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Uncertain or indirect “soft” data, such as geologic interpretation, driller’s logs, geophysical
logs or imaging, offer potential constraints or “soft conditioning” to stochastic models of
discrete categorical subsurface variables in hydrogeology such as hydrofacies. Previous
bivariate geostatistical simulation algorithms have not fully addressed the impact of data
uncertainty in formulation of the (co) kriging equations and the objective function in
simulated annealing (or quenching). This paper introduces the geostatistical simulation
code tsim-s, which accounts for categorical data uncertainty through a data “hardness”
parameter. In generating geostatistical realizations with tsim-s, the uncertainty inherent to
soft conditioning is factored into both 1) the data declustering and spatial correlation
functions in cokriging and 2) the acceptance probability for change of category in simulated
quenching. The degree or sensitivity to which soft data conditions a realization as a
function of hardness can be quantified by mapping category probabilities derived from
multiple realizations. In addition to point or borehole data, arrays of data (e.g., as derived
from a depth-dependency function, probability map, or “prior realization”) can be used as
soft conditioning. The tsim-s algorithm provides a theoretically sound and general
framework for integrating datasets of variable location, resolution, and uncertainty into
geostatistical simulation of categorical variables. A practical example shows how tsim-s is
capable of generating a large-scale three-dimensional simulation including curvilinear
features.
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1 INTRODUCTION

In many hydrogeological modeling applications, much of the available characterization data for
categorical variables, such as lithology, texture, or hydrofacies, are uncertain or less than 100%
accurate. In some geostatistical applications, the categorical data such as soil texture are treated as
100% accurate or “hard” data despite the fact these data are uncertain for various reasons (Carle,
1996; Burow et al., 1997; Carle et al., 1998; Weissmann et al., 1999). In other applications, uncertain
or indirect “soft” data such as geophysical imaging are available but found difficult to apply as “soft
conditioning” to geostatistical simulations of categorical variables (Falivene et al., 2007; Koch et al.,
2014). Categorization of hydrogeological variables often has uncertainty attributable to sample
quality, geologic interpretation, or indirectness of measurement (e.g., geophysical logs, cone
penetrometer data). For example, so-called “driller’s logs” or lithologic descriptions by well
drillers based on interpretations of drilling conditions, cuttings, and limited core samples are,
understandably, uncertain (Oatfield and Czarnecki, 1989; Smith, 2002; Dumedah and Schuurman,
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2008; Arihood, 2009; Tsai and Elshall, 2013). Yet driller’s logs
may provide the most detailed characterization information
available for many local site to basin-scale hydrogeological
modeling applications (Ezzedine et al., 1999; Weissmann et al.,
1999; Weissmann and Fogg, 1999; Carle et al., 2006; Fleckenstein
et al., 2006; Elshall et al., 2013). Alternatively, hydrogeological
categories can be inferred from geophysical measurements or
imaging, but the resulting inferences are inherently uncertain.
Paradis et al. (2015) found that even after application of
sophisticated machine learning techniques to cone
penetrometer test and soil moisture and resistivity probe data,
classification errors persist in hydrofacies identification. The
resolution of geophysical images varies as a result of
petrophysical relationships and, therefore, provides indirect
contraints on lithology, texture, or hydrofacies, as further
discussed in application of three-dimensional resistivity maps
derived from airborne electromagnetic surveys to
characterization of spatial occurrences of sand-clay textures
(Koch et al., 2014; Hoyer et al., 2015) and electrical resistance
tomographs to determine spatial distributions of alluvial or fluvial
hydrofacies (Carle et al., 1999; Carle and Ramirez, 1999; Hermans
and Irving, 2017). It is a well-accepted fact in the Earth sciences
that uncertainty is common to subsurface data.

A general framework for integrating soft data into categorical
geostatistical simulation should be useful to stochastic subsurface
characterization and inversion of discrete heterogeneity within
hydrogeologic systems. One, two, or three-dimensional (3-D)
spatial information derived from geophysical imaging or logging
(e.g., seismic, electrical) or hydrogeologic interpretation (e.g.,
cross-sections or calibrated flow models) could be treated as a
type of soft data available for conditioning geostatistical
simulation of categorical variables. In stochastic inversion, a
general framework for integrating prior information could be
used, for example, to selectively manipulate discrete
heterogeneity structure, such as the interconnectivity of
permeable units or the continuity of impermeable units (Carle
and Ramirez, 1999; Carle et al., 1999; Aines et al., 2002;
Wainwright et al., 2014). A “Markov-Bayes” approach has
been proposed to transform the soft data to prior probability
distributions (Zhu, 1991; Deutsch and Journel, 1998), but this
approach has been deemed intractable because of nonlinear
relationships and large volumetric scale of the soft data
(Deutsch and Wen, 2000).

Categorical or “indicator” bivariate geostatistical approaches
have long been recognized as offering realistic and practical
means for assessing the impact of subsurface heterogeneity on
field- and basin-scale flow and transport processes (Poeter and
Townsend, 1994; McKenna and Poeter, 1995; Poeter and
McKenna, 1995; Tsang et al., 1996). As part of the T-ProGS
software package (Carle, 1999; Carle, 2007), the tsim code was
developed to take advantage of the interpretability of transition
probability statistic to ensure that spatial cross-correlations and
juxtapositional tendencies of hydrogeologic units or hydrofacies
are fully considered in categorical stochastic simulation (Carle,
1996; Carle, 1997; Carle and Fogg, 1996; Carle and Fogg, 1997).
The tsim code was modified from the variogram-based sisim
code (Deutsch and Journel, 1992; Deutsch and Journel, 1998) in

three main ways: 1) formulation of the estimate of the local
probability of occurence of a discrete category by a cokriging
system of equations instead of multiple indicator kriging
equations (Carle and Fogg, 1996), 2) addition of a simulated
quenching step to improve match of simulated and modeled
simulated variability (Carle, 1997), and 3) addition of an option to
vary the local direction of anisotropy direction (Carle, 1996;
Carle, 1999; Carle, 2007). The latter modification enables
simulation of curvilinear features such as variable stratigraphic
dip, major direction of anistropy, and sinuous meandering of
fluvial facies (Carle et al., 1998; Tompson et al., 1999; Carle et al.,
2006; Green et al., 2010; Engdahl et al., 2012). These
modifications were made to improve the ability of
geostatistical methods to simulate realistic three-dimensional
alluvial or fluvial hydrofacies architecture that influences site-
scale flow and transport behavior (Fogg, 1986; Tompson et al.,
1999; Fogg et al., 2000; Labolle and Fogg, 2001). Another
development of the T-ProGS simulation environment is that it
leverages the geologic reality that the spatial variability of many
hydro- or geo-facies systems can be characterized by a
continuous-lag Markov chain, which provides an intuitive yet
statistically rigorous framework for developing geologically
realistic models with a minimal number of parameters
(Vistelius, 1949; Krumbein and Dacey, 1969; Harbaugh and
Bonham-Carter, 1970; Agterberg, 1974; Doveton, 1994; Carle
and Fogg, 1997). However, the user of tsim can choose to
implement other 3-D models of the transition probability, if
so desired (Carle, 1999; Carle, 2007).

The tsim code and its associated transition probability-based
categorical geostatistical methodologies have subsequently been
found to be useful to characterization andmodeling of a variety of
heterogeneous hydrogeological systems (Carle, 2000; Ritzi, 2000;
Lu and Zhang, 2002; Lu et al., 2002; Bohling and Dubois, 2003;
Zhang and Fogg, 2003; Carle et al., 2004; James, 2004; Troldborg,
2004; Weissmann et al., 2004; McDonald et al., 2005; Ye and
Khaleel, 2008; Janza, 2009; Sakaki et al., 2009; Alberto, 2010;
Engdahl et al., 2010b; Janza, 2009; Doherty and Christensen,
2011; Papapetrou and Theodossiou, 2012; Purkis et al., 2012;
Guastaldi et al., 2014; He et al., 2015; Song et al., 2015;
Weissmann et al., 2015; Krage et al., 2016; Zhu et al., 2016a;
Meirovitz et al., 2017; Muskus and Falta, 2018; Erdal et al., 2019;
Sun et al., 2019; Wu et al., 2019; Arshadi et al., 2020).
Furthermore, tsim has been applied to the study of a range of
problems and processes involving subsurface heterogeneity
including groundwater recharge or river flow loss (Tompson
et al., 1999; Izbicki, 2002; Fleckenstein et al., 2006; Frei et al., 2009;
Engdahl et al., 2010a, Pryshlak et al., 2015; Ganot et al., 2018;
Maples et al., 2019, Maples et al., 2020), integration of geophysical
data or imaging (Carle and Ramirez, 1999; Carle et al., 1999; Zhu
et al., 2016b), aquifer or pore system interconnectivity,
percolation, and preferential flow (Fogg et al., 2000; Proce
et al., 2004; Harter, 2005; Knudby et al., 2006; Bianchi et al.,
2011; Huang et al., 2012), risk analysis (Maxwell et al., 2000;
Maxwell et al., 2008), heterogeneity effects on groundwater flow
(Lu et al., 2001; Jones et al., 2002; Phillips et al., 2007; Traum et al.,
2014; Bianchi, 2017; Liao et al., 2020), heterogeneity effects on
contaminant transport (Pawloski et al., 2001; Tompson et al.,
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2002; Hu et al., 2003; Maxwell et al., 2003; Zhang and Fogg, 2003;
Pozdniakov et al., 2005; Zhang et al., 2007; Sivakumar et al.,
2005a; Sivakumar et al., 2005b; Carle et al., 2006; Maji and
Sudicky, 2008; Sun et al., 2008; Ye et al., 2009; Cooper et al.,
2010; Baidariko and Pozdniakov, 2011; Zhang and Meerschaert,
2011; Pozdniakov et al., 2012; Zhang et al., 2013; Glinskii et al.,
2014; Liu et al., 2014; Zhang et al., 2014; Beisman et al., 2015;
Bianchi et al., 2015; Lu et al., 2015; Maghrebi et al., 2015; Siirila-
Woodburn and Maxwell, 2015; Siirila-Woodburn et al., 2015;
Mi et al., 2016; Bianchi and Pedretti, 2017; Giraldo et al., 2017;
Soltanian et al., 2017a; Teramoto et al., 2017; Chen et al., 2018;
Guo et al., 2019b; Guo et al., 2019c; Vincent Henri and Harter,
2019; Guo et al., 2020), efficacy of remediation (Labolle and Fogg,
2001; Lee, 2004; Misut, 2014; Abriola et al., 2019; Guo et al.,
2019a), effects of diffusion, dispersion, or fractionation on
groundwater tracers (Labolle and Fogg, 2001; Weissmann
et al., 2002; Labolle et al., 2006; Labolle et al., 2008; Green
et al., 2010; Green et al., 2014; Engdahl et al., 2012; Yin et al.,
2020), sequestration of carbon dioxide (Hovorka et al., 2001;
Doughty and Pruess, 2004; Ramirez et al., 2006; Ramirez et al.,
2010; Deng et al., 2012; Espinet et al., 2013; Sun et al., 2013; Yang
et al., 2013; Carroll et al., 2014; Mansoor et al., 2014;
Mukhopadhyay et al., 2015; Bianchi et al., 2016; Kitanidis,
2016; Soltanian et al., 2016; Trainor-Guitton et al., 2016;
Amooie et al., 2017; Soltanian et al., 2017b; Damico et al.,
2018; Buscheck et al., 2019; Yang et al., 2019; Yang et al.,
2020), stochastic inversion of hydrofacies spatial distributions,
hydraulic properties, or transport behavior (Aines et al., 2002;
Jones et al., 2003; Harp et al., 2008; Bohling and Butler, 2010;
Harp and Vesselinov, 2010; Blessent et al., 2011; Espinet and
Shoemaker, 2013; Berg and Illman, 2015; Wang et al., 2017; Lee
et al., 2018; Song et al., 2019), spatial variability of reactive
mineral assemblages (Carle et al., 2002; Deng et al., 2010),
analysis of contaminant plumes (Reed et al., 2004; Maji et al.,
2006; Maji and Sudicky, 2008), assessment of nitrate
contamination, reduction, and removal (Carle et al., 2004;
Carle et al., 2006; Hansen et al., 2014; Sawyer, 2015; Wallace
et al., 2020), permeability structure within fractured rock (Park
et al., 2004; Blessent et al., 2011; Blessent, 2013), 3-D modeling of
ore-grade distributions (Fisher et al., 2005), probabilistic well
location (Stevick et al., 2005), non-point source contamination
(Zhang et al., 2006; Refsgaard et al., 2014; Zhang et al., 2018),
upscaling of flow and transport parameters (Dai et al., 2007;
Fleckenstein and Fogg, 2008; Bakshevskaia and Pozdniakov,
2016), geotechnical engineering (Beretta and Felletti, 2007;
Felletti and Berretta, 2009; Zetterlund et al., 2011; Grasmick
et al., 2020), assessment of nuclear waste disposal (Back and
Sundberg, 2007), effects of subsurface heterogeneity on remote
sensing (Eslinger et al., 2007), wellhead protection and
contamination vulnerability (Burow et al., 2008; Heywood,
2013; Yager and Heywood, 2014; Theodossiou and
Fotopoulou, 2015), physical and chemical heterogeneity in
streambeds and the hyporheic zone (Schornberg et al., 2010;
Faulkner et al., 2012; Zhou et al., 2014; Pryshlak et al., 2015; Singh
et al., 2018; Pescimoro et al., 2019; Liu et al., 2020), effects of
micro-topography on surface-subsurface exchange (Frei et al.,
2010), analysis of transport at the macrodispersion experiment

site (Bianchi et al., 2011; Zheng et al., 2011; Bianchi and Zheng,
2016; Pedretti and Bianchi, 2018; Yin et al., 2020), 3-D soil texture
(Haugen et al., 2011; Roig-Silva et al., 2012; Li et al., 2014b),
characterization of groundwater ecosystems (Larned, 2012),
effects of petroleum reservoir heterogeneity (Purkis et al.,
2012; Kwon et al., 2017), geologic units of the Swiss Jura
(Sartore, 2013), groundwater hydrology of fens (Sampath
et al., 2015; Sampath et al., 2016), potential for liquefaction
(Munter et al., 2016; Munter et al., 2017; Boulanger et al.,
2019), coupled surface and subsurface flow (Blessent et al.,
2017; Erdal et al., 2019), and geomechanical modeling of land
subsidence (Zhu et al., 2020). Given the usefulness of the tsim
algorithm, which was originally designed for categorical
stochastic simulation with conditioning by hard data only, an
improved capability to assimilate conditioning from soft data or
prior information of variable quality is expected to be useful to
hydrogeological and related subsurface applications and research.

In this paper, a simple theoretical framework is developed for
incorporating uncertain, indirect, or soft categorical data into
categorical geostatistical simulation. Geostatistical realizations
will honor or be conditional to both hard and soft data. The
theory considers that soft data should not be treated the same as
hard data in formulating (co)kriging equations and objective
functions in simulated annealing (or quenching) as implemented
in the original categorical stochastic simulation codes using
bivariate spatial statistics such as isim3d (Gomez-Hernandez
and Srivastava, 1990), tsim (Carle 1996; Carle et al., 1998),
sisim and anneal (Deutsch and Journel, 1998), and iksim
(Ying, 2000).

A new version of tsim, called tsim-s, has been coded to
enable incorporation of soft categorical data or prior
information. The tsim-s algorithm was originally conceived
to enable tsim to produce and perturb stochastic realizations
for Monte Carlo Markov chain inversion (Aines et al., 2002;
Carle, 2003; Glaser et al., 2004). The new capabilities in tsim-s
have more general applicability and flexibility to handle
conditioning data of variable quality or uncertainty. tsim-s
will be made available by request as the open-source fortran
code tsim has been distributed in the past. The development of
the equations necessary for implementation of the tsim-s
algorithm are included in this paper to fully document the
methods and to facilitate coding of the tsim algorithms in
higher-level languages such as R (Sartore, 2013; Sartore et al.,
2016). As will be seen in the equations, the computational
overhead for tsim-s is not signifcantly different from tsim
because the only modifications are to the entries in the
cokriging matrices and the parameters of the quenching
objective function.

This paper provides the theory behind the tsim-s algorithms
and results from example applications. The paper first reviews
transition probability-based indicator geostatistical theory
implemented in the tsim algorithms. Next, the paper derives
the equations used for implementing the new soft data
capabilities to account for uncertainty in categorical variables
using the “hardness” concept previously introduced for
continuous variables (Deutsch and Wen, 2000). Cokriging
equations and simulated quenching objective functions are re-
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ormulated to account for soft data using the hardness concept.
Example applications are given for hard and soft conditioning at
boreholes and from prior conditioning by an array of data such as
another realization or a depth-dependent uncertainty function.
Results of a 3-D simulation by Carle et al. (2006) are included to
demonstrate that tsim-s can be used to produce large-scale
stochastic realizations useful for investigation of flow and
transport processes in hydrogeologic systems. These examples
are provided to show the flexibility of the algorithm and by no
means cover all potential applications, a topic that is beyond the
scope of this paper. Further discussion is added to clarify the
capabilities and limitations of the tsim and tsim-s algorithms in
relationship to variogram-based and multi-point geostatistical
methods and the current understanding of how the simulation
algorithms can and should be implemented in a geological context.

2 MATERIALS AND METHODS

2.1 Transition Probability-Based Indicator
Geostatistics
Transition probability-based indicator geostatistics is a
categorical geostatistical approach where the transition
probability bivariate statistic is used to analyze spatial
variability and formulate cokriging equations (Carle and Fogg,
1996). The transition probability approach enables consideration
of spatial cross correlations (e.g., how different facies tend to
locate in space relative to each other) and facilitates a Markov
chain modeling framework that can be linked to geologic
interpretation (Krumbein and Dacey, 1969; Miall, 1973; Carle
and Fogg, 1997). Indicator variogram-based geostatistical
approaches do not fully consider spatial cross-correlations and
rely on data-intensive empirical curve fitting for model
development (Deutsch and Journel, 1992; Deutsch and
Journel, 1998; Goovaerts, 1996; Goovaerts, 1997).

In a categorical geostatistical approach, an indicator variable is
defined with respect to mutually exclusive or discrete categorical
variables (e.g., lithofacies, hydrofacies) by

Ik(x) � { 1, if category k occurs at location x
0, otherwise

k � 1, . . . ,K,

(1)

where x is location, and K is the number of categories. The
probability that category k occurs at x is equivalent to the
expected value of the indicator variable:

Pr{Ik(x) � 1} � E{Ik(x)}. (2)

In transition probability-based indicator geostatistics (Carle and
Fogg, 1996), the transition probability bivariate spatial statistic is
used to quantitatively describe spatial variability of the discrete
categorical variables, which we will generally refer to as “facies.”
Assuming second-order stationarity, the transition probability
tjk(h) is defined as a conditional probability that depends on a lag
separation vector h by

tjk(h) � Pr{k occurs at x + h
∣∣∣∣ j occurs at x}. (3)

Applying Bayes theorem and Eqs. 1 and 3 is formulated with
respect to indicator variables by

tjk(h) � Pr{j occurs at x and k occurs at x + h}
Pr{j occurs at x}

� Pr{Ij(x) � 1 and Ik(x + h) � 1}
Pr{Ij(x) � 1} . (4)

The transition probability entries, tjk(h), form the transition
probability matrix, T(h), as

T(h) � ⎡⎢⎢⎢⎢⎢⎣ t11(h) / t1K(h)
« 1 «

tK1(h) / tKK(h)
⎤⎥⎥⎥⎥⎥⎦. (5)

Other bivariate statistics, such as the indicator (cross-) variogram
or covariance can be used to implement indicator geostatistical
techniques. However, the transition probability has several
advantages:

• The transition probability is defined as a conditional
probability, which facilitates the connection of statistical
measures to geologic interpretation of facies architecture
(Miall, 1973; Carle et al., 1998).

• The geologically observable and interpretable parameters of
proportions, mean length, and juxtapositional tendencies
can be used to develop Markov chain models (Carle and
Fogg, 1996; Carle and Fogg, 1997).

• Non-symmetric juxtapositional tendencies can be
considered (Carle and Fogg, 1996).

• Three-dimensional (3-D) transition probability models of
spatial variability are readily developed from 1-D Markov
chains along principal stratigraphic directions (Carle and
Fogg, 1997).

• Continuous-lag Markov chains have been found suitable
for 3-D modeling of vertical and lateral spatial
transitioning among geo- or hydro-facies (Carle 1996;
Carle and Fogg, 1996; Carle and Fogg, 1997; Carle et al.,
1998; Fogg et al., 1998; Zhang and Fogg, 2003; Proce et al.,
2004; Ye and Khaleel, 2008; Engdahl et al., 2010a; Bianchi
et al., 2011; Pozdniakov et al., 2012; Purkis et al., 2012;
Bakshevskaia and Pozdniakov, 2016; Krage et al., 2016;
Sartore et al., 2016; Zhu et al., 2016a; Meirovitz et al.,
2017; Guo et al., 2019b).

2.2 Simulation with Hard Data Only
The tsim computer code is used to generate geostatistical
“realizations” of categorical variables such as lithology, soil
texture, or hydrofacies. The realizations generated by tsim
consist of a rectangular block of regularly-spaced grid cells.
The conditional simulation algorithm consists of two steps:

(1) cokriging-based “sequential indicator simulation” (SIS), and
(2) simulated quenching.

summarized below and described in further detail by Carle
(1996), Carle et al. (1998), and Deutsch and Journel (1998).
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2.2.1 Sequential Indicator Simulation Step
The algorithm and code used by the SIS step in tsim is modified
from the sisim code (Deutsch and Journel, 1992; Deutsch and
Journel, 1998). The SIS step in tsim traces a random path through
every grid cell in the realization. At each grid cell tsim uses
cokriging (instead of repeated kriging steps as in sisim) to
estimate conditional probabilities that a facies occurs at a grid
cell given surrounding conditioning data, which are typically
facies occurrences located at nearby grid cells. Initially, hard data
are the only conditioning information. In the process of
completing the simulation, nearby simulated values serve as
hard conditioning data for the future cokriging estimates along
the random path. Based on the cokriging estimates of the
conditional probability that a facies occurs at a particular grid
cell given facies occurrences at other nearby cells, a uniformly-
distributed random number is used to select the category that
occurs at a grid cell in the realization. This process continues one
grid cell at a time until all cells have been reached by the
random path.

The indicator cokriging estimate at a location, x0, is
formulated as a weighted sum by

Pr{k occurs at x0 ∣∣∣∣ ij(xα); α � 1, . . . ,N; j

� 1, . . . ,K} ≈ ∑N
α�1

∑K
j�1

ij(xα)wjk,α, (6)

where ij(xα) are indicator data values, N is the number of data, K
is the number of categories, and wjk,α represent weighting
coefficients. The weighting coefficients wjk,α are computed by
the transition probability-based cokriging system of equations
(Carle, 1996; Carle and Fogg, 1996)

⎡⎢⎢⎢⎢⎢⎣ T(x1 − x1) / T(xN − x1)
« 1 «

T(x1 − xN) / T(xN − xN)
⎤⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎣ W1

«
WN

⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎣ T(x0 − x1)
«

T(x0 − xN)
⎤⎥⎥⎥⎥⎥⎦, (7)

where N is the number of data and

Wn � ⎡⎢⎢⎢⎢⎢⎣ w11,n / w1K,n

« 1 «
wK1,n / wKK,n

⎤⎥⎥⎥⎥⎥⎦ for n � 1, . . . ,N. (8)

The indicator cokriging estimate is only an approximation of the
conditional probability on the left side of Eq. 6. The SIS step
provides the “initial configuration” for the next step in tsim,
simulated quenching (Carle, 1997; Carle et al., 1998).

2.2.2 Simulated Quenching Step
The SIS step alone does not ensure that the realization will
honor the model of spatial variability including all spatial
auto-correlations [tjk(h) for j � k] and cross-correlations
[tjk(h) for j≠ k]. The simulated quenching step is used to
improve the match between modeled and simulated spatial
variability by attempting to minimize an objective function,O,
defined by

O � ∑M
l�1

∑K
j�1

∑K
k�1

[tjk(hl)SIM − tjk(hl)MOD]2, (9)

where hl denote l � 1, . . . ,M specified lag vectors and “SIM” and
“MOD” distinguish simulated and modeled transition
probabilities, respectively (Aarts and Korst, 1989; Deutsch and
Journel, 1992; Deutsch and Journel, 1998; Deutsch and
Cockerham, 1994; Carle, 1997; Deutsch and Journel, 1998).
Simulated quenching is implemented by cycling through every
grid cell of the realization several times along a random path and
querying whether a change in facies will decrease O; if so, the
category is changed. Conditioning of hard data is maintained
during quenching by not allowing changes of categories at
conditioning locations. The quenching step continues until a
specified number of iterations through the every grid cell is
reached or O is reduced below a specified minimum threshold
(Carle et al., 1998; Carle, 1999, Carle, 2007).

Simulated quenching is the “zero temperature” form of
simulated annealing, where an “annealing schedule”
determines a probability of acceptance for changes that
increase O to avoid high-valued local minima in the solution
space for O (Deutsch and Journel, 1992; Carle, 1997). The main
advantages of using simulated quenching over annealing are 1)
the difficulty of designing and implementing an annealing
schedule is avoided and 2) quenching is much faster. In tsim,
the cokriging-based SIS step avoids high-valued local minima of
O by providing a spatially-correlated initial configuration prior to
quenching. The quenching step simply modifies existing spatial
structures in the initial configuration to be consistent with the
transition probability model.

2.3 Soft Data Conditioning in Categorical
Geostatistical Simulation
Two concepts are presented here to enable location-specific soft
data conditioning for mutually exclusive categories:

• “prior probability,”which assigns probabilities between zero
and one to each category (Deutsch and Journel, 1998; Ying,
2000), and

• “hardness,” which assigns one uncertainty measure to
account for overall uncertainty of the data at a given
location (Deutsch and Wen, 2000).

A common practical situation is that the data are categorized
(e.g., as textures in driller’s logs or by interpreted hydrofacies) but
known to be uncertain (e.g., because the driller’s logs or geological
interpretations are not 100% accurate). In this situation, the latter
approach is more straightforward to apply, although both
approaches can be applied simultaneously.

2.3.1 Prior Probabilities
Uncertainty in the indicator data or the “softness” of categorical
variables can be accounted for in tsim by assigning prior
probabilities between zero and unity to the indicator values,
which Weissmann and Fogg (1999) implemented in
application use of driller’s logs. This prior probability
approach has also been implemented in integration of
geophysical imaging to condition stochastic simulations of
hydrofacies architecture (Carle et al., 1999; Carle and Ramirez,
1999; Hermans and Irving, 2017). However, the prior probability
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approach can be problematic in many practical situations for
several reasons:

• The most readily available categorical data (e.g., from
driller’s logs or geological interpretations) are discretely
categorized and not presented in the form of prior
probabilities.

• The practitioner may find difficulty, tedium, and confusion
in assigning multiple prior probabilities between zero and
unity to the different facies categories over hundreds,
thousands, or more data points.

• Uncertainty in indicator data is not accounted for in the
cokriging Eq. 7 and objective function Eq. 9 used the SIS
and simulated quenching steps, respectively, of tsim.

The latter reason is a persistent theoretical shortcoming of past
and current bivariate geostatistical methods, wherein the (co)
kriging or simulated annealing equations are weighting the soft
data in the same manner as the hard data. On this topic, Deutsch
and Wen (2000) stated that “a significant problem with kriging-
based approaches (to stochastic simulation) is that there is no
convenient way to handle the fact that the soft data have locally
variable precision (or accuracy)” and, as a result, proposed a
simulated-annealing approach. However, we believe there is a
convenient way to handle soft data in both cokriging and
simulated quenching of categorical variables.

2.3.2 Categorical Data with Hardness
We introduce a simple alternative approach to integration of
uncertain or soft categorical data into stochastic simulation by
extending the concept of data hardness to categorical variables,
as previously proposed for continuous variables (Deutsch and
Wen, 2000). This approach requires assignment of a hardness
value ranging between zero and unity to the set of facies (or
indicator) probabilities given for each data location. On the
extremes, a hardness value of 1.0 represents hard data, and 0.0
represents data that provide no additional information. To
incorporate hardness into transition probability-based
indicator geostatistics, a soft datum is assumed to consist of
a weighted sum of both certain and uncertain information,
with weights that sum to unity. The certain portion is a set of
indicator values represented in binary form (e.g., the presence
or absence of a certain lithology) or as prior probabilities, and
the uncertain portion is, in effect, a state of no useful
information.

Assuming stationarity, the condition of complete uncertainty
for the expected value of the indicator variable, Ik(x), for a facies
at location x is the marginal probability or proportion, pk, such
that

E{Ik(x)} � pk. (10)

The soft indicator value, denoted by~ik(x), consists of a weighted
sum of a hard indicator value ik(x) and the marginal probability,
pk, according to

~ik(x) � α(x)ik(x) + β(x)pk,

where the weights, α(x) and β(x), indicate hardness and softness,
respectively, at location x. The hardness and softness weights are
complementary to each other as

α(x) + β(x) � 1. (11)

Values of hardness or softness weights are assumed to depend
only on location and not on individual categories. A soft indicator
variable ~Ik(x) is defined with respect to a hard indicator variable
Ik(x) defined in Eq. 1 by

~Ik(x) � α(x)Ik(x) + β(x)pk. (12)

In practice, a single hardness value is assigned to the set of
indicator values (i.e., facies probabilities). Compared to the
original tsim code, hardness values are the only additional
conditioning data information needed to implement the soft
data approach described herein for tsim-s.

2.4 Transition Probabilities and Cokriging
with Soft Data
The transition probability values used in the cokriging Eq. 7 were
originally formulated under the assumption of hard data (Carle
and Fogg, 1996). To incorporate soft data, transition probability
values in Eq. 7 will need to be modified to reflect the uncertainty
of the data used to formulate the cokriging estimate. For example,
if a datum has zero hardness [α(x) � 0 or β(x) � 1] and,
therefore, provides no additional information, that datum
should not impact the cokriging estimate. In particular, the
left hand side matrix of Eq. 7, which accounts for the
“declustering” of the data, and the right hand side of Eq. 7,
which accounts for the statistical closeness (spatial correlation) of
the data with respect to the estimation location (Isaaks and
Srivastava, 1989; Deutsch and Journel, 1992, Deutsch and
Journel, 1998), should be modified to account for data
uncertainty.

To account for soft data, the transition probability entries in
Eq. 7 must be modified to account for decreased spatial
correlation of soft data relative to hard data. This decrease in
spatial correlation is derived below using the transition
probability as the bivariate spatial statistic. Substituting Eq. 2
into Eq. 4, the transition probability is defined with respect to
hard indicator variables by

tjk(h) �
E{Ij(x)Ik(x + h)}

E{Ij(x)} . (13)

Substituting soft indicator values as defined by Eq. 12 into Eq. 13,
a “soft transition probability” ~tjk(h) is formulated by

~tjk(h) �
E{[α(x)Ij(x) + β(x)pj][α(x + h)Ik(x + h) + β(x + h)pk]}

E{[α(x)Ij(x) + β(x)pj]} .

(14)

Expanding (as shown step-by-step in the Appendix), assuming
stationarity, applying Eqs. 10 and 11, and combining terms, Eq.
14 reduces to
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~tjk(h) �
E{α(x)α(x + h)Ij(x)Ik(x + h) + [β(x + h) + β(x)α(x + h)]pjpk}

pj
.

(15)

Assuming that hardness values are independent and again
applying Eq. 10, Eq. 15 reduces to

~tjk(h) � α(x)α(x + h) E{Ij(x)Ik(x + h)}
E{Ij(x)}

+ [1 − α(x + h) + [1 − α(x)]α(x + h)]pjpk
pj

. (16)

Applying Eq. 13 and simplifying the right hand side, Eq. 16
reduces to

~tjk(h) � α(x)α(x + h)tjk(h) + [1 − α(x)α(x + h)]pk. (17)

According to Eq. 17, the soft transition probability is a
weighted sum of the transition probability tjk(h) and the
marginal probability pk. The weight for tjk(h) is the
product of the hardness values α(x) and α(x + h) at the two
datum locations, and the weight for pk is the complement to
the weight for tjk(h).

To consider soft data, the transition probability-based
indicator cokriging equations are simply modified by
substituting ~T(h) for T(h) in Eq. 7 as follows

⎡⎢⎢⎢⎢⎢⎢⎣ ~T(x1 − x1) / ~T(xN − x1)
« 1 «

~T(x1 − xN) / ~T(xN − xN)
⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎣ W1

«
WN

⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎢⎣ ~T(x0 − x1)
«

~T(x0 − xN)
⎤⎥⎥⎥⎥⎥⎥⎦,

where,

~T(xm − xn) � ⎡⎢⎢⎢⎢⎢⎣ ~t11(xm − xn) / ~t1K(xm − xn)
« 1 «

~tK1(xm − xn) / ~tKK(xm − xn)
⎤⎥⎥⎥⎥⎥⎦.

If α(xm) � 1 and α(xn) � 1, the soft transition probability matrix
~T(xm − xn) is identical to the hard transition probability matrix
T(xm − xn) as defined by Eq. 5. If either α(xm) � 0 or α(xn) � 0,

~T(xm − xn) � ⎡⎢⎢⎢⎢⎢⎣ p1 / pK
« «
p1 / pK

⎤⎥⎥⎥⎥⎥⎦ k � 1, . . . ,K ,

where the entries in each column k are the proportions pk.
Assuming stationarity and ergodicity,

lim
hϕ →∞

� tjk(hϕ) � pk (18)

for lags hϕ in any direction ϕ. Eq. 18 indicates that for large
lags (beyond the range of spatial correlation), the transition
probabilities converge on the marginal probabilities. Thus,
the matrix values for ~T(xm − xn) when α(xm) � 0 and α(xm) � 0
are identical to the case for hard data where the lag (xm − xn)
is large enough such the two data are not spatially
correlated.

Importantly, the right hand side entries, ~T(x0 − xn) for
n � 1, . . . ,N , should be formulated assuming α(x0) � 1 because:

• Cokriging is used to estimate the probability that a category
exists at location x0 assuming that Ik(x0) for k � 1, . . . ,K are hard
indicator variables, as defined in Eq. 1.

• The estimation location, x0, is known.

However, if the location of x0 is not certain, the hardness value
α(x0) could be used to account for estimation location
uncertainty.

2.5 Simulated Quenching with Soft Data
2.5.1 Use of Acceptance Probability
In tsim, the simulated quenching step enforces hard conditioning
by not allowing any changes in categories at grid cell locations
with hard data. At grid cell locations with no data, categories are
changed along the random path whereverO can be reduced. One
can view the quenching algorithm in terms of a bi-modal
acceptance probability for changing the category on the basis
of reducing O: 0.0 if the category is determined by data and 1.0 if
the category is not determined by data.

In tsim-s, categories are also queried for change at each grid
cell, but with a lesser probability of acceptance at grid cell
locations containing soft data as compared to cells with no
data. The probability of accepting a change of categories that
reduces O is set at β(x); corresponding to Eq. 11, the probability
of rejecting the change is α(x). Thus, if hardness equals unity
[α(x) � 1], categories are not allowed to be changed at location x.
For soft data with hardness less than unity [α(x)< 1], changes in
categories that reduce O are accepted with a probability of β(x)
along the random path implemented by the quenching algorithm
untilO is sufficiently reduced in Eq. 9. This approach enables the
simulated quenching step to impart the most change in the
realizations at the locations where data are least certain, and
the least change where data are most certain. This algorithm is, in
effect, a location-dependent simulated annealing schedule where
the acceptance probability is proportional to the softness of
the data.

2.5.2 Use of the Joint Probability
In the example discussed later in Section 3.1, one category (gravel)
has a very low proportion of 0.006. In application of tsim, low-
proportion facies could be problematic in the simulated
quenching step because of the small amount of sample
statistics for matching the measured and modeled transition
probabilities. Alternatively, the objective function can be re-
formulated with respect to the joint probability, pjk(h)

pjk(h) � Pr{k occurs at x + h and j occurs at x}
� E{Ij(x)Ik(x + h)} (19)

In tsim-s an option is available for using the joint probability
defined in Eq. 19 to formulate the simulated quenching objective
function O as

O � ∑M
l�1

∑K
j�1

∑K
k�1

[pjk(hl)SIM − pjk(hl)MOD]2, (20)
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for the lags l � 1, . . . ,M included in the quenching process. The
joint probability formulation of O using Eq. 20 de-emphasizes
matching of measured and modeled transition probabilities for
low-proportion categories compared to Eq. 9.

3 RESULTS-APPLICATIONS TOSAVANNAH
RIVER SITE AND LAGAS BASIN

3.1 Initial Characterization of Savannah
River Site
The shallow subsurface beneath the Savannah River Site (SRS) in
South Carolina consists of Tertiary siliciclastic sediments
deposited in shoreline and nearshore depositional
environments (Aadland et al., 1995; Falls et al., 1997).
Characterization of heterogeneity at SRS is of interest to
improve understanding of vadose zone, groundwater flow, and
contaminant migration processes (Miller et al., 2000). A primary
concern is characterization of vertical and lateral extent of clay
lenses within the sand-dominated flow and transport regime. A
two-dimensional (2-D) analysis (for lateral x and vertical z
directions) is performed for the following SRS example, with
the goal of generating 2-D realizations of lithofacies heterogeneity
conditioned by both hard and soft data.

Figure 1 shows lithologic and geophysical log data from SRS
treated as hard and soft data, respectively, to condition
realizations generated by tsim-s. Four texturally-based
lithofacies are distinguished, with proportions in parenthesis:
gravel (0.006), sand (0.735), clayey sand (0.156), and clay

(0.103). The hard data (labeled “Hard”) are derived from core
descriptions in the borehole data, and the soft data (labeled “Soft-
1” and“Soft-2”) are inferred from resistivity logs from two
boreholes. In some sedimentary environments, resistivity log
data are not necessarily highly correlated with texturally-
derived facies (Burow et al., 1997).

The lithologic data for two boreholes in the vicinity of the cross-
section were used to calculate matrices of transition probability
measurements with dependence on vertical lag shown by circles in
Figure 2. The transition probability measurements associated with
the gravel category are somewhat erratic because of the very low
proportion of gravel. As a practical matter, this sort of
measurement variability caused by data sparseness should not
be unduly fitted in the transition probability modeling process.
A Markov chain model, shown by the solid lines in Figure 2, was
fitted the calculated vertical transition probabilities through use of a
matrix exponential function

T(hz) � expRzhz � exp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−2.233 2.205 0.028 0.000
0.013 −0.256 0.105 0.138
0.018 0.571 −0.952 0.362
0.000 0.846 0.692 −1.538

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦hz
(21)

where the rate coefficients in Rz are given in units of m−1. As
shown by Agterberg (1974) and Carle and Fogg (1997), the
entries in T(hz) for Eq. 21 are computed by an eigenvalue
decomposition, so that each entry, tjk(hz), is a weighted sum
of the k (column) category proportion and three exponential
functions:

FIGURE 1 | Lithologic data within a geologic cross-section, Savannah River Site, South Carolina. Data labeled “Soft-1” and “Soft-2″ are inferred from resistivity
logs, and data marked “Hard” are obtained from core descriptions.
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T(hz) �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.006 0.735 0.156 0.103
0.006 0.735 0.156 0.103
0.006 0.735 0.156 0.103
0.006 0.735 0.156 0.103

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.9832 −1.1807 −0.0662 0.2637
−0.0072 0.0086 0.0048 −0.0019
−0.0180 0.0216 0.0012 −0.0048
0.0260 −0.0313 −0.0018 0.0070

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦exp[ − 2.250m− 1hz]

+
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.0117 0.0573 0.2117 −0.2807
0.0019 0.0095 0.0351 −0.0465
0.0116 0.0568 0.2100 −0.2784
−0.0321 −0.1568 −0.5800 0.7688

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦exp[ − 1.840m− 1hz]

+
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−0.0004 0.3881 −0.3018 −0.0860
−0.0003 0.2466 −0.1917 −0.0546
0.0008 −0.8137 0.6326 0.1802
0.0006 −0.5472 0.4255 0.1212

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦exp[ − 0.890m− 1hz]

For the lateral x direction, Markov chain transition probability
models were developed for the SRS example based on prior
geological estimates of lithofacies mean lengths and
juxtapositional tendencies indicated by geologic cross-sections.
Such geological information can be converted into lateral
transition rates (e.g., Rx) to enable development of 2- and 3-D
Markov chain models and demonstrated by Carle and Fogg
(1997), Carle et al. (1998), and Weissmann et al. (1999).

3.2 Geostatistical Simulation with Soft Data
at SRS
3.2.1 Effect of Soft Data
Figure 3 compares (A) six realizations generated with hard data
only with (B) six realizations generated with hard and soft data. In
(A) and (B), the hard data are honored on the right side of each
realization where the solid vertical line is shown. In (B), the soft

FIGURE 2 | Vertical direction transition probability measurements (circles) and Markov chain model (lines).
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data are added as conditioning with hardness � 0.80 at the
locations shown by dashed vertical lines toward the left side of
each realization. With careful examination near soft data
locations, the soft data impart a strong yet inexact influence
on the lithofacies occurrences. For example, the occurrences of
clay between about z � 87–90 m in both soft data boreholes
produces a persistent clay layer in all six realizations, although the

fit to the soft data values is not always exact. Near the top of the
soft data shown in Figure 1 at z � 98–102.5 m, more clay and
clayey sand is indicated on the right. The realizations in Figure 3
honor these data, but to a lesser extent than between z � 87–90 m
where lateral correlation of the soft data is stronger. This
comparison is a simple example of how tsim-s can be used to
further constrain the realizations with soft data as compared to

FIGURE 3 | Six lithofacies realizations generated for cases with (A) hard data only and (B) hard and soft data. Hard data locations are indicated by solid line at right,
and soft data locations are indicated by dashed lines at left in (B).
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conditioning with only hard data, as could otherwise be
implemented with tsim.

Another way to visualize the impact of the soft data is to
average the indicator values over many realizations to produce a
“probability map” for each lithofacies. Figure 4 shows probability
maps for each lithofacies derived from 100 realizations with and
without soft data conditioning. In case (A) with hard data only,
the lithofacies probabilities approach marginal probabilities
(proportions) toward the left portion of the realizations. In
case (B) with hard and soft data, the soft data further

constrain the probability structure toward the left side of the
realizations. However, less-refined “gray areas” remain between
the borehole data because of the limited lateral correlation of the
lithofacies units. Overall, the soft conditioning at 0.80 hardness
imparts a strong influence on the realizations.

Through the hardness parameter, the degree of influence by
the soft data can be controlled as needed in application of tsim-s.
Figure 5 shows probability maps for the sand, clayey sand, and
clay lithofacies where hardness values for the soft data are reduced
to 0.5 and 0.2. Reducing the hardness produces less contrast or

FIGURE 4 |Maps of probability of occurrence for each lithofacies, based on mean indicator value of 100 realizations, for cases with (A) hard data only and (B) hard
and soft data (soft data hardness � 0.8).
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more gray areas in the probability map, which reflects the
increased uncertainty of the soft data.

3.2.2 Use of Realizations as Soft Conditioning
There is increasing interest in use of stochastic inversion
approaches to modify heterogeneity structures within
geostatistical realizations to be more consistent with
geophysical or hydraulic testing data (Aines et al., 2002; Harp
et al., 2008; Wainwright et al., 2014; Berg and Illman, 2015; Wang
et al., 2017). To implement these approaches, there can be a need
to modify an initial heterogeneity structure in a controlled or
incremental manner.

Another application of the soft data capability in tsim-s is to
use all or part of a realization as soft conditioning to exert control
on the modification of heterogeneity structures from one
realization to the next. One realization (or any available field
of categorical values) can be used as prior information for

conditioning of a new realization, which makes several new
capabilities available in tsim-s:

• The degree of correlation between a series of realizations or
can be controlled.

• The degree of variation from one realization to the next can
be controlled at different locations within each realization.

• By exerting control on the difference between one
realization and the next, Monte Carlo Markov chain
algorithms can be implemented as a Bayesian inverse
approach to optimization of local heterogeneity structure
(Aines et al., 2002; Wainwright et al., 2014; Wang et al.,
2017).

In practice, we refer to a realization used for soft conditioning
as the “prior realization” and a subsequent realization that is
produced as the “posterior realization.” Use of prior realizations

FIGURE 5 |Maps of probability of occurrence for sand, clayey sand, and clay lithofacies, based on mean indicator value of 100 realizations, for cases of hard and
soft data with (A) soft data hardness � 0.5, and (B) soft data hardness � 0.2.
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as soft conditioning in the SIS step is implemented by adding
only one additional soft datum to each cokriging estimate Eq. 6;
that additional soft datum consists of the indicator values from
the grid cell of the prior realization corresponding to the
cokriging estimation location for the posterior realization.
More soft data can be used, but one prior realization soft
datum at the cokriging estimation location itself provides
sufficient conditioning for generating correlated realizations
without adding much more computational burden. The

degree of correlation between the prior and posterior
realizations is controlled by setting the hardness values, which
may vary with location.

Figure 6 shows a sequence of six realizations where each
posterior realization is soft-conditioned to the prior realization
for cases of (A) hardness � 0.5 and (B) hardness � 0.9. Because the
degree of hardness controls the degree of similarity (or rate of
change) between one realization and the next, the realizations in
case (A) are less similar (or more different) from one realization

FIGURE 6 | Six successive realizations where the previous realization serves as soft conditioning, with hardness set for case (A) at 0.5 and case (B) at 0.9.
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FIGURE 7 | Example using a realization as soft data (upper left) with hardness varying with depth (left, second from top). Probability maps for gravel, sand,
clayey sand, and clay facies (lower left) are derived from 100 realizations. The first six soft-conditioned realizations are shown at right.
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to the next. Comparing the left side (away from the hard
conditioning) of realizations 1 and 6, similarities have largely
disappeared for case (A) but remain for case (B). Thus, the higher
rate of change (lesser hardness) shortens the memory of
heterogeneity patterns within a sequence of realizations soft-
conditioned by prior realizations.

Figure 7 shows an example using the same realization as soft data
(upper left) with hardness varyingwith depth from0.8 at top to 0.0 at
bottom. The probability maps for gravel, sand, clayey sand, and clay
facies, derived from 100 realizations generated by tsim-s, show
increasing uncertainty with depth. In particular, the location of
individual clayey sand and clay lenses in the soft data become less
distinct with depth in the probability maps. Likewise, the sand

probabilities become less distinct with depth and approach the
proportion of 0.735. The influence of a single gravel lens in the
soft data is evident in the gravel probability map. This example
illustrates how 2or 3-D geophysical images or geological
interpretations of categorical data might be used to soft-condition
geostatistical realizations with consideration of variable spatial
resolution such as decreasing resolution with increasing depth.

3.3 Application to Large-Scale Simulation
3.3.1 Computational Aspects
Like tsim, tsim-s is readily extended to large-scale three-
dimensional (3-D) applications. From a computational
standpoint, the main difference between running tsim and

FIGURE 8 | (A) Hydrofacies interpretations of driller logs and (B) example 3-D simulation of aquifer system heterogeneity using tsim-s showing locations of
conditioning data and variable dip and flow directions of anisotropy. Modified from Carle et al. (2006).

Frontiers in Earth Science | www.frontiersin.org November 2020 | Volume 8 | Article 56570715

Carle and Fogg Integration of Soft Data

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles#articles


tsim-s will be in memory use. For very large grid cell counts
(tens of millions or more), the memory use in tsim is mostly
taken up by integer arrays storing the grid cell category and
anisotropy direction information (if used). In the late 1990s
when memory was quite restricted compared to the year 2020, a
45-million cell 3-D realization was produced on a computer
with 48 megabytes (not gigabytes!) of memory by modifying
tsim to use a 1-byte integer format for the grid cell array and
implementing an analytical function to define variable
stratigraphic directions (Carle, 1996; Carle et al., 1998; Carle,
1999; Tompson et al., 1999). The open-source nature of the
T-ProGS package of codes enables the user to make similar

modifications to conserve memory. Depending on the
application, tsim-s will require a factor of as much as ten or
more times the memory use as tsim, but computational time
tsim-swill not be significantly higher because the corresponding
arrays for the cokriging equations and quenching objective
function are of the same dimensions under similar model
parameter settings. Considering that computer memory and
computational speed are orders of magnitude higher today and
into the future as compared to the late 1990s, we do not
anticipate large-scale simulation of categorical heterogeneity
with tsim-s to be highly constrained by the current or future
computational technology.

FIGURE 9 | Cross-section through the 3-D simulation shown in Figure 8 throught (A) longitudinal (B) lateral, and (C) horizontal planes.
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3.3.2 Llagas Basin Example
As discussed in the introduction, the use of driller’s logs in
categorical geostatistical simulation is of interest in
hydrogeology, yet presents some uncertainty in how to treat
driller’s logs as conditioning data. As a demonstration of the
use of driller’s logs and tsim-s to large-scale simulation,
Figure 8A shows an interpreted version of a driller’s log
dataset, and Figure 8B shows a 3-D simulation of
hydrostratigraphic architecture for the Llagas groundwater
subbasin south of San Jose, California (Carle et al., 2004; Carle
et al., 2006).

In this application, the driller’s log data were categorized into
aquifer, interbedded, and aquitard hydrofacies, where the
interbedded category represents relatively thin interlayers of
aquifer and aquitard materials. The addition of the
interbedded hydrofacies addresses unresolvable fine-scale
heterogeneity of coarse- and fine-grained textural
classifications and adds flexibility to development of the
Markov chain model. If only two hydrofacies, aquifer and
aquitard, had been distinguished, the 3-D Markov chain
model would consist of only four parameters - proportion and
mean length in the three principal depositional directions for one
of the hydrofacies; the remaining transition probabilities are all
determined by probability law (Carle and Fogg, 1996). A two-
category characterization of heterogeneity presents no distinct
advantage in the Markov chain spatial variability modeling
framework; the spatial variability model is equivalent to a two-
category indicator variogram-based approach modeled by an
exponential variogram. With three categories, the number of
parameters for the 3-D Markov chain is raised to 14, allowing for
development of more complexity in the heterogeneity structure
including asymmetry such as fining-upward and outward
tendencies (Miall, 1973; Carle and Fogg, 1997; Fogg et al., 1998).

This simulation was generated by tsim-s with soft
conditioning data divided into three sets of driller’s logs to
which hardness levels were set to 0.3, 0.7, and 1.0 based on
data quality. Two separate tsim-s simulations of 162,500,000 and
117,000,000 cells were generated for the upper and lower portions
of the final realization of hydrofacies architecture to address
differences in the spatial structure of deeper and shallower
alluvial hydrofacies evident in the driller’s logs. Carle et al.
(2006) provides further detail on the process of selection of
the hardness parameter in the practical hydrogeological
situation of using driller’s logs for conditioning data. This
example confirms that large-scale 3-D stochastic simulation
using tsim-s is feasible. The stochastic analysis was further
applied to investigate permeability heterogeneity effects on
nitrate transport from agricultural sources toward municipal
wells (Carle et al., 2004, Carle et al., 2006).

4 DISCUSSION

The discussion focuses on capabilities and limitations of t-sim
and tsim-s with attention to the current literature on comparison
and evaluation of geostatistical methods for subsurface
characterization of categorical variables.

4.1 Curvilinear Features
Both tsim and tsim-s have the capability to produce curvilinear
features by specifying azimuthal and dip angles local to each grid
cell in an a priori manner (Carle, 1999; Carle, 2007) that can be
deterministic (Tompson et al., 1999; Carle et al., 2006) or
stochastic (Carle et al., 1998). These angles may be derived or
inferred from prior geological knowledge or geologically
reasonable interpretation of the depositional or stratigraphic
architecture, surface mapping of the deep soil horizons,
interpretation of seismic or surface geophysical data, or
stochastic modeling (e.g., by modeling variation in the major
axis of deposition due to meandering by a gaussian random field).
Local anisotropy directions are implemented in tsim and tsim-s
in a manner similar to “local anistropy kriging” (te Stroet and
Snepvangers, 2005). This is not a coordinate transformation
approach, as applied to the variogram-based isim3D (Gomez-
Hernandez and Srivastava, 1990).

The Llagas basin example application of tsim-s uses the local
anisotropy direction option to impart variable angles of dip and
principle direction of deposition into the geostatistical
realizations. Figure 9 shows vertical and horizontal slices
through the 3-D Llagas basin realization to better reveal the
nature of the curvilinear features. These include variable dip
angles evident in longitudinal and transverse-plane cross-sections
(A) and (B) and variable direction in the major axis of deposition
in the horizontal-plane cross-section (C).

The simulated aquifer/interbedded facies architecture for the
Llagas basin example does not show pronounced sinuousity,
which is consistent with how channel belt deposits were
conceptualized in this alluvial depositional setting by the
California Department of Water Resources (1981). This is in
contrast to the “true” or “training image” concept of continuous
“channels” worming their way through homogeneous low-
pemeability media, a common argument posed for replacing
bivariate statistical methods with multi-point statistical (mps)
methods (Strebelle, 2000; Caers, 2001; Krishnan and Journel,
2003; Feyen and Caers, 2006; Ronayne et al., 2008; Li et al., 2014a;
Li et al., 2015; Mariethoz and Caers, 2015; Zovi et al., 2017;
Ramgraber et al., 2020). Such surficially-based conceptual models
gloss over fundamental geologic concepts showing how
depositional processes produce amalgamations of channel and
adjacent sediments that are broader, less sinuous, and more
variable in lateral extent as compared to an active fluvial
channel viewed on the Earth’s surface (Galloway and Hobday,
1996; Miall, 2013). It is a well-known fact in interpretation of
borehole data that sedimentary features on the surface are not
necessarily preserved in the subsurface (Smith, 2002).

4.2 Methods Comparison
The T-ProGS software package has been used somewhat
frequently for comparison of methods for geostatistical
simulation of categorical variables (Carle, 1996; Carle, 2000;
Lee et al., 2007; Yong et al., 2009; Bianchi et al., 2011;
dell’Arciprete et al., 2012; Ranjineh Khojasteh, 2013; Kessler
et al., 2013; Guastaldi et al., 2014; Serrano et al., 2014; Hoyer
et al., 2015; Damico et al., 2018). Bianchi et al. (2011) and
Ranjineh Khojasteh (2013) present rigorous comparisons of
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tsim and sisim, showing that sisim does not honor the 3-Dmodel
of spatial variability, which was one of the original motivations
for developing T-ProGS (Carle, 1996; Carle, 1999; Carle, 2000).

We further discuss methods comparison below because tsim-s
carries forward several capabilities of tsim that appear not to be
recognized in the methods comparison literature. Flawed
methods comparison causes a trickle-down effect of selective
references that propogate misleading appraisals of the capabilities
of the available methods for stochastic simulation of categorical
variables.

In a methods comparsion of sisim, tsim, and mps,
dell’Arciprete et al. (2012) did not consider variable anistropy
directions in either conceptualization or parameterization of their
analysis of spatial variablity and applications of tsim despite
obvious dipping structures in their data. They chose not to apply
Markov chain modeling concepts in the structural framework of a
stratigraphic coordinate system relevant to the hydrofacies of a
sedimentary depositional system (Carle et al., 1998; Tompson
et al., 1999; Carle et al., 2006). The example of a tsim realization
shown in Figure 4 of dell’Arciprete et al. (2012) displays
completely random-looking and geologically implausible
spatial structuring inconsistent with the data and geologic setting.

An example of a trickle-down effect is how dell’Arcipreti et al.
(2012) becomes a main reference in He et al. (2017) for promoting
application ofmps, then (He et al., 2017) becomes amain reference
in Langousis et al. (2018) for criticizing the 3-D Markov chain
modeling approach of Carle and Fogg (1997). To “reveal”
limitations of Markov chain models, Langousis et al. (2018)
execute a “simple test-case” of a 2-D dipping layer with a
coordinate system anchored in the vertical and horizontal
directions of their statistical analysis. Neither dell’Arciprete et al.
(2012) nor Langousis et al. (2018) appeared to grasp the concept
that bivariate geostatistical analysis and simulation should be
applied in a geologically-based coordinate system, as
demonstrated for at least 30 years (e.g., Gomez-Hernandez and
Srivastava, 1990). The geological realism of themps application by
He et al. (2017) stands wide open to geological criticism too, with a
mps-generated “real world buried valley system” showing
unrealistic topography and isolated occurrences of the valley fill
buried beneath pre-valley-fill strata. Geostatistical analysis should
recognize and make adjustments to account for geological slopes,
directions, and depositional ordering and not be strictly anchored
in a rectilinear cooordinate system pertinent only to data locations.

Another pitfall of methods comparison is use of oversimplified
example applications. In Kessler et al. (2013), tsim was compared
to mps in application to stochastic simulation of sand lenses
within clayey till. This application of tsim adhered to an
oversimplified two-category Markov chain to model “a
complex type of heterogeneity” exhibiting a bi-modal
distribution in the size of sand lenses in 2-D training and
reference images. A simple way to address this facies size
distribution complexity would be to define two types of sand
lenses (perhaps “small” and “large”) and model a three-category
system. Instead of adhering to a textural basis for defining
categories (e.g., “sand” and “clay”), a more geological approach
is to interpret hydrofacies appropriate to the geometric
framework of the depositional system (Fogg et al., 1998).

The impact of methods comparison studies can get more
convoluted by selective referencing of the literature,
particularly on the topic of curvilinear features. For example,
in promoting mps, Barfod et al. (2018) dissmiss applicability of
tsim by stating that “. . .T-ProGS also has difficulties in
reconstructing curvilinear geological features” without any
reference to previous work in which the variable anisotropy
direction capability of tsim was implemented. Barfod et al.
(2018) refer to the oversimplified two-category sand-clay
Markov chain analysis of Kessler et al. (2013) as “revealing a
sub-optimal pattern reproduction, in comparison to other
simulation tools such as multiple-point statistics. . .” Linde
et al. (2015) in reviewing “variogram based models” state that
“transition probability techniques such as T-ProGS . . . cannot
properly produce curvilinear features. . .” This is after referencing
only dell’Arciprete et al. (2012), Falivene et al. (2007), Lee et al.
(2007), and Reffsgaard et al., 2014) as T-ProGS applications, all
four of which did not employ variable anisotropy direction
capability in tsim. The misconception that all bivariate
statistical methods for stochastic simulation of categorical
variables lack the ability to produce curvilinear features
appears to derive from selective referencing and comparison of
mps to only variogram-based methods (Strebelle, 2002; Caers,
2001; Krishnan and Journel, 2003; Feyen and Caers, 2006; Linde
et al., 2015; Barfod et al., 2018) irrespective of previous
hydrogeologic studies (Carle et al., 1998; Tompson et al., 1999;
Carle et al., 2006; Green et al., 2010; Engdahl et al., 2012) and the
T-ProGS user manual (Carle, 1999; Carle, 2007).

If tsim or tsim-s is producing spatial structure that falls well
short of the intended model for represention of the spatial
heterogeneity, the conceptualization, implementation, or
utilization of the capabilities of tsim or tsim-s may be at fault.
Methods comparison studies in geostatistics should fully
investigate the capabilities of each method including both the
geological and statistical conceptual underpinnings before
making sweeping judgments. The introduction of this paper
provides references to varied applications of T-ProGS that
should be useful for methods comparison and capabilities
assessment.

4.3 Method Limitations
All models have limitations. The T-ProGS package was originally
conceived in 1996 (Carle, 1996; Carle, 1997; Carle and Fogg, 1996;
Carle and Fogg, 1997) to improve or add to the capabilities of the
then state-of-the art variogram-based geostatistical methods of
the Geostatistical Software Library (Deutsch and Journel, 1992)
and subsequently analyze pumping test data in a highly
heterogeneous alluvial aquifer system (Carle, 1996; Lee et al.,
2007). It is easy to argue that natural systems are geometrically
inconsistent with certain geostatistical representations or exhibit
far more complexity than any bivariate geostatistical model could
ever characterize. Different practitioners will be more
comfortable with different methods or levels of complexity in
the statistical or bio/chemo/hydrogeological components of their
models. There will always be an open question as to what levels of
complexity are necessary to sufficiently analyze the subsurface
processes of interest.
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The stationarity assumption in regard to the spatial continuity
model and category proportions can be limiting. Early
applications of tsim recognized this issue and incorporated
“nonstationary” qualities into the geostatistics through data
conditioning, geologically-based zones based on stratigraphic
analysis or sedimentary environments, and spatially variable
angles of anistropy (Carle, 1996; Carle, 2000; Carle et al., 1998;
Tompson et al., 1999; Weissmann and Fogg, 1999). There
continue to be applications of tsim that recognize and address
nonstationarity (Weissmann et al., 2004; Traum et al., 2014;
Weissmann et al., 2015; Meirovitz et al., 2017; Zhu et al.,
2016a; Zhu et al., 2016b; Zhang et al., 2018; Liao et al., 2020;
Maples et al., 2020). As discussed previously for application of
tsim-s, Carle et al. (2006) employed two-zones of differing spatial
statistics and apply variable anisotropy directions in their
application of tsim-s. To address geological realism, adding a
modicum of geological insight can be more effective than adding
more statistical complexity.

The model of spatial variability is another limitation to any
geostatistical approach. A methods limitations analysis by
Langousis et al. (2018) criticizes the interpretive framework of
transition probability-basedMarkov chain model development as
“based on unverified/untested simplifying assumptions” and “ad-
hoc manipulations.” Langousis et al. (2018) further contend that.

. . .stochastic modeling of actual geologies using the [T-
ProGS] approach of Carle and Fogg (1997), is
characterized by simplifying assumptions and
theoretical limitations, with the simulated random
fields exhibiting statistical structures that strongly
depend on the problem under consideration and the
modeling assumptions made, leading to increased
epistemic uncertainties in the obtained results.

We offer some perspectives on assessing the limitations of
T-ProGS that apply to tsim-s as well:

• Use of geological concepts in categorical geostatistical simulation
may involve subjectivity, which can be viewed by some as either
a strength or a limitation to reducing uncertainty.

• The implication that injection of subjective geologic
interpretation increases epistemic uncertainties in
stochastic modeling would appear to expose a lack of
understanding of subsurface geology and it’s role in
modeling the subsurface.

• As referenced in the introduction of this paper, many
applications in hydrogeology and related fields have
found the Markov chain modeling framework to be
useful to characterization of bivariate spatial statistical
cross-relationships (i.e., juxtapositional tendencies), which
can be related in an interpretive manner to geological
concepts such as Walther’s Law in the stratigraphic
context of sedimentary depositional environments
(Leeder, 1982; Doveton, 1994).

• As evident in the T-ProGS manual (Carle, 1999; Carle,
2007), the Markov chain is not actually required to run tsim
(or tsim-s). So one could investigate epistemic aspects of

other transition probability or indicator covariance models
using tsim, tsim-s, or the various variogram-based
simulation methods, if so desired. However, such
methods comparison exercises, which can certainly be
expanded to all stochastic models, will not prove that a
spatial Markov chain is not useful to modeling subsurface
hydrofacies heterogeneity when applied in the appropriate
geologic context.

In every subsurface heterogeneity modeling project we have
encountered, the heterogeneity contains both deterministic and
stochastic aspects that should be treated differently. For example,
conventional geologic stratigraphic analysis is quite effective for
identifying and mapping the major formations, depositional
systems, and the bounding unconformities and structural
discontinuities (e.g., faults). Accordingly, such features can
typically be treated deterministically and then used as the basis
for appropriate geologic zoning of the system into quasi-
stationary subdomains. The stochastic aspect of subsurface
characterization typically lies within those geologically defined
subdomains. If one, however, lumps together both the
deterministic and stochastic aspects of the heterogeneity and
calls on the stochastic geostatistical algorithm to sort out those
spatial patterns, one only invites naive mischaracterization of the
heterogeneity that produces unnecessary uncertainty and
unrealistic results. An effective way to reduce or moderate
uncertainty is to recognize and separate out deterministic and
stochastic parts of the problem.

4.4 Stochastic Methods Evaluation
Stochastic methods evaluation in hydrogeology should strive to
determine appropriate levels of complexity necessary for gaining
insight to 3-D subsurface flow and transport processes at scales
relevant to measurement diagnostics used in decision-making.
An example of a process-oriented methods comparison, Damico
et al. (2018) compared dynamics and trapping metrics for 3-D
carbon-dioxide plume simulations using subsurface
representations of heterogeneity derived from tsim and a more
rigorous model for representation of complex features in fluvial
architecture. They concluded:

. . .in the context of representing plume dynamics and
residual trapping within fluvial deposits, and within the
scope of the parameters used here, the simpler
geostatistical model of braided fluvial deposits
appears to give an adequate representation of the
smaller scale heterogeneity. The depositional- and
geometric-based benchmark models represented
more features of the fluvial architecture, including
variability in the dip of cross sets, variability in the
geometry and orientation of unit bars, and the
occurrence of channel fills. Depending on context,
representing those features may be quite important
to understanding some multiphase flow processes in
aquifers and reservoirs. However, the simpler
geostatistical model (tsim) is able to capture the
important aspects of fluvial architecture within the
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context of understanding the general effect of smaller
scale heterogeneity on residual trapping of CO2 in
geosequestration reservoirs, within the scope of the
parameters used here.

The worthiness of a stochastic methods to subsurface
applications does not necessarily depend on statistical rigor or
geological detail, it also depends on the perception of relative
value, including both benefits and costs, in the application (Ginn,
2004). The relative value of a model is not necessarily in its
complexity, given that calibration of more complex models may
erode rather than enhance predictive ability (Doherty and
Christensen, 2011).

This paper is offering an approach to address uncertainty in
data conditioning of categorical geostatistical models. It would be
quite straightforward to add more statistical complexity to
transition probability or hardness concepts. However, in our
nearly 25-year experience with using transition probability-
based geostatistics, we find simpler and more interpretetable
geologically-based tools to be quite useful in the study of the
effects of various scales and types of heterogeneity on subsurface
flow and transport processes.

5 CONCLUSIONS

Many Earth science applications would benefit from increased
ability to incorporate “soft” (uncertain or indirect) data to further
constrain subsurface models of heterogeneity. In categorical
geostatistical simulation applications, often abundant soft data
on lithology or hydrofacies (e.g., geophysical logs and imaging,
geological interpretations, driller’s logs, etc.) offer opportunity for
imposing increased or relaxed model constraint.

A soft data capability has been incorporated into the categorical
geostatistical simulation code tsim-s. Soft data for categorical
variables are input either as indicator values or prior
probabilities, and a “hardness” value accounts for uncertainty in
the data. This approach is particularly conducive to soft data that is
already categorical, such as texture inferred from driller’s logs,
hydrofacies interpretations, or electrofacies based on resistivity
cutoffs. In generating realizations with tsim-s, the impact of
uncertainty in the soft data is factored into formulation of both
the cokriging and simulated quenching geostatistical simulation
steps. The extent to which the realizations honor the soft data is
balanced by the values of hardness, the model of spatial variability,
and the values of other nearby hard and soft data.

The degree to which soft data reduces variability in simulation
outputs can be quantified by mapping facies probabilities derived
by averaging indicator values from many realizations. Example

applications in this paper using different values and spatial
distributions of hardness illustrate how the impact of data
uncertainty can be controlled in the stochastic realizations.
Such control will be useful for assimilating different data sets
of variable resolution and accuracy. The soft conditioning can be
arrays of data, including “prior realizations,” to incrementally
adjust or evolve the spatial heterogeneity structure of the
realizations. The ability to manipulate localized heterogeneity
structure or rate of change in a sequence of realizations should be
useful for flow and transport model calibration, inverse
approaches, or sensitivity analysis. The tsim-s algorithm is
ammenable to large-scale 3-D simulation including curvilinear
features.

Overall, the tsim-s code more rigorously integrates data
uncertainty and prior information into the categorical stochastic
simulation algorithm as compared to previous indicator-based
geostatistical simulation codes including its direct predecessor
tsim. However, users and evaluators of bivariate geostatistical
models should become familiarized with capabilities, limitations,
and varied uses of T-ProGS or other geostatistical software
packages before applying or evaluating tsim or tsim-s.
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APPENDIX

Expanding Eq. 14 yields

~tjk(h) �
E{ α(x)α(x + h)Ij(x)Ik(x + h) + α(x)β(x + h)pkIj(x)

+β(x)α(x + h)pjIk(x + h) + β(x)β(x + h)pjpk }
E{[α(x)Ij(x) + β(x)pj]} .

(22)

Assuming stationarity and applying Eq. 10 and 22 reduceto

~tjk(h) �
E{ α(x)α(x + h)Ij(x)Ik(x + h) + α(x)β(x + h)pjpk

+β(x)α(x + h)pjpk + β(x)β(x + h)pjpk }
E{[α(x)pj + β(x)pj]} .

(23)

Applying Eqs. 11 and 10 and combining terms, Eq. 23 reduces to
Eq. 15:

~tjk(h) �
E{α(x)α(x + h)Ij(x)Ik(x + h) + [β(x + h) + β(x)α(x + h)]pjpk}

pj
.

(15)
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