
Optimal Interpolation Model for
Synthetic Aperture Radar Wind
Retrieval
Wei Zhang1,2, Zhuhui Jiang3, Jie Xiang1 and Hanqing Shi1*

1College of Meteorology and Oceanography, National University of Defense Technology, Nanjing, China, 2China Satellite Maritime
Tracking and Controlling Department, Jiangyin, China, 3State Key Laboratory of Geo-Information Engineering, Xi’an, China

The variational model inversion (VAR) method for synthetic aperture radar (SAR) wind
retrieval based on the Bayesian theory can overcome the limitations of the traditional wind
streak algorithm by introducing background wind and considering all sources of error, but
its optimal solution is unstable and the time latency is long. In this article, we propose a new
wind retrieval method by applying the optimal interpolation (OI) theory to construct a
formula that considers the SAR information, background information coming from the
numerical prediction model, and their associated well-characterized errors. The retrieved
wind vector can be acquired by the analytic solution of the OI formula. The results from the
simulation data show that the error of the OI-retrieved wind is smaller than that of
background wind in all considered cases; in particular, the accuracy of the OI-retrieved
wind speed is significantly improved. Experiments on the Sentinel-1 SAR data show that
the root mean square error of the OI-retrieved wind speed and direction are 1.4 m/s and
35°, respectively. Compared with other methods, the retrieved wind speed accuracy of the
OI method is similar to that of the VAR method but higher than that of the direct wind
retrieval method. The time latency of the OI method is the shortest, and the calculation
efficiency is much higher than that of the VAR method. The results indicate that the OI
method can be effectively applied to SAR wind retrieval.

Keywords: synthetic aperture radar, sea surface wind, optimal interpolation, variational model inversion, C-band
model direct wind retrieval

INTRODUCTION

Sea surface wind is a crucial parameter for studying the physical quantity of the sea surface and plays
an important role in many fields such as weather forecasts (Von Ahn et al., 2006; Friedman et al.,
2010), wind energy resource management (Hasager et al., 2011; Chang et al., 2015), wave numerical
simulation (Cavaleri et al., 2007; Sullivan and McWilliams, 2010), and oil spill monitoring (Espedal,
1999; Cheng et al., 2014). Because of the limited spatial and temporal coverage, high-precision sea
surface wind data acquired from buoys, ships and offshore platforms cannot meet the growing
demand (Zhou et al., 2017).

In recent decades, with the development of satellite remote sensing, the technology of acquiring
sea surface wind data using satellite sensor detection data has gradually matured and improved.
Among various satellite sensors, microwave radiometers and scatterometers play an important role
in providing global sea surface wind data. However, microwave radiometers and scatterometers can
acquire only low-spatial resolution (12.5–50 km) sea surface wind data. This relatively low spatial
resolution is best suited for open-ocean studies and limits our ability to study the marine atmospheric
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boundary layer and ocean processes in coastal regions (Duan
et al., 2017; Fang et al., 2018). However, spaceborne synthetic
aperture radar (SAR) can alleviate this problem because it has all-
weather day and night observation capabilities, and it can retrieve
sea surface wind with a spatial resolution for nearly two orders of
magnitude higher (subkilometer) than that of microwave
radiometers and scatterometers (Monaldo et al., 2001). It has a
unique advantage for studies in coastal region.

For angles of incidence between 15° and 70°, the copolarization
radar backscatter from the sea surface received by the satellite
sensor is mainly caused by small-scale sea surface roughness,
which is strongly influenced by sea surface wind. This backscatter
makes it possible to extract sea surface wind from SAR images. In
1979, Weissman et al. (1979) noted that there is a correlation
between the intensity of SAR images and the sea surface wind
field. The wind streak direction in the images is nearly aligned
with the wind direction, and the SAR normalized radar cross
section (NRCS) is related to the wind vector. Based on this theory,
a classic method for sea surface wind retrieval based on wind
streaks was developed that retrieves the wind direction and wind
speed separately. Inversion methods for the wind direction
(which has an ambiguity of 180°) mainly include the Fourier
transform (Gerling, 1986; Lehner et al., 1998), the wavelet
transform (Fichaux and Ranchin, 2002; Leite et al., 2010), and
local gradient analysis (Sobel operator, numerical differentiation)
(Jiang et al., 2011a; Jiang et al., 2011b; Rana et al., 2016; Zhou
et al., 2017); the 180° ambiguity can be removed by referencing
numerical weather prediction model wind, Doppler shifts or land
shadows (Horstmann and Koch, 2003; Christiansen and Jochen,
2006; Mouche et al., 2012), and the wind speed is acquired by the
geophysical model function (GMF) based on the wind direction.
Due to the specific meteorological conditions required for wind
streaks, relevant studies have shown that only 35%–48% of SAR
images have wind streak features (Levy, 2001; Zhao et al., 2016;
Rana et al., 2019). Moreover, other ocean phenomena also have
features similar to wind streak, such as ocean internal waves and
surface currents, which makes it more difficult to automatically
acquire sea surface wind information from streak features. When
the wind direction cannot be acquired or if the error is large, the
wind speed acquisition and accuracy will be directly affected. A
wind direction error of 30° introduces wind speed uncertainty up
to 40% (Lehner et al., 1998; Horstmann et al., 2000), which makes
the inversion method based on wind streaks somewhat limited in
application. Therefore, some researchers have explored the
methods of retrieving wind speed directly without wind
direction input, such as Komarov model (Komarov et al.,
2014; La et al., 2017) and electromagnetic model (La et al., 2018).

In 2002, Portabella et al. (2002) proposed a sea surface wind
inversion method based on the Bayesian theory, which consists of
estimating the wind from an SAR NRCS measurement, a GMF
model, a prior wind from the numerical prediction model, and
their associated uncertainties. This approach constructs a
variational formulation, in which the optimum wind vector is
determined by minimizing a cost function. The effectiveness of
the proposed method is proven with European Remote Sensing
Satellite-2 (ERS-2), Envisat, RADARSAT-1, and Gaofen-3 (GF-3)
SAR sea surface wind retrieval applications (Portabella et al.,

2002; Adamo et al., 2014; Wang et al., 2017). The variational
model inversion (VAR) method does not need to consider wind
streak information and can simultaneously acquire the wind
direction and wind speed. It can be an excellent complement
to the wind retrieval method based on wind streaks. However,
since the variational formulation is a nonlinear equation, the
analytical solution of the formulation cannot be acquired. Only
the optimum solution can be acquired by the iterative or
enumeration method, so the solution is unstable and the time
latency is long (Choisnard and Laroche, 2008; Jiang et al., 2017).

In this article, we propose a new wind retrieval method by
applying the optimal interpolation (OI) theory to construct a
formula, which combined the SAR information with background
information from the numerical prediction model, assuming that
all sources of information contain errors and are well-
characterized. The retrieval wind vector can be quickly
acquired through the derivation of the OI formula.

The remaining sections are organized as follows. In
Geophysical Model Function, different GMFs are introduced.
In Variational Model Inversion Formulation for Wind
Retrieval, the VAR sea surface wind retrieval method and its
solutions are introduced. In Optimal Interpolation Model for
Wind Retrieval, we present the OI model and its solution in
detail. Simulation experiments on the wind retrieval accuracy and
time latency are discussed in Simulation Experiments and
Discussion. Applications of the Sentinel-1 SAR wind retrieval
are shown in Application to Sentinel-1 Synthetic Aperture Radar
Data and Discussion. Finally, conclusions are given in
Conclusions.

GEOPHYSICAL MODEL FUNCTION

The GMF is an empirical function established by many statistical
experiments to describe the relationship between the NRCS and
sea surface wind. The C-band model (CMOD) GMF was first
developed for scatterometer on the ERS satellite operating at the
C-band and vertical transmitting/vertical receiving (VV) (E.P.W.
and Attema, 1986). In 1993, CMOD4 was obtained by fitting the
scatterometer NRCS and the European Center for Medium-
Range Weather Forecasts (ECMWF) analysis wind field
(Stoffelen and Anderson, 1997), but CMOD4 resulted in
certain errors at high wind speeds, so CMOD_IFR2, CMOD5,
and CMOD5. N were proposed (Quilfen et al., 1998; Hersbach
et al., 2007; Hersbach, 2010). CMOD is formulated as follows:

σo(V , θ, ϕ) � B0(V , θ)(1 + B1(V , θ)cosϕ + B2(V , θ)cos 2 ϕ)α
(1)

In Eq. 1, σo is the SAR NRCS, V is the wind speed at a height of
10 m above the sea surface, θ is the SAR incidence angle, and ϕ is
the relative wind direction measured with respect to the
horizontal radar look direction. B0, B1, and B2describe the
main relationship between the wind speed and the incidence
angle. α is a power value that depends on the GMF used.

Figure 1 presents the behavior of the four CMOD GMFs as a
function of wind direction and wind speed at a given satellite
incidence angle of 30° and look direction of 0°. Themain difference
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between the four GMFs is the NRCSs observed for the high wind
(greater than 20 m/s) and low wind (less than 2 m/s) (Figure 1A).
The NRCS-observed tendencies of wind direction are very similar,
but the amplitudes are slightly different (Figure 1B).

VARIATIONAL MODEL INVERSION
FORMULATION FOR WIND RETRIEVAL

Introduction of the Variational Model
Inversion Model for Wind Retrieval
The VAR method proposed by Portabella et al. (2002) based on
the Bayesian theory is the most widely used andmature algorithm
in addition to SAR image analysis algorithms for wind retrieval.
Many scholars have carried out in-depth analyses and application
tests (Cameron et al., 2007; Jiang et al., 2011a; Jiang et al., 2011b;
Jiang et al., 2014). It is assumed that the SAR observation and the
background information error follow a Gaussian distribution and
are uncorrelated. In the variational framework, the analysis wind
is obtained through the minimization of a cost function, which
can be expressed as follows:

J � Jo + Jb (2)

where Jo is the observation term and Jb is the background term.
For a single SAR NRCS observation, Jo is derived from and
expressed as the following form:

Jo(u, v) � 1
2
(Hσo(u, v, θsat , χsat) − σ0

obs

SD(σo
obs) )2

(3)

The physical meanings of the symbols in Eq. 3 are shown inTable 1.
Jb is expressed as the following form:

Jb(u, v) � 1
2
( u − ub
SD(ub))

2

+ 1
2
( v − vb
SD(vb))

2

(4)

where ub and vb are the zonal and meridional components of the
background wind vector, respectively, and they are independent and
have equal standard deviations of their error [i.e. SD(ub) � SD(vb)].

There are three tested methods to acquire the optimum wind
vector by minimizing Eq. 2: enumeration VAR (EnVAR), Monte
Carlo VAR (MCVAR), and damped Newton VAR (DNVAR).

Enumeration Variational Model Inversion
Portabella et al. (2002) proposed the EnVAR solution of the
variational model. First, a wide range of winds (e.g.,
u ∈ [−20m/s, 20m/s] and v ∈ [−20m/s, 20m/s] with a step
size of 0.25 m/s) around the background wind vector are used
as “trial”winds. Then, equation (2) is used to calculate the J values
corresponding to the “trial” winds. The “trial” wind vector value
that corresponds to a minimum J is the optimum wind vector.

Monte Carlo Variational Model Inversion
Choisnard and Laroche (2008) proposed the MCVAR solution of
the variational model. First, the “trial” winds are simulated by
adding a randomGaussian error to the observation and background
values. Then, Eq. 2 is used to calculate the J values corresponding to
the “trial”winds. The “trial”wind vector value that corresponds to a
minimum J is the optimum wind vector.

Damped Newton Variational Model
Inversion
Jiang et al. (2017) proposed the DNVAR solution of the
variational model. They introduced a damped Newton method
to form the iteration function of the optimum wind vector. By

FIGURE 1 | Comparison of the CMOD4, CMOD_IFR2, CMOD5, and CMOD5. N NRCS simulations as a function of (A) wind speed (wind direction of 0°) and (B)
wind direction (wind speed of 12 m/s).

TABLE 1 | The physical meanings of the symbols in Eq. 3.

Symbol Physical meaning

σ0obs NRCS observation
SD(σoobs) Observation standard deviation
Hσo(u, v, θsat , χsat) Non-linear forward operator (e.g., CMOD GMF)
u and v Zonal and meridional components of the wind vector
θsat Radar incidence angle
χsat Radar look direction
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calculating the second-order derivative of J , the iteration
direction and step can be determined, and then, the optimum
wind vector can be obtained through iteration.

EnVAR, MCVAR, and DNVAR require many iterations to
calculate the optimum solution. The wind retrieval accuracy and
time latency of the three methods were tested by Jiang et al. (2017)
on simulated data and Envisat/advanced synthetic aperture radar
(ASAR) data. The experimental results show that the retrieval
accuracies of the three methods are slightly different, and all of
the errors are smaller than the background wind errors. The
computational complexity of DNVAR is lower than that of
EnVAR and MCVAR.

OPTIMAL INTERPOLATION MODEL FOR
WIND RETRIEVAL

The OI equation was first derived by Eliassen in 1954. Gandi
independently introduced the multivariate OI equation in 1963
and applied it to the objective analysis of meteorological data in
the Soviet Union. Gandi’s work had a profound impact on
meteorological research and operational applications. The OI
scheme has become a multistatistical data assimilation operational
analysis program (Bengtsson et al., 1981; Kalnay, 2003). Based on the
OI theory, this study constructs an OI formulation that can be
applied to the SAR sea surface wind inversion.

Assume that SAR observations y can be expressed as:

y � H(x) + εo (5)

where H is the nonlinear forward operator, x � (u, v)T is the real
wind vector, and εo is the observation error. Given the
background wind vector xb � (ub, vb)T, the analysis wind
vector xa can be obtained according to the OI theory, which
can be expressed as follows:

xa � xb + K[y −H(xb)] (6)

where K is the weight matrix.
The analysis wind vector errors εa and background wind

vector errors εb can be defined as follows:

εa � xa − x (7)

εb � xb − x (8)

Substituting Eq. 6 into Eq. 7 yields

εa � εb + K[H(x) − H(xb) + εo] (9)

Then, we perform a linearization of the nonlinear observation
operator around the background state, implicitly assuming that
the truth is not too far from the background. Taylor expansion of
H(x) at the value of background wind vector xb is

H(x) ≈ H(xb) +H ’(xb)(x − xb) (10)

where H ’(xb) � ⎛⎝zH
zu

|b, zHzv |b⎞⎠, assuming Η � H ’(xb).
Substituting Eq. 10 into Eq. 9, we have

εa � [I − KΗ]εb + Kεo (11)

Now, we transform the problem of the optimal analysis wind
vector into the problem of minimizing the mean square error of
the analysis wind vector. The minimum mean square error of the
analysis wind vector can be expressed as the following form:

min(MSE) � min(E(εTa εa)) (12)

It is difficult to obtain the solution of Eq. 12, so the problem is
converted into the problem of minimizing the trace of the analysis
wind vector error covariance matrix, which can be expressed as
follows:

min(MSE) � min(E(tr(εaεTa ))) (13)

To form the analysis wind vector error covariance, we multiply
Eq. 11 by its transpose:

εaε
T
a � (I − KΗ)εbεTb(I −ΗTKT) + (I − KΗ)εbεTo KT

+KεoεTb(I −ΗTKT) + Kεoε
T
o K

T (14)

Assuming that the background wind vector and the observed
wind vector are both unbiased, then E(εb) � 0, E(εo) � 0, and the
observation errors are a scalar for a single NRCS observation,
Thus, E(εoεTo ) � ε2o and E(εbεTo ) � E(εoεTb ) � 0. Assuming a
background wind vector error covariance matrix B � E(εbεTb ),
we have

E(εaεTa ) � (I − KΗ)B(I −ΗTKT) + ε2oKK
T (15)

We now minimize the mean square error of the analysis wind
vector with respect to the weight matrix K . Thus,

zMSE
zK

� zE(tr(εaεTa ))
zK

� ztr(E(εaεTa ))
zK

� 0 (16)

Substituting Eq. 15 into Eq. 16 yields

ztr(E(εaεTa ))
zK

� ztr(B − BΗTKT − KΗB + KΗBΗTKT + ε2oKK
T)

zK
� 0

(17)

Solving for K yields

K � BΗT(ΗBΗT + ε2o)− 1
(18)

Then, we have the expression of the analysis wind vector:

xa � xb + BΗT(ΗBΗT + ε2o)− 1[y −H(xb)] (19)

Therefore, given the background wind vector error covariance B
and the observation error εo, only the differential result of the
forward operatorH at the background wind vector xb needs to be
calculated, and the analytical solution of the analysis wind vector
can be obtained by using Eq. (19).

SIMULATION EXPERIMENTS AND
DISCUSSION

In the following simulation experiments, we consider a satellite
configuration with incidence angle θsat� 30° and radar look
direction χsat � 0; the observation error of the NRCS
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measurement is 10%, and the standard deviation error for the
background wind components is 1.7 m/s (Portabella et al., 2002).
Because CMOD5 and CMOD5.N take into account NRCS
saturation at high winds and CMOD5 is more widely used in
SAR wind retrieval, we choose the CMOD5 GMF as nonlinear
forward operator.

OI wind retrieval is evaluated using Eq. 19. The result is
compared to the direct wind retrieval (hereafter called DIRECT),
in which a fixed a priori wind direction (from the background
wind vector) is directly inserted into the CMOD5GMF, and VAR
wind retrieval is evaluated using DNVAR.

Optimal Interpolation Wind Retrieval
Accuracy Analysis
Case with Varying Background Wind Errors
In this section, we consider the case in which the background
wind vector contains regular errors in both the wind direction
and the wind speed. Assuming true wind speeds VT of 5, 12, and

25 m/s which are adopted as low-, moderate-, and high wind
speed cases respectively, and true wind directions ϕT of 0° and 45°,
given the background wind direction error ϕBE ∈ [−20°, 20°] with
a step size of 1° and the background wind speed error
VBE ∈ [−2m/s, 2m/s] with a step size of 0.1 m/s, the OI wind
retrieval results are shown in Figures 2–4.

The retrieval results, which assume that VT � 5m/s, are
shown in Figure 2. When ϕT� 0°, the OI wind speed error
VOE increases with VBE but is smaller than VBE by
approximately 50% (Figure 2A). The OI wind direction error
ϕOE increases with ϕBE and is slightly smaller than ϕBE overall. In
some cases, ϕOE is greater than 20° (Figure 2B). When ϕT� 45°

(Figures 2C,D), VOE increases slightly, and ϕOE is slightly
changed compared with ϕT� 0°, but the symmetrical
distribution structure with VBE � 0 and ϕBE � 0 when ϕT� 0°

is changed.
The retrieval results, which assuming VT � 12m/s, are shown

in Figure 3. The retrieved wind vector errors are generally similar

FIGURE 2 | Optimal interpolation (OI)-retrieved wind speed errors (A, C) and wind direction errors (B, D) (the isolines) when the true speed is 5 m/s, and the true
wind direction is either 0° (A, B) or 45° (C, D); the background wind speed errors (Y axis) and the background wind direction errors (X axis) are given.
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to VT � 5m/s. Compared with VT � 5m/s, VOE increases
slightly; most VOE values are smaller than 2 m/s, and the
maximum VOE is greater than 2 m/s when ϕT� 45°

(Figure 3C); ϕOE decreases slightly, and the maximum ϕOE is
smaller than 20° when ϕT� 45° (Figure 3D).

The retrieval results, which assuming VT � 25m/s, are shown
in Figure 4. Compared with low and moderate true wind speeds,
VOE is further increased, and the maximum VOE values are both
greater than 2 m/s for different ϕT , but most VOE values are still
less than 2 m/s (Figures 4A,C). In contrast, ϕOE is obviously
decreasing, and similarly, for different ϕT , the maximum ϕOE is
less than 20° (Figures 4B,D).

Overall, VOE increases with VBE but is smaller than VBE. In
addition, with the increase in the background wind speed, VOE

will also increase. When the background wind speed is small, VOE

will be far smaller than VBE . When the background wind speed
increases, VOE gradually increases and approaches VBE . ϕOE
increases with ϕBE and is slightly smaller than ϕBE. In
addition, ϕOE decreases as the background wind speed

increases. The change in the background wind direction will
change the symmetrical distribution structure of VOE and ϕOE
when ϕT� 0°, but it will not change the trends of VOE and ϕOE.

Case Involving Adding Regular Errors to Different
Background Wind
Given VT ∈ [5m/s, 28m/s] with a step size of 1 m/s, and
ϕT ∈ [0°, 360°) with a step size of 5°, 1,728 simulated
observations are obtained from the true wind vector by the
CMOD5 GMF. We simulate four different background wind
settings by addingVBE � [−2m/s, 2m/s] and ϕBE � [−20°, 20°] to
the true wind speed and direction, respectively.

Figure 5 presents the OI-retrieved wind direction and speed
errors as a function of the background wind under four different
background wind error conditions. Adding the same error to
different background wind situations will result in different
retrieved wind vector errors, which show harmonic patterns
under all error conditions of the background wind speed and
direction. VOE and ϕOE deviation directions are generally

FIGURE 3 |OI-retrieved wind speed errors (A,C) andwind direction errors (B,D) (the isolines) when the true speed is 12 m/s, and the true wind direction is either 0°

(A, B) or 45° (C, D); the background wind speed errors (Y axis) and the background wind direction errors (X axis) are given.
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consistent with VBE and ϕBE deviation directions (e.g., when
VBE < 0, VOE < 0 can be obtained, and vice versa). VOE shows
an increasing trend as the background wind speed increases
(Figures 5A,C,E,G), while ϕOE shows a decreasing trend as
the background wind speed increases (Figures 5B,D,F,H).

Table 2 shows the OI-retrieved wind root mean square error
(RMSE), maximum error, and minimum error distributions
under different background wind error conditions. The
different VBE values will lead to differences in the maximum
and minimum errors in the retrieved wind speed and direction.
Adding a positive error to the background wind speed
(i.e., VBE � 2m/s) results in a relatively large maximum of VOE

compared to the addition of a negative error, while the maximum
of ϕOE is relatively small. The different VBE values do not change
the maximum and minimum errors of the retrieved wind, but the
error deviation direction will be reversed. The maximum error of
the retrieved wind is larger than the background wind error, and
the minimum error is smaller than the background wind error.
The RMSE of the retrieved wind speed is different under different

VBE values. When VBE � 2m/s, VOE is relatively large, reaching
1.7 m/s, but is still less than VBE . The RMSE of the retrieved wind
direction is maintained at 19° under different background wind
error conditions, and is smaller than ϕOE .

Table 3 lists the ratio of the OI-retrieved wind when the errors
are larger than the background wind error under different
background wind error conditions. The ratio distribution
under different VBE values has the opposite trend. Assuming
VBE � 2m/s, the retrieved wind ratio is 28.4% when VOE > 2m/s,
and 20.3% when ϕBE > 20°. Assuming VBE � −2m/s, the retrieved
wind ratio decreases to 24.9% when VOE > 2m/s and increases to
24.8% when ϕBE > 20°. Overall, under the condition of adding a
relatively large error to the background wind speed and direction
simultaneously, the ratio of the OI-retrieved wind when its error
is larger than the background wind error is less than 30%.

Case with Varying Incidence Angles
To comprehensively test the performance of the OI method,
we adopt incidence angles from 20° to 47°(ESA

FIGURE 4 |OI-retrieved wind speed errors (A,C) andwind direction errors (B,D) (the isolines) when the true speed is 25 m/s, and the true wind direction is either 0°

(A, B) or 45° (C, D); the background wind speed errors (Y axis) and the background wind direction errors (X axis) are given.

Frontiers in Earth Science | www.frontiersin.org October 2020 | Volume 8 | Article 5528337

Zhang et al. OI for SAR Wind Retrieval

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles#articles


FIGURE 5 | OI-retrieved wind errors under different background wind error conditions: for (A) and (B) the background wind speed and direction errors are 2 m/s
and 20°, respectively; for (C) and (D), the background wind speed and direction errors are 2 m/s and −20°, respectively; for (E) and (F), the background wind speed and
direction errors are −2 m/s and 20°, respectively; for (G) and (H), the background wind speed and direction errors are −2 m/s and −20°, respectively.
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Communications, 2012) and assume that VB ∈ [5m/s, 28m/s]
with a step size of 1 m/s, ϕB ∈ [0°, 360°) with a step size of 5°,
VBE � 2m/s and ϕBE � 20°. VOE and ϕOE are shown in Figure 6.
When the incidence angle is low, the OI-retrieved wind error
shows an obvious change trend as the background wind speed
increases. VOE increases as the background wind speed
increases, and the maximum VOE exceeds 3.5 m/s
(Figure 6A); ϕOE decreases as the background wind speed
increases, and ϕOE is slightly greater than 20° at low wind
speeds (Figure 6B). With the increase in the incident angle,

OI-retrieved wind error decreases gradually. When the
incident angle is higher than 30°, VOE and ϕOE are less than
the background wind error.

Case With Varying Background Wind Errors
In this section, two cases are considered. In one case, the retrieved
wind vector errors are analyzed when VBE � 0 and ϕBEcontains
regular errors. In the other case, the opposite condition is
analyzed. Given VBE ∈ [−5m/s, 5m/s] with a step size of
0.5 m/s, and ϕBE ∈ [−90°, 90°] with a step size of 5°, and

TABLE 2 | Comparison of optimal interpolation (OI) retrieved wind speed and direction errors under different error conditions for the background wind speed and direction.

Background Wind OI Retrieved Wind

Error Maximum error Minimum error RMSE

Wind Speed
(m/s)

Wind Direction (deg) Wind Speed
(m/s)

Wind Direction (deg) Wind Speed
(m/s)

Wind Direction (deg) Wind Speed
(m/s)

Wind Direction (deg)

2 20 3.1 23 0 14 1.7 19
2 −20 3.1 −23 0 −14 1.7 19
−2 20 −2.9 25 0 13 1.5 19
−2 −20 −2.9 −25 0 −13 1.5 19

TABLE 3 | The ratios of OI-retrieved wind when the error is larger than background wind error.

Background wind error OI retrieved wind

Wind speed (m/s) Wind direction (deg) Ratio when VOE > 2m/s Ratio when ϕOE > 20°

2 20 28.4% 20.3%
2 −20 28.4% 20.3%
-2 20 24.9% 24.8%
-2 −20 24.9% 24.8%

FIGURE 6 | OI-retrieved wind speed error (A) and direction error (B) when the incidence angle varies from 20° to 47°. Retrieval accuracy comparison of the OI,
variational model inversion (VAR), and DIRECT methods.
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FIGURE 7 | Retrieved wind errors of the OI, VAR, and DIRECTmethods when the background wind speeds are 5 m/s (A,B), 12 m/s (C,D), and 25 m/s (E, F); the
background wind speed contains no errors, and the background wind direction contains regular errors.
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FIGURE 8 | Retrieved wind errors of the OI, VAR, and DIRECTmethods when the background wind speeds are 5 m/s (A,B), 12 m/s (C,D), and 25 m/s (E, F); the
background wind direction contains no errors, and the background wind speed contains regular errors.
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assuming true wind speed VT of 5, 12, and 25 m/s and a true wind
direction ϕT of 45°, the retrieved results of the OI, VAR, and
DIRECT are shown in Figures 7, 8.

When VBE � 0 and ϕBE contains regular errors (Figure 7), the
retrieved wind speed errors of the three wind retrieval methods
vary periodically as ϕBE increases. As VT increases, the retrieved
wind speed error of the three wind retrieval methods gradually
increases. The VOE and the VAR-retrieved wind speed error VVE

are basically the same, and both are smaller than the DIRECT
retrieval wind speed error VDE . The maximum VOE and VVE are
less than 2 m/s, while the maximum VDE is substantially greater
than 2 m/s (Figures 7A,C,E). ϕOE and the VAR retrieved wind
direction errors ϕVE are basically consistent with ϕBE , and both
have no obvious improvement with respect to ϕBE (Figures
7B,D,F).

The retrieved results of the OI, VAR, and DIRECT methods
when ϕBE � 0 and VBE contains regular errors are shown in
Figure 8. Because the DIRECT-retrieved speed is obtained
directly by using the background wind direction, VDE � 0
when ϕBE � 0.

Assuming VT � 5m/s (Figures 8A,B), the OI-retrieved wind
agrees with the VAR-retrieved wind when VBE ∈ [−2m/s, 2m/s]
but has a great difference when VBE < − 2m/s, where ϕOE is
smaller than ϕVE and VOE greater than VVE.

Assuming VT � 12m/s (Figures 8C,D), the difference
between the OI- and VAR-retrieved wind is small overall. The
OI-retrieved wind accuracy is slightly better than that of VAR
when VBE < 0 but slightly worse than that of VAR when VBE > 0.

Assuming VT � 25m/s (Figures 8E,F), the OI-retrieved wind
agrees with the VAR-retrieved wind. Both wind speed errors are
less than VBE , and the wind direction errors are less than 2.5°.
Compared with VT � 5m/s and VT � 12m/s, the retrieved wind
speed errors increase, and the retrieved wind direction errors
decrease.

Overall, both cases show that VOE and ϕOE are smaller than
VBE and ϕBE. When VBE � 0 and ϕBE contains regular errors, VOE

and VVE are smaller than VDE . However, when ϕBE � 0 and VBE

contains regular errors, VDE is the smallest of the three. The
retrieved results of the OI and VAR method deviate only slightly.

Case Involving Adding Regular Errors to Different
Background Wind
In this section, we use the same simulation data and settings as in
Case Involving Adding Regular Errors to Different Background
Wind. The RMSEs of the VAR- and DIRECT-retrieved wind are
shown in Table 4. Because the DIRECT method uses only the
background wind direction information, the retrieved wind speed

is greatly affected by ϕBE, resulting in a larger RMSE of up to 4 m/s.
The VAR-retrieved wind RMSE is less than the background wind
error, which is similar to the OI retrieval wind RMSE.

Time Latency Comparison of the Optimal
Interpolation, Variational Model Inversion,
and Direct Wind Retrieval Methods
In this section, we use the same simulation data and settings as in
Case Involving Adding Regular Errors to Different Background
Wind. All the experiments are conducted on the same computer
configuration (Intel Core i7-3770 CPU 3.40 GHz, 4 GB RAM).
Table 5 shows the time latency comparison of the OI, VAR, and
DIRECT wind retrieval methods. In the DIRECT wind retrieval
method, the wind speed was obtained based on the enumeration
method, that is, the NRCS was first calculated under the given
wind direction, wind speed within 0–40 m/s, and intervals of
0.1 m/s, and then the wind speed was obtained by comparison
with the input NRCS. Therefore, different settings of the
maximum wind speed and the interval will lead to different
time latencies, but due to the small amount of calculation, the
difference between them is small. Table 5 clearly shows that the
time latency of the VAR method is much longer than that of OI
and DIRECTmethods, and the time latencies of the DIRECT and
OI methods are similar.

APPLICATION TO SENTINEL-1 SYNTHETIC
APERTURE RADAR DATA AND
DISCUSSION
To evaluate the performance of the OI wind retrieval method on
real SAR data, we employ the OI wind retrieval method to retrieve
Sentinel-1 SAR sea surface wind. The Sentinel-1 satellites are part
of the Global Monitoring for Environment and Security (GMES)
programmer implemented by ESA and the European commission.
At present, it contains two satellites, namely, Sentinel-1A and
Sentinel-1B. The combination of the two satellites shortens the
revisiting repetition period from 12 to 6 days. Each Sentinel-1
satellite is equipped with a C-band SAR, which has four
independent imaging modes, namely, strip map mode,

TABLE 4 | Comparison of wind errors by different wind retrieval methods.

Background Wind Error DIRECT RMSE VAR RMSE

Wind speed
(m/s)

Wind direction
(deg)

Wind speed
(m/s)

Wind direction
(deg)

Wind speed
(m/s)

Wind direction
(deg)

2 20 4.0 20 1.6 19
2 −20 4.0 20 1.6 19
−2 20 4.0 20 1.5 19
−2 −20 4.0 20 1.5 19

TABLE 5 | Time latency comparison of different wind retrieval methods.

Method Time Latency(s)

DIRECT 3.0
VAR 19.0
OI 2.9
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FIGURE 9 | Scatter plots of different retrieved winds against the NDBC buoy observations for wind: (A, B) OI-retrieved wind vs. the NDBC buoy observations for
wind speed and wind direction, respectively; (C, D) VAR-retrieved wind vs. the NDBC buoy observations for wind speed and wind direction, respectively; (E, F)
background wind vs. the NDBC buoy observations for wind speed and wind direction, respectively; (G) synthetic aperture radar-wind-speed vs. NDBC buoy
observations for wind speed; (H) CMOD5 retrieved wind speed vs. NDBC buoy observations for wind speed.
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interferometric wide-swath mode, extra wide-swath mode, and
wave mode, and there are four different polarization modes with
copolarization (HH and VV) and cross-polarization (HV and VH)
(ESA Communications, 2012). This article mainly uses copolarized
(VV) data in interferometric wide-swath and extra wide-swath
imaging modes, and the corresponding pixel spacing of high-
resolution level-1 GRD products is 10 m and 25 m, respectively.

The SAR data used in this study come from the “NOAA high
resolution sea surface winds data from synthetic aperture radar (SAR)
on the Sentinel-1 satellites” (hereafter called the SARWIND dataset)
provided by the National Oceanic and Atmospheric Administration
(NOAA) (Monaldo et al., 2016), which processes the Sentinel-1 SAR
data by calibration and denoising, and the resolution is reduced to
500m. This dataset consists of high resolution sea surface wind data
produced from the SAR onboard the Sentinel-1A and Sentinel-1B
satellites. The high-resolution wind speed (hereafter called the SAR-
wind-speed) obtained by the CMOD4 DIRECTmethod. This dataset
utilizes the CoastWatch product format, and the basic archive file is a
NetCDF-4 file containing the SAR-wind-speed, SAR NRCS (500 m
spatial resolution), numerically predicted wind from the Global
Forecast System (GFS, used for the background wind), land mask,
and SAR information. TheNationalData BuoyCenter (NDBC) buoy-
measured wind data provided by NOAA, which are considered to be
the best observation close to the true wind, are used for validation.

In this study, the SARWIND and NDBC buoy data from 2018
were collected, and 2,723 sets of matched data were obtained
through spatiotemporal matching and data quality control such
as outlier elimination. Because the wind data detected by buoys are
usually approximately 5m away from the sea surface, the wind speed
at a height of 10 mwas obtained using Eq. 20 (Li and Lehner, 2014).

V(z)
V(zm) �

ln(z/z0)
ln(zm/z0) (20)

where V(zm) is the wind speed at a height of zm meters, V(z) is
the wind speed at a height of z meters, and z0 is a constant
(1.52 × 10− 4).

The results show that the accuracy of the wind direction
measured by the buoys is uncertain under low wind speeds
(less than 3 m/s) (Freilich, 1997; Liu, 2002; Bentamy et al.,
2019). By comparing the matched dataset, the results show
that when the buoy-measured wind speed is less than 3 m/s,
the RMSE of the background wind direction is 72°, and when the
buoy-measured wind speed is greater than 3 m/s, the RMSE of the
background wind direction is 35°, with a large difference between
the two results. Therefore, to ensure the accuracy of the test, this
study excludes all wind speeds less than the 3 m/s.

A comparison of the winds retrieved by the different methods
against those measured by the buoys is shown in Figure 9. The
RMSE of the OI-retrieved wind speed is 1.4 m/s (Figure 9A),
which is lower than that of the background wind speed (1.9 m/s,
Figure 9E). The RMSE of the OI-retrieved wind direction is 35°

(Figure 9B), which is similar to that of the background wind
direction (35°, Figure 9F). These results show that the OI-retrieved
wind can effectively improve the background wind, especially in
terms of the wind speed. Compared with other wind retrieval
methods, the OI-retrieved wind speed accuracy is slightly lower
than the VAR-retrieved wind speed accuracy, for which the RMSE

of the retrieved wind speed is 1.3 m/s (Figure 9C) but higher than
the SAR-wind-speed of 1.7 m/s (Figure 9G) and the DIRECT-
retrieved wind speed of 1.5 m/s (Figure 9H). Both the retrieved
wind directions from the OI and VAR methods have no obvious
improvement over the background wind direction.

The time latency comparison of the OI, VAR, and DIRECT
wind retrieval methods on the test dataset is shown in Table 6.
The computer configuration is the same as that in Section 5.3. The
result is similar to the simulation experiment in which the time
latencies of the OI and DIRECT methods are similar, and far
lower than that of the VAR method.

CONCLUSIONS

In this study, we propose a new SAR sea surface wind retrieval
method called the OI wind retrieval method. Based on the OI
theory and taking errors from all relevant sources into account,
the method can acquire wind directions and wind speeds
simultaneously. The OI method differs from the VAR wind
retrieval method as follows:

1. The OI method is based on the OI theory, which is different
from the VAR method, which is based on the Bayesian
theory. It does not need to assume that observation errors
and background errors follow Gaussian distributions.

2. The OI method can quickly acquire unique optimum wind,
while the VAR method needs to find the optimal solution
through an optimization algorithm, which is time consuming,
and the optimal solutions acquired by different optimization
algorithms are different. This is of great significance for the
practical application of SAR wind retrieval.

For simulation experiments and practical applications, the
accuracy and time latency of the OI method were systematically
analyzed and compared with those of the DIRECT and VAR
methods. The experimental results are as follows:

1. The OI-retrieved wind error is less than the background
wind error; in particular, the accuracy of the OI-retrieved
wind speed is significantly improved, so the OI method
can be used to retrieve sea surface wind from SAR.

2. The accuracy of the OI-retrieved wind is similar to that of
the VAR-retrieved wind but significantly higher than that of
the DIRECT-retrieved wind. The time latency of the OI
method is the shortest.

The OI method has practical application advantages in SAR
wind retrieval and is an alternative to the VAR method. At the
same time, it should be noted that both VAR and OI methods

TABLE 6 | Time latency comparison of different wind retrieval methods.

Method Time Latency (s)

DIRECT 1.3
VAR 10.5
OI 0.9
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need a background wind with good accuracy. When the
background wind error is large, the accuracy of retrieved wind
will decrease significantly.
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