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INTRODUCTION

The present paper contributes a critical commentary on the recent finding byMann,M. E., Steinman,
B. A. and Miller, S. K (2020). Absence of internal multidecadal and interdecadal oscillations in
climate model simulations. Nat. Commun. 11, 1–9.

Climate oscillations are recurring large-scale fluctuations in the surface temperatures of the
oceans in connection with the atmosphere. This commentary focuses on the Pacific Decadal
Oscillation (PDO, interdecadal timescale) and the Atlantic Multidecadal Oscillation (AMO,
multidecadal timescale), which have been regarded as intrinsic climate drivers on the adjacent
continents in numerous studies based on observations and paleoclimate reconstructions (Henley,
2017; O’Reilly et al., 2017). In a recent paper, Michael E. Mann and colleagues (Mann et al., 2020,
hereafter M20) fail to find a PDO signal in global measured and modeled temperatures that is
statistically different from noise. They further propose that the significant AMO-like signal is mainly
due to anthropogenic aerosols in the 20th century, and to statistical artifacts before. Therefore they
doubt the intrinsic nature of the two oscillations. The present paper shows that M20’s results are
largely artifacts themselves with issues ranging from using inadequate data and referencing improper
literature on anthropogenic aerosols with regards to the AMO to inappropriately interpreting the
results with regards to the PDO.

After briefly sketching the rationale and method of M20, I will elaborate on these three points.
M20 (p. 3) argue that any truly oscillatory AMO or PDO signals should generate a spatially

coherent and large-scale variability pattern in the climate system with a narrowband signature in the
frequency domain. They search for such signals in global (observed and modeled) temperature grids
of different time lengths with the multi-taper method of singular value decomposition (MTM-SVD),
which was developed and widely applied by Mann and Park (Mann and Park, 1994; Mann et al.,
1995; Mann and Park, 1999). Significance tests of the test statistic LFV (local fractional variance) are
carried out with Monte Carlo simulations generated according to the null hypothesis of colored (red)
noise. The method can generally be applied to reconstruct the time course and the spatial pattern of
any potential oscillatory climate signal.

INADEQUATE DATA

M20 examine three global sets of temperature data for oscillatory signals, all spanning a minimum
length of 158 years: Control simulations (control runs of the IPCC model ensemble CMIP5, using
pre-industrial conditions of the atmosphere without any external forcing so that “any apparently
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oscillatory behavior must arise from internal variability”),
historical observations (annualized global monthly average
surface temperatures from the HadCRUT4 land and ocean
surface temperature dataset), and historical simulations (IPCC
model ensemble CMIP5, containing external anthropogenic and
natural forcing). They find robust significant spectral peaks in the
multidecadal AMO range (period 40–70 years) in the historical
observations and the historical simulations, but not in the control
simulations. However, the latter data set is the only one that
covers a greater length of time, with almost half of the model runs
spanning 500 years or more.

The absence of robust multidecadal AMO oscillations in the
control simulations stands in sharp contrast to numerous studies
finding the opposite in paleoclimatic data (Kerr, 2000; Gray et al.,
2004; Chylek et al., 2011; Lanci and Hirt, 2015). Even with the
same MTM-SVD method, the main author of M20 himself
formerly identified robust and significant AMO frequencies in
four independent sets of global proxy temperature data (Mann
and Park, 1994). The most obvious explanation for the
discrepancy is that control runs of the CMIP5 models have
little to do with reality (Power et al., 2017). Since it is unclear
to which extent the modeled “internal variability” reflects real
conditions, the control simulations cannot be trusted unless their
results were validated with paleoclimate data.

On the other hand, the historical observations and the
historical simulations are insufficient in length in order to
detect AMO frequencies with sufficient statistical power. They
cover barely two cycles of the putative oscillation, which may span
80 years and more (Schlesinger and Ramankutty, 1994) and may
consist of a broader band of low-frequency signals (O’Reilly et al.,
2017; Sutton et al., 2018) than can be identified with the short time
series. Furthermore, M20 leaves some confusion about the actual
length of their control and historical simulations. Although they
state in the text that a minimum length of 158 years is required and
fulfilled by N � 44 control runs and N � 118 historical runs of the
CMIP5 models, Table 1 in their Supplement reveals that only N �
42 (not 44) from the altogether N � 47 control simulations and
only N � 8 (not 118) from the altogether N � 164 historical
simulations satisfied the requirement of a minimum length of
158 years. So even though the latter data set showed a robust
significant AMO frequency around a ∼45 year period, other
multidecadal frequencies might have been missed.

IMPROPER LITERATURE REFERENCE

Having found significant AMO frequencies only in the historical
observations and simulations for the industrial time, M20 suggest
that this multidecadal fluctuation is due to anthropogenic
aerosols rather than to an intrinsic climate oscillation. They
argue 1) that no multidecadal fluctuation is present under
preindustrial conditions, 2) that in industrial times its phase is
synchronized across three independent global time series, which
would be unlikely if it were an intrinsic oscillation, whereas 3) the
fluctuation with positive (warm) peaks near 1940 and 2000 and a
negative (cool) peak near 1980 coincides with the response of the
climate system to anthropogenic sulfate aerosol emissions. The

first part of the argument is questioned above. The second refers
to the observation that three global time series, namely two
specific models and the historical observations, are roughly in
phase (Figure 3 of M20). I agree with the authors that this would
be unlikely if they were (stochastically) independent, but
“internal”/“intrinsic” is not necessarily the same as
“independent”: The same phase points to a structural
relationship, but it says nothing about whether its cause is
external or internal to the climate system. For the third part of
the argument, M20 refer to a recent paper by Kasoar et al. (2018).
However, this referenced paper supports only the spatial
correspondence of sulfate aerosol effects and the putative
AMO signal, both emphasizing the North Atlantic region.
With regard to the alleged temporal correspondence, the
reader is referred to Figure 3 of M20, which not only leaves
several questions open, but also ignores a substantial refutation in
the literature: M20 do not provide enough detail to clearly
understand what they are plotting in the time series of their
Figure 3. Is it just one realization or an average of the two and five
members that they have for the MPI-ESM-LR and HadGEM2-ES
models? If it is the latter, they are methodologically canceling out
any internal variability the model could show. If it is the former,
on which criteria did they select the member, and do the rest
behave similarly? Furthermore, in the MPI-ESM-LR model
(Figure 3C of M20) the signal amplitude and the signal-to-
noize ratio appear to be very low, which is reflected in the
small percentage of explained variance. I doubt that this signal
exceeds the statistical significance limit, which the authors do not
comment on. Regarding the HadGEM2-ES model, Booth et al.
showed already in 2012 that it closely reproduced the AMO-like
multidecadal North Atlantic sea surface temperature (NASST)
variability in the 20th century, and claimed that aerosols caused
this variability. However, Zhang et al. (2013) refuted this claim on
various methodological grounds, for example by comparing the
heat content anomaly of the upper ocean in the North Atlantic
with the HadGEM2-ES model with constant aerosols vs. all
drivers, or by showing differences between observed and
modeled spatial patterns of multi-decadal SST changes inside
and outside the North Atlantic, and observed and modeled
anomalies in salinity in the subpolar North Atlantic. Due to
the large and multivariate discrepancies in the mechanisms,
Zhang et al. concluded that the aerosol effects simulated by
HadGEM2-ES cannot be responsible for the multi-decadal
temperature variations observed in the North Atlantic in the
20th century. M20 make the same claim again now without
mentioning this debate in the literature.

INAPPROPRIATE INTERPRETATION

In the interdecadal time range attributed to the PDO (16–20 years
according to the authors), M20 found no robust significant spectral
peaks in any of the three data sets. Again, this stands in sharp
contrast to a large body of literature (for a review see e.g., Henley,
2017), including previous work by the main author using the same
MTM-SVD method (Mann and Park, 1994). M20 explain the
discrepancy by the time window being larger in their present than
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in their former work, rendering the present results more reliable.
However, on closer inspection the respective Supplementary Figure
S2 in M20 suggests another interpretation: The moving window
shows that the frequencies on the interdecadal scale are not
constant over time - in other words, narrowband PDO
oscillations are episodic (see Figure 1). This is fully consistent
with the work of Folland et al. (2002), which M20 themselves
mention in their introductory discussion on whether the PDO has
a broad or narrow frequency band. However, with reference to
their own former work (Mann and Park, 1994; Mann and Park,
1999) they decide a priori that the PDO is confined to a
narrowband 16–20 year period. When they later find that this
narrowband frequency is not robust over a larger time window,
they conclude that there is no intrinsic PDO at all. However, amore
appropriate interpretation would have been that their assumption
of a continuous narrowband PDO frequency was premature and
should be revised.

CONCLUSION

Altogether, I conclude that the paper M20 is not advancing our
understanding of the nature of multi- and interdecadal
oscillations such as the AMO and PDO.
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