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Marine microbes use extracellular phosphatases to hydrolyze phosphate from organic
matter. Dissolved organic phosphorus (DOP) is typically present in higher concentrations
than phosphate in oceanic surface waters. Yet, the fate and role of different DOP
components, such as phosphomonoester and phosphodiester, are poorly understood.
Most of the investigations on extracellular enzymatic hydrolysis of marine DOP have
focused on phosphomonoesterase (MEA) activity (i.e., alkaline phosphatase), whereas
phosphodiesterase (DEA) measurements are scarce. This limits our understanding of the
ecological and biogeochemical role of DOP sources other than P-monoesters in the sea.
We determined extracellular MEA and DEA activities including their cell-free fractions on a
bimonthly basis over 14 months in surface and mesopelagic subantarctic waters, thus
covering a wide range of phosphate availability levels (from <0.5 to 2.3 µM). We found that
DEA and MEA exhibit similar hydrolysis rates in surface as well as in mesopelagic waters.
The MEA:DEA ratio varied between 0.38 and 5.42 during the study period, indicating
potential differences in function and/or expression among the two enzyme groups,
potentially reflecting differences in the availability and/or utilization of P-monoester and
P-diester pools. Interestingly, the MEA:DEA was negatively correlated to phosphate (r �
−0.82, p � 0.02, R2�0.67) and positively with the inorganic N:P ratio (r � 0.84, p � 0.02,
R2 � 0.67), suggesting that the relative importance of DEA vs.MEA is linked to inorganic P
availability and the N:P ratio. DEAwas also related to the N:P ratio, both at the surface and
at depth, suggesting DEA alone is sensitive to changes in the N:P ratio. The majority
(>70%) of extracellular MEA and DEA was found in the cell-free fraction, increasing with
depth for MEA. Our results indicated that DOP hydrolysis mediated by DEA in the surface
as well as in dark ocean is as important as the frequently measured MEA.
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INTRODUCTION

Microbial communities are the main drivers of the global
biogeochemical cycles (Falkowski et al., 2008). In contrast to
terrestrial systems, the bulk of the organic matter pool available
in the oceans is largely comprised of dissolved organic matter
(DOM) (Arnosti et al., 2014). Microbes, due to their small size,
have exclusive access to this DOM pool, recycling essential
nutrients back into marine food webs (Azam et al., 1983;
Fenchel 2008). Microbes utilize preferentially high molecular
weight DOM as conceptualized by the “size-reactivity model”
(Amon and Benner, 1996; Benner and Amon, 2015). High
molecular weight DOM, however, needs to be enzymatically
cleaved into small molecular weight compounds (<600 Da)
outside the cell before they can be funnelled through the
complex cell wall of heterotrophic bacteria (Nikaido and
Vaara, 1987; Nakae, 1976; Weiss et al., 1991; Amon and
Benner, 1996; Benner and Amon, 2015). This requirement
for extracellular hydrolysis makes microbial extracellular
enzymatic activity (EEA) a rate limiting step in the recycling
of marine organic matter (Hoppe, 1991).

Although dissolved inorganic phosphate (Pi) is the preferred
form of phosphorus for microbial growth, phosphorus in the
epipelagic, and upper mesopelagic layers of the ocean is mainly
present as dissolved organic phosphorus (DOP) (Björkman and
Karl, 2003; Duhamel et al., 2010; Moore et al., 2013). Phosphate
esters (including monoesters and diesters), along with
phosphonates, are the main components of DOP (Kolowith
et al., 2001). The limited number of studies available indicate
that marine P-diesters exhibit similar concentrations as
P-monoesters in oceanic waters (Suzumura et al., 1998;
Monbet et al., 2009; Yamaguchi et al., 2019). Still, most of
the research on the extracellular hydrolytic activity in the ocean
has focused on P-monoesterase (MEA) (i.e., alkaline
phosphatase), while very little is known about P-diesterase
(DEA) activity. MEA and DEA can come from a variety of
sources in the environment including phytoplankton as well as
heterotrophic microbes (Hoppe, 2003; Yamaguchi et al., 2014).
Published DEA research has largely been based on culture
studies (Yamaguchi et al., 2014; Accoroni et al., 2017).
Available environmental studies have indicated that both
P-monoesters and P-diesters can act as phosphorus sources
for marine microbes living in the epipelagic layer (Sato et al.,
2013; Yamaguchi et al., 2019). However, there are no studies on
the seasonal dynamics of DEA to date. Hence, the relative
importance of MEA and DEA in DOP hydrolysis in the
surface waters remains unknown. Even less is known about
the relative importance of MEA vs. DEA in the meso- and
bathypelagic ocean. There are some studies on mesopelagic
MEAs, often reporting comparable MEA activities in surface
and in deep waters (Koike and Nagata, 1997; Hoppe and Ullrich,
1999; Tamburini et al., 2002; Baltar et al., 2009), with cell-
specific MEAs increasing with depth down to the bathypelagic
zone (Hoppe and Ullrich, 1999; Baltar et al., 2010; Baltar et al.,
2013). However, there are no measurements available of DEA in
the meso- and bathypelagic waters.

Extracellular enzymes can either be associated to the cell
surface or released into the environment, i.e., cell-free enzymes
or dissolved enzymes (Hoppe et al., 2002; Baltar, 2018). It has
been found that cell-free EEA represents a significant fraction of
the total EEA (cell-associated plus cell-free EEA), often
accounting for the majority of the total enzyme pool
(Duhamel et al., 2010; Allison et al., 2012; Baltar et al., 2016b;
Baltar et al., 2019). A large contribution of the cell-free EEA to the
total EEA has important ecological and biogeochemical
implications because cell-free enzymes can be temporally and/
or spatially decoupled from the producing cell (Baltar et al., 2010;
Arnosti, 2011; Baltar et al., 2016b). Since residence times for cell-
free enzymes are on the scale of days to weeks (Li et al., 1998;
Ziervogel et al., 2010; Arnosti, 2011; Steen and Arnosti, 2011;
Baltar et al., 2013; Thomson et al., 2019), the history of the water
mass may havemore explanatory power than the in situmicrobial
community in understanding EEA dynamics (Kamer and
Rassoulzadegan, 1995; Baltar et al., 2010; Arnosti 2011; Baltar
et al., 2016b). It has been suggested that a high proportion of cell-
free MEA might explain the paradox of “high alkaline
phosphatase activity at high Pi concentration” (Thomson et al.,
2019). Thus, to understand the role of a particular type of EEA it
is important to determine the contribution of the cell-free to the
total EEA, and how it changes in response to different
environmental conditions. The contribution of cell-free to total
DEA ranged from 13–49% in the only study where the cell-free
fraction of DEA was studied (Sato et al., 2013). The percentage of
cell-free to total MEA ranges from 12–100% throughout the water
column (Hoppe, 1986; Li et al., 1998; Van Wambeke et al., 2002;
Van Wambeke et al., 2009; Duhamel et al., 2011; Allison et al.,
2012; Baltar et al., 2016b; Baltar et al., 2019; Thomson et al., 2019).
The proportion of cell-free MEA (as well as of glucosidases and
leucine aminopeptidase) tends to increase with depth from the
epi- to bathypelagic waters (Baltar et al., 2010). This increase in
the cell-free EEA with depth is consistent with a recent multi-
omics study revealing a relative increase in the secretory
peptidases and carbohydrate active enzymes (CAZymes)
expression from the epi- to bathypelagic layers (Zhao et al.,
2020). However, despite the importance of cell-free EEA in the
dark ocean, there are no reports on the contribution of cell-free to
total DEA and its relation to MEA in the dark ocean.

In this study, the seasonal dynamics of total and cell-free DEA
and MEA are reported for epi- and mesopelagic waters. We
hypothesized that the relative contribution of MEA and DEA
varies from surface to mesopelagic waters and that the fraction of
cell-free DEA covaries with the fraction of cell-free MEA.

METHODS

Study Site and Sampling
Sampling was conducted bimonthly between November 2017 and
January 2019 as part of MOTS (Munida Microbial Observatory
Time-Series, https://www.otago.ac.nz/mots/about/index.html).
MOTS is part of the well-established Munida Time Series
Transect, where samples across the subtropical and
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subantarctic waters off the south east coast of New Zealand are
taken for more than two decades (Currie andHunter 1999; Currie
et al., 2011; Baltar et al., 2015; Baltar et al., 2016a). For this study,
samples were taken at the most offshore station (Station 8),
located in subantarctic waters approximately 65 km off the
Otago coast (−45.83°N, 171.54°E). Station 8 was chosen for
this sampling as it is known to be subantarctic water
consistently thought the year in the epi-and mesopelagic
(Jones et al., 2013). Seawater samples were taken in triplicate
for extracellular enzymatic activities from 2 m depth using an
onboard continuous pump, and from the mesopelagic (500 and
1000 m) waters using Niskin bottles mounted on a rosette
sampler. Temperature was logged on conductivity temperature
depth profilers. Samples collected from 1000 m were only taken
on the final two research cruises.

Nutrient and Chlorophyll-a Analyses
Nutrient analyses were performed on a SEAL AA3 HR auto-
analyser (Seal Analytical, United States). All sampling equipment
was rinsed three times with Milli-Q water before and after
soaking in 10% HCl for > 6 h and oven dried at 60°C prior to
collecting samples. Seawater samples were filtered (GF/F) then
immediately frozen until analysis for dissolved reactive
phosphorus and dissolved inorganic nitrogen. The detection
limits were 0.1 mmol m−3 for dissolved inorganic nitrogen and
0.03 mmol m−3 for dissolved reactive phosphorus. Samples for
chlorophyll-a analysis were filtered on-board using low vacuum
(e.g., <200 mmHg) through Whatman GF/F filters and frozen
until analysis. Chlorophyll-a was extracted in 90% acetone for
16–24 h and measured using a calibrated Turner Designs
Fluorometer following the procedures outlined by Parsons
et al., (1984).

Bacterial Abundance
The bacterial abundance was determined by flow cytometry as
described elsewhere (Gasol (1999), Gasol and Del Giorgio (2000)
using a FACS Canto II (Becton & Dickinson) with a blue laser
(488 nm wavelength). Samples (0.4 ml) preserved in 2%
glutaraldehyde were stained with 1:10,000 final concentration
of Sybr Green I in the dark for 15 min. Samples were analyzed at
low speed for 2 min each and FL1 positive events counted on a
FL1 vs. SSC plot using FlowJo10 software.

Extracellular Enzymatic Activity Assays
Extracellular enzymatic activities were assessed based on the
hydrolysis of the fluorogenic substrate analogues (Hoppe,
1983). The fluorogenic substrates 4-methylumbelliferyl (MUF)-
phosphate, and Bis(MUF)-phosphate were used to assess
phosphomonoesterase (MEA, i.e., alkaline phosphatase) and
phosphodiesterase (DEA) activities. DEA estimates using
Bis(MUF)-phosphate can theoretically be overestimated
because one molecule of Bis-MUP can release two molecules
of 4-methylumbelliferone, the latter of which is catalyzed by
monoesterase, although in practice it was shown that it was
overestimated by at most 5–16% in a large transect extending
from the North to the South Pacific Ocean (Sato et al., 2013).
Saturating substrate concentrations of 100 μMwere used based on

pre-established kinetics forMEAwith sample from this study site.
Since P-diesters are usually at lower concentrations than
P-monoesters in the ocean (Yamaguchi et al., 2019), and
therefore what is saturating for MEA should also be so for
DEA, we decided to use the same saturating concentration of
100 µM for DEA in order to compare MEA to DEA rates under
the same conditions. These concentrations are saturating, and
hence they only represent potential activity rates in the
environment. The saturating concentrations we obtained in
our preliminary test (which ranged between 50 and 100 µM)
are consistent with those from many other previous marine
studies (Baltar et al., 2010; Celussi and Del Negro, 2012; Steen
et al., 2016; Celussi et al., 2019). Greiner Bio-one 96-well non-
protein binding microplates were filled with six technical
replicates of the fluorogenic substrates (10 μl) and seawater
(290 μl) reaching final concentrations of 100 μM. Standards
were prepared using 0.22 μm filtered seawater. Plates were read
in a Spectramax M2 spectrofluorometer (Molecular Devices,
United States) with excitation and emission wavelengths of
365 and 445 nm, respectively, both before and after an
incubation time of 3 h. The wavelength bandwidth was 9 nm
with a detection limit of 3.0 fmol/well in 200 μl FITC 96 wells. Six
replicate samples without substrate addition served as blanks in
each plate. Incubations were performed in the dark at the mean
seawater temperature at the time of sampling. To separate the
cell-free fraction from the total EEA pool, samples were gently
filtered through low protein binding 0.22 μm PES Millex-GP
syringe filters following published protocols (Kim et al., 2007;
Baltar et al., 2010). Cell-specific extracellular enzymatic activities
were calculated by dividing the EEA rates by the abundance of
bacterial cells.

Statistical Analyses
Pearson’s correlations were carried out using the software
package Sigma Stat 2.03 (SPSS). When tests for normality
(Kolmogorov-Smirnov) were not met, data were square root
transformed prior to analysis. When transformations were not
possible Spearman’s correlations were applied.

RESULTS AND DISCUSSION

Temperatures ranged from 8.7 to 17.4°C in the epipelagic layer
and around 7°C in the mesopelagic waters (500 m) during the
study period (Figure 1A). There was a shift in the inorganic
nutrient concentrations in July 2018 in the epi- and mesopelagic
waters, which separated the study into two periods (pre- and
post-July 2018) (Figure 1A). In the epipelagic waters, mean
phosphate and nitrate concentrations increased in July 2018
(from 0.51–1.03 µM and 8.1–11.8 µM for phosphate and
nitrate, respectively), remaining at about these levels for the
rest of the study (Figure 1A). In contrast, in the mesopelagic
layer phosphate and nitrate concentrations decreased from
February 2018 to April 2018. This increase in surface waters
and decrease in mesopelagic waters of inorganic nutrients might
be due to the austral winter overturning and mixing of surface
and mesopelagic waters, which would cause a relative dilution of
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deep water and an enrichment in surface waters. This is
consistent with the seasonal characterisation of our study
region/transect, in which the mixed layer of our Station 8
(SAW) varied from 20 m in summer to >200 m in winter
(Jones et al., 2013). Chlorophyll-a concentrations indicated the
presence of an austral autumn and spring-summer
phytoplankton bloom in March-April and November 2018,
respectively, coinciding with an increase in bacterial
abundance (Figure 1B).

MEA and DEA activities were always detected throughout the
study (both in the epi- and mesopelagic waters despite the
observed differences in temperature and phosphate

concentrations (Figure 2). MEA and DEA were in the same
range in both epi- and mesopelagic waters (Figure 2A). MEA
ranged between 2.75–12.23 nmol L−1 h−1 (mean ± SE: 8.6 ±
1.5 nmol L−1 h−1), and DEA between 1.43–20.44 nmol L−1 h−1

(10.9 ± 4.7 nmol L−1 h−1). The MEA rates measured in the
subantarctic waters were similar to the MEA rates measured
previously in this water mass (Thomson et al., 2019) and in the
North Atlantic by Steen et al. (2016) but were frequently lower
than some reports from the Mediterranean (Celussi and Del
Negro, 2012; Celussi et al., 2019). In addition, ourMEA rates were
higher than those reported from the North Atlantic by (Baltar
et al., 2009; Baltar et al., 2010; Baltar et al., 2013), North Pacific

FIGURE 1 | Seasonal variability in temperature, phosphate, and nitrate (A), and chlorophyll-a and mean (±SE) bacterial abundance (B) in the epi- and mesopelagic
layer at the study site in subantarctic waters.

FIGURE 2 | Seasonal variation in mean (±SE) total phosphomonoesterase activity (MEA) and phosphodiesterase activity (DEA) (A), the ratio of MEA to DEA (±SE)
(B), the mean (±SE) cell-specific MEA and DEA given in nmol/cell−1/h−1 (C), and the mean (±SE) cell-free (CF) fractions for MEA and DEA (D) in the epi- and mesopelagic
layer at the study site.
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(Koike and Nagata, 1997), Indian Ocean (Tamburini et al., 2002)
and Mediterranean Sea (Hoppe and Ullrich, 1999) which
typically exhibit MEA rates < 4 nmol L−1 h−1. The DEA rates
measured in the subantarctic waters were comparable at times to
values reported by Yamaguchi et al. (2019) from the North Pacific
but were generally higher overall and were much higher (1–2
orders of magnitude) than those reported by Sato et al. (2013) for
the North and South Pacific.

Prior to July 2018, MEA was higher than DEA, however, this
was reversed after July 2018 (Figure 2A). The ratio MEA:DEA
decreased from 5.3 to 2.1 in the epipelagic and from 4.0 to 1.8 in
the mesopelagic waters by July 2018 and decreased to MEA:
DEA ratios <1 from November 2018 onwards (Figure 2B). The
shift in the MEA:DEA ratio also indicates potential changes in
the availability of different P-esters and/or microbial enzyme
groups. The distribution pattern for the two P-esters has been
shown to differ latitudinally and with depth in the open ocean
(Yamaguchi et al., 2019), which might explain the changes in
the dominance from MEA prior to July to DEA after July
(Figure 2B). Unfortunately, no measurements of phosphate
esters are available from the study site. The shift in the MEA:
DEA ratio coincides with the increase in inorganic P and N
concentrations in July. Although no significant correlations
were found for the MEA or DEA and any of the environmental
parameters, a negative correlation between the MEA:DEA ratio
and phosphate concentration was observed in surface waters
(Table 1, Pearson’s R2 � 0.67, p � 0.02) along with a positive
correlation between the N:P ratio and MEA:DEA (Pearson’s
R2 � 0.67, p � 0.02). These relationships between the MEA:DEA
ratio, phosphate, and the N:P ratio were not found in the
mesopelagic, which is reasonable considering the fairly high
phosphate concentration in the mesopelagic waters. The N:P
ratio also showed negative correlations with total DEA in the
epipelagic waters (Table 1, Pearson’s R2 � 0.58, p � 0.02) and in
the mesopelagic layer (Spearman’s R2 � 0.59, p � 0.03). It is not

clear why the negative correlations between DEA and the N:P
ratio exist. Sato et al. (2013) found no relationship between
phosphate concentration and total MEA and DEA in the South
Pacific, but a negative relationship in the North Pacific. These
findings from the South Pacific are consistent with the
observations in this study, as we also did not find any
relation between total MEA or DEA and phosphate.
Collectively, these results show that DEA can, at times, be as
important as MEA for DOP hydrolysis, indicating a key role of
phosphate availability in the relative role of MEA vs. DEA.

Interestingly, the temporal patterns in MEA and DEA
described above were detected in the epi- as well as in the
mesopelagic waters, indicating a strong link between these two
layers in DOP cycling. The cell-specific (i.e., total enzymatic
activities per bacterial cell) MEA and DEA activities increased
with depth (Figure 2C), mainly caused by the decreasing
bacterial abundance with depth (Figure 1B). This is
consistent with increases in cell-specific MEA from the epi-
to the bathypelagic waters reported for the North Atlantic and
Indian Ocean (Hoppe and Ullrich, 1999; Baltar et al., 2010;
Baltar et al., 2013). As there are no previous cell-specific DEA
rates available from mesopelagic waters, our results are the first
to confirm hydrolysis of DOP in the mesopelagic waters by
DEA. In our particular study, the key observation that almost all
MEA and DEA was found in the cell-free fraction implies that
the activity that we measured was in fact not associated with any
particular group of organisms. The high (and comparable to
surface) MEA and DEA rates in the mesopelagic (where
phytoplankton should not be active) further indicates that if
these extracellular enzymes would be associated with some
organism it is most likely that it will be to heterotrophic
prokaryotes (at least in the deep waters). The intention of
normalizing the MEA and DEA rates to some biological
source (in this case we selected heterotrophic prokaryotes
because of the reasons just mentioned above) was to see

TABLE 1 | Pearson’s correlation coefficient (r) between the total, cell-free fractions (%) and ratios of phosphomonoesterase activity (MEA) and/to phosphodiesterase activity
(DEA) and temperature, phosphate, nitrate, chlorophyll-a, and bacterial abundance.

MEA DEA MEA % DEA % MEA:DEA

Surface Surface Surface Surface Surface

r p-value r p-value r p-value r p-value r p-value

Temp −0.16 0.736 0.30 0.517 0.46 0.301 0.06 0.906 0.66 0.109
Phosphate 0.19 0.692 0.51 0.245 −0.62 0.140 0.24 0.612 −0.82 0.025
Nitrate −0.06 0.893 0.20 0.665 −0.46 0.303 −0.18 0.701 −0.70 0.078
N:P −0.26 0.578 −0.84 0.018 0.70 0.082 −0.61 0.148 0.84 0.186
Chlorophyll-a 0.49 0.269 0.65 0.114 −0.66 0.106 0.29 0.532 −0.32 0.489
Bacterial abundance 0.30 0.515 0.49 0.267 −0.13 0.785 0.48 0.278 −0.06 0.894

500 m 500 m 500 m 500 m 500 m

r p-value r p-value r p-value r p-value r p-value

Temp −0.23 0.615 −0.22 0.644 −0.14 0.757 0.40 0.375 0.03 0.946
Phosphate 0.10 0.825 −0.03 0.944 −0.05 0.911 0.73 0.0608 0.27 0.559
Nitrate −0.17 0.724 −0.63 0.133 0.52 0.236 0.40 0.373 0.69 0.083
N:P* −0.32 0.438 −0.79 0.025 0.89 0.000 −0.25 0.545 0.64 0.096
Bacterial abundance 0.65 0.116 0.74 0.058 −0.59 0.164 −0.21 0.658 −0.37 0.415

Spearman correlations are indicated with an *. Values of r that are significant at p > 0.05 are highlighted in bold.
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briefly how the relation was between the MEA and DEA rates
and the presence of microorganisms with depth/time. However,
this should be interpreted with some skepticism due to the
complications arising from the cell-free fractions.

Cell-free enzymes accounted for the vast majority of both
MEA andDEA in the epi- andmesopelagic waters throughout the
study period (Figure 2D). In the epipelagic water, cell-free MEA
contributed 88 ± 1.4% to total MEA and cell-free DEA 87 ± 4.3%
to total DEA. Reports of the cell-free MEA proportion on total
MEA vary widely ranging from as low as 12–100% of total MEA
(Hoppe, 1986; Allison et al., 2012; Baltar et al., 2016b). Cell-free
DEA contributed between 71 and 100% (91 ± 2%) to total DEA
and was higher than reported in the only other published study
(range: 13–49%, 38 ± 15%) in epipelagic waters (Sato et al., 2013).
Possibly, the high cell-free DEA fraction in the present study
might be associated with the low temperature characteristic of the
subantarctic waters at our study site. The increase in the
contribution of cell-free enzymes has been repeatedly linked to
lower temperatures in the Atlantic Ocean (Baltar et al., 2010), in
the Baltic Sea (Baltar et al., 2016b) and in laboratory experiments
(Baltar et al., 2017). Lower temperatures are suggested to
contribute to higher cell-free enzymatic activities due to the
combined positive effects of cold preservation and reduced
rates of heterotrophic consumption of dissolved proteins/
enzymes (Baltar et al., 2016b; Baltar 2018).

In the mesopelagic layer, the contribution from cell-free MEA
(92 ± 1.6%) was higher than in the epipelagic waters t(12) �
−2.322, p � 0.039*, DEA was also higher (93 ± 1.4%) but was not
statistically significant t(12) � −1.413, p � 0.163 (Figure 2D). This
is consistent with previous studies reporting increasing cell-free
proportions of MEA with depth (Baltar et al., 2010; Baltar et al.,
2013). Although there are no other mesopelagic DEA estimates to
make comparisons, the high contribution of cell-free MEA and
DEA in the epi- and mesopelagic waters might explain the
coupling observed between these two water layers, by
transport of extracellular enzymes either via winter vertical
overturning and mixing, and/or by fragmentation and
dissolution of sinking particles (Koike and Nagata, 1997).

In conclusion, at the study site in South Pacific Antarctic waters,
DEA rates can be comparable, at times, to the more frequently

measuredMEA. This suggests that DEA is relevant for the hydrolysis
of DOP. The negative relationship between the MEA:DEA ratio and
phosphate concentrations, and the positive relationship with the
inorganic N:P ratio in epipelagic waters suggest that inorganic
phosphorus availability along with the N:P ratio is the key
parameter in controlling the relative importance of MEA vs.
DEA in marine DOP hydrolysis. N:P ratios also showed negative
relationships with DEA alone, both in the epi- and mesopelagic
layer, suggesting DEA is sensitive to changes in the inorganic N:P
ratio. Most of the DEA and MEA was found in the cell-free fraction
and the contribution of the cell-free fractions to the total MEA and
DEA was higher in the mesopelagic than in the epipelagic layer.
These findings enhance our understanding of the marine ecological
and biogeochemical mechanisms underpinning the cycling of
phosphorus.
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