: new DOAS network (Adapted from MVO activity report; MVO OFR 18-02-draft).
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The broader rationale for this hazard assessment is provided
by the following risk management questions which are currently
being considered on island: To what extent is it safe to work in,
visit, or re-inhabit the flanks of the Soufrière Hills Volcano and
surrounding area in the south of Montserrat?And, in balancing
the long term continued exposure (albeit now to very low levels of
activity) with short-term development gains; for example, by
supporting the extractive (sand mining) and tourist industries
which might be key to the island’s economic recovery: To what
extent are re-investments in this area possible and prudent?
Ultimately these questions are for civil protection authorities, the
Government of Montserrat, and the Montserrat Volcano
Observatory to consider but they also weigh on the Scientific
Advisory Committee (SAC) of the UKGovernment’s Foreign and
Commonwealth Office Montserrat. It is under that auspice that
this work is undertaken.

It is noted that the conditions and mechanisms for PDC
generation are different now from those during the main
eruptive period. During periods of active lava dome
extrusion, the first-order control on PDC generation is by
lava dome extrusion and associated dome instability and
collapse (Calder et al., 2002). In the absence of dome growth
during pauses, a long hiatus (such as the current one), or post-
eruption unrest, other collapse mechanisms can come into play.
Lava domes can collapse years, decades, or millennia after
volcanic activity is over, triggered by bouts of intense rainfall,
new seismic activity, and/or weakening by hydrothermal
activity and structural instabilities (Ball et al., 2013; Harnett
et al., 2019). Post-eruption collapses of lava domes, or more
extensive parts of volcanic edifices are known as sector collapses
and they generate debris avalanches. There is substantial
evidence across the Lesser Antilles volcanic arc (e.g., Boudon
et al., 2007; Sampler et al., 2008) and elsewhere, for the
generation of modest to extensive debris avalanches sourced
from collapses of lava dome complexes. At the volcano-scale
these can be considered “extreme events,” and as such, for any
given volcano, there is little data to constrain the frequency of
occurrence and anticipated time-scale post-eruption until one
of these post-eruption events might occur. One can consider the
different types of collapse events on a spectrum where debris
avalanches represent the larger volume, lower recurrence rate
collapses, and where typical dome-collapse PDCs during
eruptions are the smaller volume, higher frequency events.
Our consideration of “collapses” in this work, implicitly
considers this spectrum of plausible scenarios.

We use the catalog of previous collapse events at SHV, and
how that has changed over time, to inform our analysis. Over the
course of the SHV eruption more than 900 PDCs with runout
over 1 km were produced. Most PDCs were the result of dome
collapse events, but column-collapse PDCs were also common.
Dome-collapse PDCs show a first-order correlation with periods
of dome growth as seen in Figure 2, and there is a known
association between high dome-extrusion rates and frequent
dome-collapses (Calder et al., 2002; Wadge et al., 2010).
Calder et al. (2002) also noted that many larger-volume
collapses were associated with periods of elevated dome
extrusion, intense seismicity, and/or deformation cycles. Lava

extrusion mechanically destabilizes growing domes by increasing
internal shear stress, increasing loading on support structures,
and by over-steepening dome structures (Calder et al., 2002;
Pallister et al., 2013). High extrusion rates are also frequently
associated with gas pressurization (Voight and Elsworth, 2000)
and explosive activity that can cause dome-collapse events or
produce column-collapse PDCs. The dominant mechanisms
controlling the size and frequency of dome-collapse PDCs
during dome growth thus include the volume of the dome, the
extrusion rate, and associated explosive activity that can cause
large, violent dome-collapse events. The collapses from this
period are dominantly gravitationally induced dome collapse
events, but a number of other causes contribute (Calder et al.,
2002). The slope of the cumulative count of PDCs in Figure 2
episodically steepens and shallows, reflecting intervals of higher
and lower rates of PDC production associated with dome growth
phases. Wolpert (2018) estimate the annual rate to range between
a high level of roughly 260 events/year and a low level of about 30
events/year, based on evidence from the period 1995–2012.
Including the quiescent period from 2013 to 2020 (in which
no PDCs were recorded) reduces the estimated low-frequency
PDC expected annual rate to roughly 17 event/year. Even this
reduced rate, however, is inconsistent with the current
behavior—the probability of a PDC gap of seven or more
years is almost zero for a Poisson model with rate as high as
17/year. This indicates that a different model is required to
explain the current hiatus in PDC activity. That is, with
respect to dome collapse events, the activity levels during this
extended pause is significantly quieter than that during the
previous pauses. A Poisson model will still fit the data well,
but the annual rate must be much lower (below 0.20/year or so)
for a seven year PDC gap to be plausible. We now take this into
account in our forward modeling for future collapse hazards.

The work developed here presents a defensible, evidence-
based approach to PDC forecasting, in a post-eruption context,
which accounts for attendant uncertainties and assesses
specifically the threat posed by inundation of infrequent
post-eruption-unrest flows that could affect southern
Montserrat. To do so, we develop a new statistical model for
forecasting the probability of post-eruption-unrest flows
occurring over the next s years, for a range of possible
forecast periods. The model is based on considering a very
low-frequency background level of activity that is balanced
with the chance that activity has already completely ceased or
will cease at some point in the future (Wolpert et al., 2016).
More precisely, PDC events are modeled using a homogeneous
Poisson process with constant expected rate λ events per year up
to an uncertain time T at which the eruption ends. The absence
of observed PDC events prior to the present time t suggests that
either the eruption has already ended, i.e., that T < t, or else that
T ≥ t but the rate λ is very small. The distribution for the end-of-
eruption time T is based on observations of hundreds of dome-
collapse volcano histories (Wolpert et al., 2016). This is the key,
and novel contribution in this work, which we believe to be the
first of its kind. The model is then combined with a simulation-
based strategy to assess the impact on a specific area of interest
from flows corresponding to different scenarios (e.g., flow
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volume, initial direction) (Spiller et al., 2014; Bayarri et al.,
2015). In its own right, the new statistical method for
forecasting the probability of post-eruption flows is a
potentially powerful approach that could readily be applied
to other volcanoes. Likewise, the combined statistical-
simulation modeling approach could be undertaken at other
volcanoes and used as a tool to inform decisions about land use
planning for communities situated near volcanoes prone to
PDCs, during or after eruptive periods or during prolonged
low-level unrest.

Post-Eruptive Pyroclastic Density Currents
and Debris Avalanches
Currently, neither lava dome growth nor explosive activity has
occurred at SHV since February 11, 2010, and no PDCs have been
produced since 2013. However, the large lava dome remaining at
the summit means that dome-collapse PDCs can still be
generated. While frequency-volume statistics exist for dome-
collapse PDCs during eruptions, only very sparse information
exists for PDC-generating collapses of inactive lava domes (e.g.,
Ball et al., 2015; Harnett et al., 2019). However, collapses during
low to no eruptive activity do occur, both from the collapse of still
hot lava domes to produce PDCs and from collapse of unstable,
older domes and volcanic flanks to produce colder debris
avalanches and rockfalls.

Statistical analysis of rockfall activity at SHV led Calder et al.
(2002) to suggest that, during periods of low dome extrusion or
pauses in dome growth, external forces, such as extreme rainfall,
seismic activity, and talus apron erosion more strongly control
failure of lava domes. For example, following heavy rainfall, the
July 3, 1998 dome collapse removed 20% of a 110 · 106 m3 meta-
stable dome that developed between November 1995 and

February 1998, but which was no longer actively extruding
(Norton et al., 2002; Elsworth et al., 2004). Shallow or
intense seismic activity at SHV was shown to destabilize
unconsolidated talus aprons and the dome itself via direct
shaking of the edifice and to contribute to collapses (Calder
et al., 2002).

Dome growth also contributes to the instability of adjacent
hydrothermally altered volcanic edifices, which may remain
unstable and prone to failure in the form of debris avalanches
for decades after dome growth has ceased. Hydrothermal
alteration and partial flank and talus collapse triggered the
December 26, 1997 debris avalanche at SHV. Though this
collapse did occur during active dome-growth, evidence
suggests (Ball et al., 2013; Ball et al., 2015; Harnett et al.,
2019) that dome and flank collapses caused by instability
due to hydrothermal alteration pose a significant, and
difficult to anticipate hazard. For example, debris avalanches
of lava domes have occurred at La Soufrière, Guadeloupe
(Salaün et al., 2011); Cerro Chascon-Runtu Jarita Complex,
Bolivia (Watts et al., 1999); and Las Derrumbadas Dome
Complex, Mexico (Capra et al., 2002).

Several mechanisms are known to generate post-eruptive
PDCs and/or debris avalanches:

Rainfall-Triggered Collapses of Lava Domes
Especially heavy rainfall occurred before and during the SHV
collapse of July 3, 1998 (Norton et al., 2002), and this has been
recognized elsewhere as an important collapse-triggering
mechanism (Mastin, 1994; Yamasato et al., 1998;
Ratdomopurbo and Poupinet, 2000; Voight, 2000; Matthews
et al., 2002; Barclay et al., 2006). Although rainfall-triggered
collapses may also occur during active growth periods, they are
likely to represent a more important forcing mechanism during

FIGURE 2 | Cumulative number of recorded, dome-collapse PDCs, beginning July 18, 1995 and ending with the last recorded PDC on March 28, 2013. Data are
from FlowDat (Ogburn and Calder, 2012; Ogburn and Calder, 2017).
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the months to years following cessation of extrusion. Barclay
et al. (2006) examined rainfall and PDC data between 1998 and
2003 and found that, given a rainfall event of more than
20 mm, the probability of producing a multiple dome-
collapse PDC episode increased by up to 9.2%. In fact,
several of the largest dome-collapses at SHV were associated with
extreme rainfall events (Matthews et al., 2002; Barclay et al., 2006).

Sector Collapse Associated With Hydrothermally
Altered Systems
Lava domes and lava dome complex volcanoes, with mature
hydrothermal systems are frequently associated with sector
collapses (Vallance et al., 1995; Capra et al., 2002; Clavero et al.,
2004). Lava dome and/or flank failures are often attributed to
hydrothermally altered and weakened edifices [e.g., Mount
Rainier in the United States (Reid et al., 2001); Casita volcano
in Nicaragua (Opfergelt et al., 2006); and Santa María volcano
(Ball et al., 2013)].

Two pertinent examples are the 1998 debris flow at Casita in
Nicaragua (Sheridan et al., 1998; Voight et al., 2002; Opfergelt et
al., 2006) and the 1997 debris avalanche at Soufrière Hills,
Montserrat (Sparks et al., 2002; Voight et al., 2002). At Casita,
an ∼8 ka dacite lava dome complex, a 1.6 · 106 m3 collapse
generating a debris flow on October 30, 1998 was triggered by
intense rainfall associated with Hurricane Mitch, resulting in
more than 2,500 fatalities (Sheridan et al., 1998; Kerle, 2002). It
was found that intense hydrothermal activity had altered the
rocks to smectite clays (Opfergelt et al., 2006). For the December
26, 1997 debris avalanche at Soufrière Hills Volcano, Montserrat,
hydrothermal alteration of the retaining crater wall was
implicated as a major contributor to the destabilization and
subsequent collapse and depressurization of the lava dome
(Sparks et al., 2002; Voight et al., 2002). In both these cases
low-strength, low-permeability, fines-rich alteration materials
were thought to have helped to concentrate water along and
lubricate structural discontinuities, thereby reducing the shear
strength of the rocks and ultimately leading to destabilization of
the edifice (Voight et al., 2002; Opfergelt et al., 2006).

Volcanic Island Flank Collapses
Large scale flank collapses are recurring processes in the Lesser
Antilles volcanic arc (Deplus et al., 2001; Le Friant et al., 2004;
Boudon et al., 2007; Sampler et al., 2008). Horseshoe-shaped
structures within Dominica, Saint Lucia and Martinique
consistently open toward the Grenada basin. The recurrence
rate of flank collapse events in the Lesser Antilles may be
linked to tectonic activity, and/or magma production rate,
with intervals as high as 104 years to several 105 years
(Sampler et al., 2008). There have been 15 flank collapses in
the last 12,000 years in the Lesser Antilles (Boudon et al., 2007).
In the northern arc, the potential for future flank collapse is high.
Boudon et al. (Boudon et al., 2007) stress that edifice collapse can
trigger laterally directed explosions and are often associated with
tsunamis (Boudon et al., 2007). The same authors state that
collapse of La Soufrière, Guadeloupe, is a “highly plausible
geological scenario, whose risks must be taken into account.”

Downward Propagation of Cooling Fractures
At Mount St. Helens, this appeared to be the most likely
mechanism that caused dome collapse-explosions in
1989–1991 that were associated with rainfall (Mastin, 1994).

Few forecasting models exist for eruption durations (Sparks
and Aspinall, 2004; Wolpert et al., 2016); this in part is difficult
because the definition of “end” for the catologue of long-duration
eruptions is not very precise. It could refer to the end of any
activity, such as dome collapse PDCs or post-eruption debris
avalanches [which we can broadly consider as a spectrum from
small to large mass flow events which can defensibly be modeled
by flow simulators like TITAN2D (Patra et al., 2005)]. Likewise,
as we define level of activitywe do not distinguish among different
types of collapse events, but merely focus on their average
frequency or recurrence rate. As we will see, precise
knowledge of the activity rate is not needed, as for any
forecast window we can find the most conservative frequency
(i.e., the one leading to the highest forecast probability) to find an
upper bound on the probability of a collapse event whatever the
actual frequency might be.

METHODOLOGY

Probabilistic hazard forecasting and analysis as we present here
hinge on probabilistic modeling of aleatory scenarios, and
combining those scenario models with physical models. A
road block for that combination is the computational burden
of exercising physical models for Monte Carlo calculations. As
such, we advocate utilizing statistical emulators of
computationally expensive simulators to overcome that
burden, an approach that we have developed since 2009. In
the section titled Forecasting and Planning With Dynamic
Probabilistic Hazard Maps, we present a summary of our
previously published statistical emulator methodology for
efficient hazard calculations and walk through the process we
advocate for creating probabilistic hazard maps. [Detailed
descriptions of emulator-based probabilistic hazard
methodology are available in Spiller et al. (2014) and Bayarri
et al. (2015)]. In the section titled Forecasting With a Chance of
Ending, we expand upon the previous approaches for the specific
application to the current activity level, a protracted hiatus in
eruptive activity, or a potentially post-eruption scenario. To do
so, we present a new probabilistic model that balances a low-level
of potential volcanic activity with the possibility that the eruptive
phase has actually ended. In the section titled Quantifying
Uncertainty in Hazard Forecasts, we describe how to quantify
epistemic uncertainties associated with probabilistic (aleatoric)
scenario descriptions.

As before (Spiller et al., 2014; Bayarri et al., 2015), we explore
potential inundation footprints by future PDCs as modeled by
TITAN2D. The TITAN2D computational environment
simulates large, dry mass flows over terrain. TITAN2D solves
depth-averaged mass and momentum conservation equations
(Patra et al., 2005). A digital elevation model (DEM) provides
a local coordinate system, yielding normal, down-slope, and
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cross-slope directions. A fixed mass of material is released with
sampled dissipation parameters (internal and basal friction
angles). Simulations were performed on a 1 m 2010 LiDAR-
based digital elevation model with a vertical resolution of 15 cm
m−2 (Cole et al., 2010; Scientific Advisory Committee of the
Montserrat Volcano Observatory, 2011) obtained from theMVO.
The original DEM was smoothed to 10 m grid spacing to
eliminate spurious features at high spatial frequency which can
degrade the flow simulations.

FORECASTING WITH A CHANCE OF
ENDING

Sparks and Aspinall (2004) fit a generalized Pareto probability
distribution to data consisting of the recorded durations of a
subset of 137 dome-building eruptions taken from the
Smithsonian Institution Global Volcanism Program Volcanoes
of the World database (Simkin and Siebert, 1994) (note that all
the distributions used in this work are described in Appendix 1).
In this model the probability that the duration τ of an eruption
exceeds any time t > 0 is given by

P[τ > t] � (1 + t/β)− α (1)

for some constants α> 0 and β> 0, to be estimated from the data
(we used maximum likelihood methods to estimate α ≈ 0.58 and
β ≈ 0.60 years). Wolpert et al. (2016) applied an extension of that
model to a more recent collection of 177 dome-building eruptions
taken from the DomeHaz database (Ogburn et al., 2012; Ogburn
et al., 2015); in this extension, the parameters α, β (and hence the
survival distribution) may depend on the magma composition.
(Note, data used to fit this model and extension, including
estimation of α and β, is available within (Wolpert et al.,
2016).) This led in Wolpert et al. (2016) to a median forecast
of 35–47 years of additional activity at SHV, under the explicit
assumption of stationarity—i.e., assuming that by 2016 the
volcano remained in the same active state it had begun in
1995. The present work is intended to remove that
assumption, and make forecasts of future activity that reflect
the likely possibility that the eruption has already subsided, or will
soon do so.

Wolpert (2018) constructed and fit a dynamic model for
volcanic activity in which the activity level λ (measured in
expected PDCs per year) and preferred (i.e., most likely)
direction could change over time. The best fit activity level
function alternated between two values: a high activity of λ hi �
261.3 events/year, and a low level of λ lo � 30.9 events/year (see
slope of Figure 2).

During the seven-year period from March 2013 through
March 2020 there have been no PDC events large enough to
be reflected in these models (the threshold was a volume of
0.15 · 106 m3). The probability that a volcano remaining active at
a rate as high as λ≥ λ lo � 30.9 events/year would exhibit no PDC
in ten years is negligible (below 10− 100), so it is statistically
untenable that SHV has remained at the same activity level up
to the present.

Two possibilities remain: that SHV remains active, but at a
much lower rate λ (perhaps once in a decade, or once in a century);
or that PDC generation from the 1995 eruption has ended. In this
work we explore variations on those two possibilities.

Results
Three Possibilities
probability of no PDC occurring over the time frame including t
years since the last recorded PDC and s years of forecast can be
broken down into three cases:

(1) Eruptive activity may have ceased sometime between the last
recorded PDC and time t, and hence we will see no PDCs
through the forecast window.

(2) Eruptive activity may cease at some point during the forecast
period, and until that time we get “lucky” that no PDC
happens to occur.

(3) Eruptive activity may not cease until after the forecast
window, and we get “lucky” that no PDC happens to
occur during the forecast window.

We explore several cases for different activity levels, λ, and
visualize the probability of PDCs occurring (or not) through a
series of figures.

The thick solid lines in Figures 3A–C (see Eq. 3 for their
derivation) indicate the forecast probability of at least one PDC at
SHV in the next s years, as a function of s, for 0≤ s≤ 20 years,
assuming that the volcano remains active but at a much lower rate
than in the decade 1995–2005: a rate of once annually in
Figure 3A, once a decade in Figure 3B, and once a century in
Figure 3C. The thin dashed and dotted lines (see figure legend)
show the probability of no PDC in that same period (dashed black
line), broken down into three possible cases: that the 1995 SHV
eruption has already subsided (red dotted line); that it has not yet
subsided, but will before s years have passed (blue dash-dot line);
or that it has not yet subsided and will not during the next s years
(green dashed line). Mathematical expressions for these curves
are given in Eq. 3 below. Evidently the forecast PDC probability is
lower for both a rate as high as λ ≈ 1.0≫ 0.10, because with such a
high annual rate λ it is overwhelmingly likely that a PDC would
have occurred during these t � 7 years, unless the eruption had
paused; and also for λ ≈ 0.01≪ 0.10, in which case the rate is so
low that any PDC would be unlikely, even if the eruption is
continuing. Figure 4 shows that the highest possible forecast
probability of a PDC in the next s � 5 years would be P � 0.0947,
achieved at an annual rate of λ � 0.085, about one event per
decade. Thus even without any knowledge of the rate λ, the
forecast probability of a PDC at SHV in the next s � 5 years is
bounded above by about 9.5%. Similar results are available for any
forecast period s.

The Model Behind the Plots
Let us begin by measuring time starting at the onset of eruption,
and take the recorded event times of PDC events with volume
exceeding 0.15 · 106 m3 to be t � {t1, . . . , tn} with 0≤ t1 ≤/≤ tn
for some positive integer n (the number of recorded PDCs), all in
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the interval [0, t] from the eruption onset 0 to the present time t.
Our data (Ogburn and Calder, 2012; Ogburn and Calder, 2017)
currently include n � 931 PDCs with runout of at least 1 km,
ending t � 7 years ago. Denote by T the uncertain time of the
eruption’s end; necessarily T > tn but we don’t know whether or
not T exceeds the present time t, i.e., whether or not the eruption
remains active. We suppose that PDC events arrive at a Poisson
rate of λ> 0 during (0,T], and zero outside that interval. Then the
likelihood function for T is

f (T|t, λ)∝ λne−λT1{T> tn}

(where the notation 1E denotes the indicator function of an event
E, the function that is one if E occurs—here, if T > tn—and
otherwise zero.) Utilizing the generalized Pareto GPa(α, β)
prior distribution of (1), the posterior probability density
function for T is

p(T|t, α, β, λ) � cλne−λT(1 + T/β)−α−11{T> tn}
with normalizing constant (to ensure that p(T|·) integrates to
one, as any pdf must) given by

c � β−α−1λ−α−ne−βλ/Γ[−α, λ(β + tn)].
Here the function Γ(z, x) :� ∫∞

x
tz−1e−t dt of two variables

z ∈ R and x > 0 denotes the incomplete Gamma function
[Abramowitz and Stegun, 1964, §6.5.3]. Simplifying a
little, the posterior density function for T, given t � {tj}
(the vector of observed PDC times), (α, β) (parameters of
the GPa(α, β) distribution), and λ> 0 (the PDC mean annual
event rate), is:

p(T|t, α, β, λ) � e−λ(β+T)(1 + T/β)− α− 1

λαβα+1Γ[ − α, λ(β + tn)]1{T > tn}. (2)

The values of α, β are estimated in Wolpert et al. (2016) from
the entire DomeHaz data set (Ogburn and Calder, 2012; Ogburn
et al., 2012; Ogburn and Calder, 2017).

At any time t > tn the probability of no PDC in the next s> 0
years under this model, given none in (tn, t], is given by a sum of
three simple integrals over different time intervals, each available
in closed form:

FIGURE 3 | Solid black curve shows forecast probability (nearly zero) of at least one PDC in s years, for 0≤ s≤20, starting t � 7 years after the most recent eruption.
Assumed activity rates are (A) λ � 1 event per year, (B) λ � 0.1 yr−1 (once per decade), and (C) λ � 0.01 yr−1 (once per century), on average, until the uncertain time T the
eruption ends. Thin dashed black curve shows probability of the complimentary event, zero PDCs in s years, as the sum of three parts: the probability the eruption has
already paused by time t (red curve); and the probabilities that the eruption pauses during the next s years (blue dash-dot curve) or after the next s years (green
dashed curve) without an intervening PDC.
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P[No PDC in first s years after present time t
∣∣∣∣t, α, β, λ]

� ∫t

tn

1p(T|t, α, β, λ) dT + ∫t+s

t
e−λ(T−t)p(T|t, α, β, λ) dT

+ ∫∞

t+s
e−λsp(T|t, α, β, λ) dT , (3)

where each integrand is the product of the conditional probability
of no PDC in s years (given the uncertain value of T) and the
conditional pdf for T. The first of these three terms, shown as a
red dotted curve in Figures 3A–C, covers the range T ≤ t, in
which the eruption has completed (or paused) before the current
time t (and so the conditional probability of no PDC in s years is
one). The second, shown as a blue dash-dot line, covers the range
t <T ≤ t + s, in which the eruption is still active at the present time
t but ends before an additional s years transpire. The third, shown
as a green dashed line, covers the range in which T > t + s, so the
eruption remains active throughout the period of interest. The
dashed black line shows their sum (see Eq. 3), the probability
S(s, t) of no PDC in the first s years after the present. Finally, the
solid black line shows the probability 1 − S(s, t) of the
complimentary event, i.e., the forecast probability of at least
one PDC event in the next s years, given none in the t years
since the last recorded PDC.

As time passes without additional PDCs, the forecast probability
that the 1995 SHV eruption has paused or ended will rise, and the
forecast probabilities of future events will fall. Figure 5 shows the
forecast probability that SHV has paused or ended as a function of the
time t since the last PDC, for 7≤ t ≤ 20 (note t � 7 in 2020). Forecast
probability that the eruption has already paused or ended (shown as a
dotted red curve) rises from 67% at t � 7 years up to 95% at t � 20,
with the forecast probability of a PDC in the next century (solid black
curve) dropping to below 2%.

FORECASTING AND PLANNING WITH
DYNAMIC PROBABILISTIC HAZARD MAPS

Now that we have probabilistic forecasts of future flow events
occurring at SHV, one may ask:

If a flow event happens at SHV, what locations might be
affected?

It is still useful to think of this question probabilistically, as the
flow scenario—flow volume, valleys affected, hot vs. cold flows
etc. — are governed by aleatoric uncertainty.

Many locations surrounding SHV have not been inundated by
any flows to date, or by just one or two of the several hundred on
record since 1995. This does not, however, imply that these
locations are immune from inundation by future flows. To
study the effect of future flows we will rely on flow
simulations [in this work using TITAN2D, see (Patra et al.,
2005)] at scenarios consistent with activity at SHV in a
probabilistic sense. That is, we can probe scenarios that have
some reasonable probability of occurring and exercise TITAN2D
at those scenarios to approximate which locations would be
inundated by such flows. The approach taken in this work
follows (Bayarri et al., 2009; Spiller et al., 2014; Bayarri et al.,
2015) and for clarity we summarize important aspects of those
contributions in the next subsection.

Probabilities of Pyroclastic Density Current
Inundations and Emulator-Based
Calculations
Bayarri et al. (2009) explored this question of potential PDC
inundation under the assumption that PDC event times follow a
stationary Poisson point process [Note, one can consider non-
stationary models of event timing in a similar fashion, but for

FIGURE 4 | Solid black curve shows forecast probability of at least one
PDC in s � 5 years, starting t � 7 years after the most recent eruption and
assuming an activity rate of λ events per year (on average) until the uncertain
time Twhen the eruption ends, plotted for 0≤ λ≤ 0.5. Peak probability of
P � 0.0947 is achieved at λ � 0.085, about one event per decade. Results are
similar for other choices of s in the range 0≤ s≤20 years. Other curves have
same meaning as in Figure 3.

FIGURE 5 | Solid black curve shows forecast probability of at least one
PDC in s � 100 years, assuming an activity rate of λ � 0.1 event per year,
starting t years after the most recent eruption for 7≤ t≤ 20. Dotted red curve
shows forecast probability that the eruption has already ended by time t,
rising from 67% at t � 7 years (i.e., in 2020) up to 95% at t � 20 years.
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purposes of elucidating our approach, we will follow (Bayarri
et al., 2009)]. Let us further consider the case where the aleatory
uncertainty in volume and initial angle is described by a
probability density function (pdf), p(V , ϕ). (Note, we
intentionally leave p(V , ϕ) unspecified at this point, so that we
can consider different functions and explore the impacts of
uncertainty in these functions). Under these assumptions, the
expected number of flows in s years that inundate a specific
location, (x, y)k, is given by

E[# flows that inundate (x, y)k|λ]
� λs∫

(−180,180]×R+
1{hk>h crit} p(V , ϕ) dV dϕ (4)

where hk is the maximum flow depth at map location (x, y)k, hcrit

is the critical threshold whose exceedance indicates “inundation,”
and 1E is again the indicator function that takes on the value one
if the event E occurs (here, that location (x, y)k is inundated) and
otherwise zero. The probability of inundation is then given by one
minus the probability that no flow leads to inundation at (x, y)k in
s years, namely

P[location (x, y)k is inundated over s years ∣∣∣∣λ]
� 1 − exp[ − λs∫

(−180,180]×R+
1{hk>h crit} p(V , ϕ) dV dϕ⎤⎦. (5)

From a practical standpoint, evaluating the indicator function is a
significant barrier to calculating Eq. 5. Maximum simulated flow
height hk is not available in closed form (for TITAN2D or other
partial differential equation based models solved over digital
elevation models), so such integrals must typically be
approximated using Monte Carlo (MC) simulation. A straight-
forward MC simulation may require thousands to millions of
unique samples and hence indicator function evaluations (e.g.,
hk(Vj, ϕj) with Vj, ϕj ∼ p(V , ϕ)). This approach is a prohibitive
computational expense, as a single TITAN2D run takes
O(mins–hours) on a super-computer.

To overcome this obstacle, Spiller et al. (2014) and Bayarri et al.
(2015) built statistical models of the physical model of flowing
mass. Specifically they fit Gaussian process (GP) emulators to
TITAN2D output at each location (x, y)k. This approach requires
an initial set ofN training runs, typically several hundred to several
thousand. (Note that all map locations share this common set of N
training runs, and the following approach can be applied in parallel
at each location). Input values {V, ϕ} for these TITAN2D runs,
called design points, are sampled in a space-filling manner to cover
the support of any potential pdf p(V , ϕ). The responses, hk(·) of
the design points are collected into an N × 1 response vector, yk.
Then a Gaussian process is fit to these training runs, yielding

~hk(V *, ϕ*) ∼ MVN[μ(V *, ϕ*),R|yk,V, ϕ],
where MVN denotes the multivariate-normal distribution,
(V*, ϕ*) are an untested input pair, μ(·) is the mean of the GP,
and R is an N × N covariance matrix for the GP at the design
points. “Fitting” a GP entails finding good choices of the mean
function, correlation structure, and correlation parameters; further
details can be found in the references we cite (additionally, and in a

more general context, (Rasmussen and Williams, 2006; Santner
et al., 2018; Welch et al., 1992) provide an excellent background on
this topic). It is worth mentioning that ~hk acts as an interpolator, so
at all design points ~hk(V, ϕ) � hk(V, ϕ). For an untested input
scenario, (V*, ϕ*), ~hk(V*, ϕ*) is a draw from a GP whose variance
reflects the uncertainty we introduce by emulation, i.e., by taking
~hk(·) as a surrogate for hk(·). The benefit of utilizing this
approximation in Eq. 5 is that each indicator function
evaluation in a MC sample is now a computationally “free”
function evaluation available in milliseconds, instead of a
O(min–hours) computation. Additionally, once the GP has been
fit, no additional runs of TITAN2D are necessary.

Dynamic Probabilistic Pyroclastic Density
Current Inundation Forecast Maps
To address the motivating question—of the extent to which the
area surrounding the flanks of SHV in southernMontserrat could
be impacted by PDC hazards—we now seek not just a probability
of a PDC occurring in the next s years, but the probability of a
PDC occurring that is big enough, and oriented close enough
toward a specific location (x, y)k, to inundate that location in the
next s years. Effectively this means combining Eqs 3 and 4. In
particular, the expected number of PDCs in s years with annual
rate λ is sλ, and the expected number of PDCs in s years that lead
to inundation at location (x, y)k is given by Eq. 4. Thus, the
arguments of the exponential functions in the second and third
integrals in Eq. 3 get replaced by Eq. 4, and we have

P[A flow inundates(x, y)k in the s years after present time t
∣∣∣∣t, α, β, λ]

� 1 − ⎡⎣∫ t

tn

1p(T∣∣∣∣t, α, β, λ) dT
+ ∫ t+s

t
exp( − λ(T − t)∫

(−180,180]×R+
1{hk > hcrit}p(V , ϕ) dV dϕ)

× p(T∣∣∣∣t, α, β, λ) dT + ∫∞

t+s
exp( − λs∫

(−180,180]×R+
1{hk > hcrit}

× p(V , ϕ) dV dϕ)p(T∣∣∣∣t, α, β, λ) dT⎤⎦. (6)

We now consider various probabilistic scenarios for flow
volume and initial orientation. In Wolpert (2018), motivated
by the near-linearity of a log-log plot of the number of observed
PDCs of volume exceeding v vs. v, we fit a Pareto probability
distribution to PDC volumes at SHV, V � {V1, . . . ,Vn} at or
exceeding volume 5 · 106 m3. We further assume that this holds
for flows down to the smallest considered, ε � 0.15 · 106 m3—a
reasonable approximation, since small volume flows are only
hazardous to areas very near the source. Now we consider the
aleatory scenario model for the volume of flows at SHV, given by

p(V |αV ) � αV
ε
(V
ε
)−(αV+1)

1{V>ε} (7)

where the uncertain “shape” parameter αV > 0 must be estimated
from the data (see below). Further, in Wolpert et al. (2018), we
show that there is not strong evidence against independence for
volumes and initial directions of flow events. Thus we take
p(V , ϕ) � p(V) p(ϕ) to be of product form and here we
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consider three cases for p(ϕ): that flows are distributed uniformly
over all possible angles; that flows are initiated exactly to the east;
or that they are initiated exactly to the northwest, i.e., we take
p(ϕ) to be uniform on (−180, 180], or a point mass at 0+, or one
at 135+, respectively, for angles ϕ increasing counter-clockwize
from due east. These three choices represent 1) no preference for
a particular collapse direction, or high uncertainty about the
directionality, here represented by a uniform distribution of
initial angles; 2) collapse direction and flow due east, down
the Tar River Valley to the sea, which has been the dominant
flow direction throughout the eruption (in part due to the
substrate topography slope); and 3) collapse direction and flow
toward the northwest, in order to understand the worst-case
scenarios for the Belham Valley where there is proximity to
population and to sand mining activities.

Note that Eq. 6 depends on the choice of the shape parameter αV
through the Pareto probability density function. Likewise it depends
on α, β, and λ from the posterior distribution of eruption duration.
Although there is very little data (from SHV or other volcanoes) to
constrain the low-level frequency λ, we see the maximum probability
of an event occurs for λ ≈ 0.10 flows per year for any combination of
current time, t, and forecast length, s (seeFigure 4 for t � 7 years and
s � 5 years). Thus we use λ � 0.10 flows per year for all forecasts as
probabilities calculated with that value will offer a conservative
bound for all forecasts even if the “true” frequency is as high as
1 flow per year or as low as 1 flow per 50 years. This leaves choices
for αV , α, and β which, respectively, have maximum likelihood
estimates of αV � 1.01, α � 0.58, and β � 0.60 years. One can
imagine plugging these numbers into Eq. 6, and proceeding with
a Monte Carlo simulation to estimate Eq. 6; this will reflect the
aleatoric uncertainty associated with the randomness of volcanic
processes, but not the epistemic uncertainty arising from our lack of
certainty about model parameter values. Alternately, one can
account for aleatoric and epistemic uncertainty in the models for
T and V by treating the parameters in the associated probability
distribution functions as random variables. Following the Bayesian
paradigm we use probability theory to describe both kinds of
uncertainty. To help distinguish them, we systematically use
“p(·)” to denote probability density functions (pdfs) describing
aleatoric uncertainty associated with the inherent randomness of
the governing physical processes, and “π(·)” to denote pdfs
describing epistemic uncertainty associated with our imperfect
knowledge of model parameters describing these processes.
Details of this approach are explored in the next subsection.

We create dynamic probabilistic hazard maps by repeating the
calculation in Eq. 6 for every location on the map (in the maps
presented here, we do this for each point on a 200m grid covering
roughly the southern half of Montserrat). We then repeat it for
different choices of angle distribution p(ϕ) and forecast time length
s. Again, the key to making these calculations tractable is that we rely
on a single initial design set of roughly 2,000 TITAN2D runs at
different scenarios covering the support of p(V , θ) and build
emulators for each location, e.g., ~hk(V , ϕ) ≈ hk(V , ϕ). With
these emulators in hand and by running MC simulations for
Eq. 6 at each location in parallel, the computational cost of our
MC simulations is very low (roughly 1 min per map on a laptop
computer).

Results
Choice of appropriate forecast timescale should be linked directly to
the types of decisions that need to be made. Decisions around short-
term access to sites of interest—for example, tourist access or sand
mining, both of which have significant economic and livelihood
implications—could be based on short-term, annual, forecasts. Such
forecasts can be updated to reflect the extending time frame of relative
quiescence, and should provide a defensible quantification of
background hazard level for visitors. We would recommend this
approach over using a longer-term forecast map in this context.
Alternatively, for decisions such as investment in infrastructure and
longer term development, a time scale consistent with a return on the
investment might be more appropriate. In these circumstances it
might be more appropriate to use 5 or even 20 years forecast maps.

Figure 6 assumes a uniform probability density function for
p(ϕ), t � 7 years since the most recent PDC. The three panels
show forecast snapshots in time, with s � 1, s � 5 and, s � 20
years, respectively, in panels (A–C). Directionality of a potential
flow event is random in an aleatoric sense and should be described
by a probability density function (pdf). It is a useful exercise to
think about different possible probabilistic descriptions of
directionality depending on available data, expert elicitation, or
interest in worst-case scenarios. To that end, we have illustrated
this process for three separate choices of initiation angle pdfs:
uniform (Figure 6), east (Figure 7), and northwest (Figure 8).

Quantifying Uncertainty in Hazard
Forecasts
Equation 3 presents the probability of no PDC in the next s years
starting t years after the eruption onset, for a specific value of the
uncertain parameter vector θ that determines the prior
distribution of T (here θ � (α, β)). To reflect epistemic
uncertainty in hazard forecasts, we integrate this with respect
to a density function π(θ) governing prior uncertainty about θ,
then subtract from one, to get:

P[At least one PDC in first s years after present time t|t, λ]

� 1 − ∫
R2+

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∫t

tn

1p(T|t, α, β, λ) dT
+∫t+s

t
e−λ(T−t)p(T|t, α, β, λ) dT

+∫∞

t+s
e−λsp(T|t, α, β, λ) dT

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
π(θ) dθ. (8)

Results
Here we explore the effects of epistemic uncertainty on both
forecasting the probability of a PDC occurring and on the
probability of a PDC inundating a particular location.
Figure 9A shows a scatter plot of samples from π(θ). Using
these samples in a MC simulation of Eq. 8 yields an estimate for
the probability of a future flow as a function of time, as is plotted
by the pink curve in Figure 9B. This curve is analogous to the
thick black curve in Figure 3B. Another approach to explore the
impacts of epistemic uncertainties on forecasts is to again
sample θ ∼ π(θ), but instead of averaging over the
probabilities of a PDC corresponding to each θ (e.g., the term
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calculated within the large brackets on the right hand side of Eq.
8) as one would for MC, collect those probabilities and visualize
them as a histogram. To explore how these histograms of
probabilities evolve in time, we calculate one for each
forecast year and fit a kernel density estimate to each
histogram. These posterior probabilities reflect the epistemic
uncertainty in eruption duration on PDC forecasts and are
plotted as a color map in Figure 9; the mode of this posterior is
also plotted in time as a white curve. For the first five years, the
spread of PDC forecasts is rather narrow and the mean of this
posterior distribution lines up its mode. This behavior then
transitions to a steady state forecast after about 20 years. At that
point, the spread of PDC forecasts reflecting epistemic
uncertainties in the duration model goes from a probability of
roughly 0.06–0.16, and this posterior distribution is skewed to the
left (see Figure 9C), resulting in slightly larger forecasts when using
the posterior mode rather than when using the posterior mean.

To understand how epistemic uncertainty affects the forecast
of inundation probabilities, we will focus on forecasts for the
Plymouth area, take θ � {α, β, αV }, and integrate Eq. 6 against π(θ).
This approach yields:

P[A flow inundates Plymouth in the s years after present time t
∣∣∣∣t, λ]

� 1 − ∫
R3+
[∫t

tn

1p(T | t, α, β, λ)dT
+ ∫t+s

t
exp( −λ(T − t) ∫

(−180,180]×R+

1{hk>hcrit }p(V | αV )p(ϕ)dV dϕ)p(T | t, α, β, λ)dT

+ ∫∞

t+s
exp( −λs ∫

(−180,180]× R+

1{hk>hcrit } p(V | αV )p(ϕ)dV dϕ)p(T | t, α, β, λ)dT ⎤⎦π(θ)dθ.
(9)

Just as in the flow forecasting case, we calculate the probability of
a flow inundating Plymouth by sampling θ ∼ π(θ), computing the

probability in the bracket on the right hand side of Eq. 9 for each
sample, and averaging over those probability forecasts in a Monte
Carlo simulation. This approach was followed at Plymouth and
all locations on the 200m grid of South Montserrat to produce
Figures 6–8 which account for both aleatoric and epistemic
uncertainty. Location of Plymouth is indicated by small
triangle, due west of SHV. Again, as in the flow forecasting
case, we can calculate histograms and kernel approximations
to the posterior density of inundation probabilities—these are
plotted in a color map in Figure 10C. The mean inundation
forecast posterior probability is plotted against time as a pink
curve, and the mode posterior is plotted as a white curve. The
mean curve gives inundation forecasts more than twice as high as
those corresponding to the mode posterior curve indicating that the
posterior probability distributions are strongly skewed to the right.

To explore the effect of epistemic uncertainties in the volume
model vs. those in the duration model, we take π(θ) to be of
product form π(θ) � π(α, β) π(αV ) and explore uncertainty in αV .
We find posterior histograms reflecting uncertain in π(αV ) by
repeating the process of calculating probability histograms from
samples of π(αV ), but marginalizing Eq. 9 over π(α, β). The
resulting marginal posterior density is plotted as a color map
in Figure 10A along with the mode posterior for the marginal
posterior in white and the mean in pink. We also look at the other
case where we calculate histograms of inundation probabilities
based on samples of π(α, β) with Eq. 9 marginalized over π(αV ).
For this case, the resulting marginal posterior is plotted as a color
map in Figure 10B along with the corresponding mode posterior
in white and the mean in pink. Note, the mean for each of the
three cases is identical, but it is insightful to plot the marginalized
mode posterior curves on the full inundation posterior color map.
We do this with the two black dashed curves in Figure 10C: the
upper one corresponding to the mode posterior from 10B, and

FIGURE 6 | Probability of PDC inundation forecasts plotted on a log10 color scale, under the assumption of a uniform distribution for p(ϕ) over the entire range
−180+ <ϕ≤ 180+. Inundation probability contours are plotted for visual reference. Panel (A) is a forecast for s � 1 year, (B) for s � 5 years, and (C) for s � 20 years into the
future. Location of Plymouth is indicated by small triangle due west of SHV.
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the lower from 10A. Note over the first 10 or so years, the colormap
of the full posterior suggests that the posterior is bimodal with a
dominant lower mode corresponding to the epistemic uncertainty
in the volume model π(αV ) and a secondary mode dominated by
the epistemic uncertainty in the duration model π(α, β).

DISCUSSION

In this work, we present an evidence-based approach for
probabilistic hazard assessment that combines available data

on flow events from SHV, statistical modeling, and flow
simulations while also accounting for attendant uncertainties.
We develop and apply this methodology to assess threats posed
by inundation from infrequent, possibly post-eruption unrest
flows that could affect the flanks of SHV and parts of southern
Montserrat. To do so, we consider a very low-frequency
background level of activity that is balanced with the chance
that the activity has completely ceased or will cease at some point
in the future. Under these assumptions, we can forecast the
probability of a post-eruption unrest flow occurring over the
next s years, for a range of possible values of s. We then

FIGURE 7 | Probability of PDC inundation forecasts plotted on a log10 color scale, under the assumption of a distribution for p(ϕ) that is a point mass at ϕ � 0+,
i.e., due east via the Tar River Valley to the sea. Inundation probability contours are plotted for visual reference. Panel (A) is a forecast for s � 1 year, (B) for s � 5 years,
and (C) for s � 20 years into the future.

FIGURE 8 | Probability of PDC inundation forecasts plotted on a log10 color scale, under the assumption of a distribution for p(ϕ) that is a point mass at ϕ � 135+,
i.e., northwest toward the Belham Valley. Inundation probability contours are plotted for visual reference. Panel (A) is a forecast for s � 1 year, (B) for s � 5 years, and (C)
for s � 20 years into the future.
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combine this model with simulation-based strategies to glean
understanding about how different probabilistic scenarios
(e.g., flow volume, initial direction) would impact hazard
assessment at specific locations of interest on the flanks
of SHV.

This work provides direct information on which relevant
stakeholders and/or decision-makers could base practical
decisions about managing risk including decisions about
livelihoods, and to some extent reoccupation and development
around the SHV Montserrat. The context for doing this is that lava
domes can remain unstable, or become unstable by various
mechanisms during eruptive pauses, or even post eruption. Here
we assess collapse hazards related to both rare pyroclastic density
currents from an inactive lava dome to debris avalanches from flank
or sector collapse. Wisdom gained from other Lesser Antilles lava
dome complexes indicate that such events are infrequent but are

“highly plausible geological scenarios, whose risks must be taken
into account” (Boudon et al., 2007). Our approach provides ameans
for decision-support by helping to address questions regarding the
risk associated with short-term accessibility as well as long-term
land-use planning, and infrastructure investments. This method is
being used by MVO and SAC to determine the residual level of
hazard and associated risk around the volcano and to develop a new
micro-zonation hazard map for the island, but it could also be used
to address questions of risk around still active volcanoes elsewhere.

Of note, the probabilities of inundation for 1 year forecast
windows as determined by this method are also in line with those
determined independently through the expert estimates and the
expert elicitation process undertaken during SAC meetings
(Scientific Advisory Committee of the Montserrat Volcano
Observatory, 2011; Scientific Advisory Committee of the
Montserrat Volcano Observatory, 2019). Although this cannot

FIGURE 9 | Top Left (A): a scatter plot of posterior Monte Carlo samples from π(α, β) reflecting uncertainty in the duration model, i.e., samples from the posterior
probability distribution for T (Wolpert et al., 2016). Each sample (plotted point) of (α, β) represents a single possible shape for the duration distribution. Top Right (B):
Probability density function estimates (in color) of flow forecast probabilities (left axis) as they evolve in forecast time s (bottom axis). Uncertainty in these forecasts reflects
uncertainty in the duration model. Bottom (C): Histogram of (normalized) pdf for probability of at least one PDC in next s � 5 years, following s � 7 years of
quiescence—a slice from panel (B) at abscissa s � 5. Note left skewness [also visible in (B)].
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be considered a validation as the two assessment methods are so
different, it is reassuring that the differing methodologies offer
similar forecast probabilities.

In its own right, this new statistical method for forecasting the
probability of a post-eruption-unrest flows is a potentially

powerful approach that could readily be applied to other
volcanoes. This model provides a robust and defensible
approach for long term hazard assessment as it treats both the
eruption duration and flow frequency as uncertain. The model
combines a heavy-tailed duration model introduced in Wolpert
et al. (2016), based on an extensive record of dome collapse PDC
producing volcanoes worldwide, with a low-level background
frequency of activity. Results of the model indicate that the
background frequency need not be constrained or inferred by
volcano or episode specific data, but instead that a conservative
“worst-case” frequency can be found, and that rate only varies
with the period of quiescence (t in the model) for the volcano
under study and the forecast period s. For the current situation at
SHV, the conservative frequency is roughly one PDC event in
10 years.

Further, with the use of statistical emulators, this low-
frequency model can readily be folded into a simulation-based
probabilistic hazard mapping approach as presented here. With

FIGURE 10 | Probability density function estimates (in color) of forecast inundation probabilities at Plymouth (left axis) as they evolve in forecast time s (bottom axis).
In (A) uncertainty in these estimates reflects only uncertainty in the posterior probability distribution for the flow volume V. In (B) uncertainty in these estimates reflects only
uncertainty in the posterior probability distribution for T, the eruption duration. In (C) uncertainty in these estimates reflects uncertainty in both the posterior probability
distribution for the eruption duration T and the flow volume V. Evidently the dominant uncertainty is that in V. In all cases, the pink curve represents the mean of the
probability density function estimates, and the white curves represent the mode of the mode of the posterior distribution of the inundation forecasts. In Panel (C) the
modes from (A) and (B) are plotted as black dashed curves for reference (Note, color scales are truncated for visualization). Panel (D) shows histogram of posterior pdf
for probability of inundation of Plymouth within next s � 5 years, reflecting uncertainty in both volume V and end-of-eruption time T—a slice from panel (C) at abscissa
s � 5. Mean and 95% credible appear in bold on Table 1.

TABLE 1 | Numbers in the table (note division by one million on the left) are mean
probabilities of inundating Plymouth within s years for flows with initial direction
ϕ � 0+ (due east), ϕ � 135+ (northwest), or ϕ drawn uniformly from (−180+, 180+),
along with 95% posterior credible intervals. Middle column of bottom row (in bold)
corresponds to the histogram shown in Figure 10D below, with mean 5.8 ·
10− 4 and 95% credible interval (3.8 · 10− 5 , 2.4 · 10− 2). Note intervals are
asymmetric due to skewness of the distribution. Probabilities increase with
interval duration s and are highest for flows directed NW toward Plymouth and
lowest for flows directed due east down the Tar River Valley toward the sea.

Direction ϕ s = 1 year s = 5 years s = 20 years

East 8.6 (0.012, 62) 32 (0.044, 240) 60 (0.071, 440) ×10− 6

Northwest 260 (11, 1,100) 980 (43, 4,200) 1800 (80, 7,600)
Uniform 150 (9.4, 630) 580 (38, 2,400) 1,100 (66, 4,400)
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this approach, one can efficiently develop a suite of probabilistic
hazard maps under different aleatoric scenario models as there is
no need for further time-consuming flow simulations.
Additionally, the emulator-based strategy for developing
probabilistic hazard maps allows one to explore the effect of
epistemic uncertainties. Specifically, at SHV, this has allowed us
to compare the uncertain “tail” effects for both the eruption
duration and flow volumes, each of which follows a heavy-tailed
distribution. To this end, we compared histograms of forecast
probabilities whose spread occurs as a result of uncertainty in
fitting those probabilistic models.

Although the probabilistic models for flow volume, as well as
DEMs, are volcano specific, the general combined statistical-
simulation modeling approach is entirely transferable to PDC
hazard assessment at other volcanoes worldwide. It is also entirely
adaptable for use and application to other geohazards (tephra,
tsunamis, etc.).

CONCLUSION

In summary, we presented a new statistical model for assessing
pyroclastic density current (PDC) hazards during conditions of
post-eruption-unrest and have combined that with flow
simulations to develop a probabilistic hazard assessment and
uncertainty quantification for rare, but plausible dome and
edifice collapses during periods of quiescence at Soufrière
Hills Volcano (SHV), Montserrat. The primary takeaways
include:

(1) We introduced a new statistical model for forecasting the
probability of post-eruption flow events that is a potentially
powerful approach that could readily be applied to other
volcanoes.

(2) We combined multiple probabilistic models describing
aleatory uncertainty with flow simulations by utilizing
statistical emulators. As such, we can rapidly create
probabilistic hazard maps for a number of scenarios of
interest.

(3) This approach enables efficient uncertainty quantification of
both aleatoric and epistemic uncertainties associated with a
probabilistic hazard forecast.

(4) We focused on PDC hazard assessment over timescales of 1,
5, and 20 years at SHV. Assuming a uniform distribution of a
flow’s initial direction, over 1 year the probability of
inundation at Plymouth is 150/106. Over 5 years the
probability of inundation nearly quadruples to 580/106.
Yet in 20 years, the probability of inundation is
1, 100/106—not quite double the 5 years forecast
window level.

(5) This approach has the potential to be transferable to other
locations, other hazards, and different times scales. Of
course details—data collection, aleatoric modeling,
hazard process simulations, etc.—are specific to the
hazard and location, but building a flexible framework
for rapid probabilistic hazard assessment utilizing
statistical emulators is a compelling and widely

applicable approach to hazard assessment that can help
inform decision making.
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APPENDIX 1: DISTRIBUTIONS

This short appendix describes the probability distributions used
in this work.

Generalized Pareto
The GPa(α, β) is a continuous distribution for positive random
variables T, with probability density function (pdf), survival
function (or inverse cumulative distribution function (CDF)),
and mean given by:

f (t) � (α/β)(1 + t/β)−α−1, t > 0
F(t) � P[T > t] � (1 + t/β)−α, t > 0

E[T] � { β/(α − 1) if α> 1
∞ if α≤ 1

for parameters α> 0, β> 0. For large values of α, β these are close
to those of an Exponential distribution Ex(λ) with

f (t) � λ exp(−λt), t > 0
F(t) � P[T > t] � exp(−λt), t > 0

E[T] � 1/λ
with parameter λ � (α/β), but for modest values of α, β the
Generalized Pareto has much heavier tails than the
exponential—i.e., P[T > t] falls off much more slowly with
increasing t, so very large values of T are more likely. The
unitless “shape” parameter α governs the weight of the tails—for
large α (say, larger than 10 or 20) the distribution is almost
indistinguishable from the light-tailed exponential distribution,
while for values smaller than α≤ 2 the tails are so heavy that the
distribution has infinite variance, and for α≤ 1 even the mean is
infinite. This distribution is commonly used tomodel incomes, long
durations, and other phenomena exhibiting heavy tails. We first use
it in this paper in the subsection titled Forecasting with a Chance of
Ending. Evidence is very strong that heavy-tailed distributions like
the GPa(α, β) fit observed eruption durations much better than
“light tailed” distributions (exponential, gamma, etc.) do. It was
used by Sparks and Aspinall (2004) for a similar purpose.
Frequently the Generalized Pareto is introduced as a three
parameter distribution family, GPa(α, β; ε), taking values in
[ε,∞) for some ε ∈ R, with survival function

P[T > t] � (1 + (t − ε)/β)− α, t> ε;

this is simply our GPa(α, β) distribution plus a constant offset ϵ.

Pareto
A close relative of the Generalized Pareto is the Pareto distribution
Pa(α, β) with pdf, survival function, and mean given by:

f (t) � (α/β)(t/β)− α− 1, t > β
F(t) � P[T > t] � (t/β)− α, t > β

E[T] � { αβ/(α − 1) if α> 1
∞ if α≤ 1

It is a special case of the three-parameter GPa(α, β; β), or simply
the GPa(α, β) plus a constant offset of β. In this work it is used to
model PDC volumes V, beginning in the subsection Dynamic
probabilistic Pyroclastic Density Current Inundation Forecast
Maps.

Poisson
The Po(μ) is a discrete distribution for integer-valued count data
N ∈ [0, 1, 2, . . .], with probability mass function (pmf) and mean
given by

p(k) � P[N � k] � μk

k!
e−μ, k ∈ {0, 1, 2, . . .}

E[N] � μ

for a single parameter μ> 0. It is commonly used for modeling the
number of events occurring in some specified time interval or
spatial area. In that case one often considers a Poisson process Nt ,
the number of events occurring in time interval [0, t], under an
assumption that event counts in disjoint time intervals (tj−1, tj] are
independent. In that case the mean is an increasing function of t,

μt :� E[Nt].
The process is called “homogeneous” if μt � λt for some constant
average event rate λ> 0. In this case the joint pmf for counts {Nj}
of events in J intervals (tj−1, tj] has the simple form

P[Nj � nj, 1≤ j≤ J] � λn+e−λ(tJ−t0)∏J
j�1

(tj − tj−1)nj/nj!

where n+ :� ∑ nj is the total number of events in the entire time
range (t0, tJ].In this work Poisson models are first mentioned in
theRecent Eruptive History at Soufrière Hills Volcano section, but are
used more extensively in the section The Model Behind the Plots.

Circular Distributions
We consider two possible distributions for the initial angle ϕ
(measured in degrees counter-clockwize from due east, from the
interval (−180+, 180+]):
• Uniform on (−180+, 180+], with pdf

f (ϕ) � { 1/360 −180< ϕ≤ 180
0 else.

This indicates that flows in all directions are equally likely.

• Point mass at a specific value ϕ0 in (−180+, 180+]. This
indicates certainty that ϕ � ϕ0 (specifically, we consider
ϕ0 � 0+, due east toward the Tar River Valley, and
ϕ0 � 135+, northwest toward the Belham valley).

These are both limiting special cases of vonMizes distribution,
a flexible family of circular distributions used to model angles and
defined in Wolpert et al., 2018. We discuss these angular
distributions in the subsection entitled Dynamic probabilistic
Pyroclastic Density Current Inundation Forecast Maps.

Multivariate Normal
The MVN(μ,Σ) is the probability distribution of a random
vector Y ∈ Rd for some integer dimension d, with Rd-valued
mean μ � E[Y] and d × d-dimensional variance matrix
Σ � E(Y − μ)(Y − μ) T . It is ubiquitous in statistical modeling of
multi-variate data. In particular, it is the joint probability distribution
for the values yk � Y[xk] of a Gaussian Process (GP) Y, evaluated at
any finite collection of design points. We use it in that context,
beginning in the subsection Probabilities of Pyroclastic Density
Current Inundations and Emulator-Based Calculations.
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