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This study detects the presence of seasonality, stationarity, and long-range memory
structures in daily radon measurements from a permanent monitoring station in central
Italy. The transient dynamics and the seasonality structure are identified by power spectral
analysis based on the continuous wavelet transformation and a clear 1-year periodicity
emerges. The stationarity in the data is assessed with the Dickey–Fuller test; the decay of
the estimated autocorrelation function and the estimated Hurst exponent indicate the
presence of long-range dependence. All the main characteristics of the data have been
properly included in a modeling structure. In particular, an autoregressive fractionally
integrated moving average (ARFIMA) model is estimated and compared with the classical
ARMA and ARIMA models in terms of goodness of fit and, secondarily, of forecast
evaluation. An autoregressive model with a noninteger value of the differencing parameter
(d � 0.278) resulted to be the most appropriate on the basis of the Akaike Information
Criterion, the diagnostic on the residuals, and the root mean squared error. The results
suggest that there is statistically significant evidence for not rejecting the presence of long
memory in the radon concentration. The radon measurements are better characterized as
being stationary, but with long memory and so, the statistical dependence decays more
slowly than an exponential decay.
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1. INTRODUCTION

The monitoring of soil radon (222Rn) emission is a relevant topic for the risk that this radioactive
gas poses to human health but also for its relationship with environmental and geological
processes. The radon signals usually present a complex dynamic structure that is directly and
indirectly influenced by several factors, such as environmental and climatic conditions of the site
and characteristics of the ground soil, tide, and solar effect. (Pinault and Baubron, 1996; Piersanti
et al., 2015; Siino et al., 2019b). All these factors have a different effect on the signal, as they can
result either in a trend, seasonal, or stochastic component. For instance, climate or tidal forces
reflect in a multiple seasonality of the radon time series: hourly, diurnal, multi-day, annual, and
even multi-annual cycles have been detected in different studies worldwide (Crockett et al., 2006;
Udovičić et al., 2014; Yan et al., 2017; Crockett et al., 2018; Siino et al., 2019b; D’Alessandro et al.,
2020). Of particular interest is the role of Rn as a potential earthquake precursor (Barbosa et al.,
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2015; Woith, 2015; Baskaran, 2016; Morales-Simfors et al.,
2019) because the fracturing processes in the crust could
enhance the mobility of Rn toward the surface (Toutain and
Baubron, 1999; Woith, 2015). Similarly, anomalies can be the
result of weather episodes which cannot be explained by
meteorological variables. Whatever the cause, these
anomalies can be masked within the signal, and a way to
bring them to light would be to de-noise the signal from the
trend and/or periodic components (Baykut et al., 2010; Siino
et al., 2019b; D’Alessandro et al., 2020). As a matter of fact, it is
a challenging task to untangle and properly quantify all of these
effects on the radon fluctuations because Rn time series present
generally a nonstationary behavior, not constant variability
over time and a long-term memory (Donner et al., 2015).

Methodologically, time series analysis techniques are
proper statistical tools to extract meaningful characteristics
from data. Moreover, because long-term records of
environmental variables show often long-range memory,
some other tools are usually applied. The fractionally
integrated moving average models [ARFIMA (p,d,q)] have
been widely used in the literature to describe meteorological
variables (Yaya and Fashae, 2015; Bowers and Tung, 2018),
pollutants and soil gas (Pan and Chen, 2008; Donner et al.,
2015; Belbute and Pereira, 2017; Reisen et al., 2018), and
hydrological time series (Montanari et al., 1997; Wang
et al., 2007). This class of models is used when the long-
term correlations in the data decay more slowly than an
exponential form, that is, a typical shape of autocorrelation
in the autoregressive moving average [ARMA(p,q)] processes
(Box et al., 2015). Furthermore, several studies investigate the
predictability of the ARFIMA model assessing multi-step
ahead performance with respect to others univariate time
series forecasting methods such as a naive method, random
walk (with drift), ARMA with trend and seasonality, and the
exponential smoothing (Papacharalampous et al., 2018a;
Papacharalampous et al., 2018b).

In the literature, the radon data have been described with
different methods. Dunn and Henschel (1989) characterize a
three-week record at an hourly frequency using simple
autoregressive moving-average (ARMA) models. Later, the
Box–Jenkins methodology often used in econometrics was
applied to describe five-year-long radon time series considering
a seasonal integrated, autoregressive moving averages model with
exogenous variables (SARIMAX) also adding external covariates
such as delayed atmospheric parameters (Stránský and Thinová,
2017). Donner et al. (2015) present complementary methods
that have been applied for evaluating the presence of long-
range correlations and fractal scaling in environmental radon
measurements.

In this study, we analyze a 3-year-long radon concentration
signal aiming at the assessment of a model which describes its
dynamics with time series methodologies (Shumway and Stoffer,
2017). A comprehensive analysis of the seasonality structure is
performed to detect clues about the stationarity and the presence
of long-range memory in the data that could be related to
geological processes. We estimate some ARFIMA models
which explicitly consider simultaneously both the short-term

and long-term correlation structures of the series. Moreover,
we tested the forecast performance of the obtained models.
The novelty of this analysis relies on the simultaneous
estimation of seasonality and long-range memory in the
estimation of proper ARFIMA stochastic models.

2. MATERIALS AND METHODS

In this section, the time series methods used in the analysis of
daily radon measurements are described following Shumway and
Stoffer (2017) and Beran (2017). We briefly present some tools
useful to check in an observed time series the presence of
nonstationarity (in terms of seasonality and trend) and long-
range memory behaviors.

The seasonality behavior in the data is studied by power
spectral density based on the time-averaged continuous
wavelet spectrogram (Daubechies, 1992; Conraria and Soares,
2011). To properly apply the stochastic models, the daily radon
time series is examined for the presence of stationarity. The
Dickey–Fuller test (Dickey and Fuller, 1979) is used for this
purpose to determine the presence of a unit root in an
autoregressive model. The presence of long-range memory has
been assessed on the data estimating the Hurst exponent (Hurst,
1951) and looking at the shape of the estimated autocorrelation
coefficients for several lags. The presence of long-term memory
can justify the estimation of the ARFIMA models, and their
structure is also explained.

2.1. Spectral Analysis for Seasonal Detection
In this paragraph, we briefly describe the spectral analysis in the
time–frequency domain based on continuous wavelet
transformation following the notation in Daubechies (1992)
and Conraria and Soares (2011).

The space L2( ) is the set of square integrable functions
satisfying ∫ +∞

−∞
∣∣∣∣∣g(t)|2dt <∞ and denoted by the capital letter,

G(t) the Fourier transformation of a given function,
G(ω) � ∫+∞

−∞g(t)e(−iωt)dt. A function ψ(t) ∈ L2(R) that satisfies
the admissibility condition Ψ(0) � ∫ +∞

−∞ψ(t)dt � 0 is called
“mother wavelet,” and a doubly indexed family (“wavelet
daughters”) is generated by scaling and translating ψ(·): ψτ,s(t) �
|s|− 1/2ψ(t−τs ) with s, τ ∈ and s≠ 0. In this analysis, we use the well-

known, quite flexible, and complex-valued Morlet mother
wavelet that takes the form ψ(t) � π−1/4eiωte−t2/2. The local
wavelet power spectrum (WPS) based on the continuous
wavelet transformation (CWT) of a given function g(t) ∈ L2( )
with respect to the wavelet family

|WPS|g(τ, s) �
∣∣∣∣Wx;ψ(τ, s)

∣∣∣∣2 � ∣∣∣∣∣∣∣∫ +∞−∞g(t)|s|−1/2ψ*(t − τ

s
)dt∣∣∣∣∣∣∣2 (1)

where * represents the complex conjugate operation, s is the scale
parameter controlling the wavelet width, and τ controls the
wavelet location in the time domain. The wavelet power
spectrum Eq. 1 can be interpreted as the local variance of the
time series.
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To do a comparison with the classical spectral method, the
previous quantity can be averaged over time (τ) obtaining the
global wavelet power spectrum,

∫ +∞
−∞

∣∣∣∣Wx;ψ(τ, s)
∣∣∣∣2dτ [2]

The peaks in the global power spectral density indicate the
prevalent periods in the data. In this study, the wavelet
transformation and the computation of the global power
spectrum are computed with the WaveletComp package
(Roesch and Schmidbauer, 2018) in R statistical software
(Team, 2005).

2.2. Autocorrelation and Partial
Autocorrelation Functions
Given a time series {yt}, the autocorrelation is the similarity
between the observations as a function of the time lag between
them. The jth order autocorrelation ρ(j) can be estimated by using
the formula

ρ̂( j) � Cov̂(yt , yt−j)
Var̂(yt) , (3)

where

Cov̂(yt , yt−j) � 1
n − 1

∑n
t�j+1

(yt − y)(yt−j − y) (4)

and

Var̂(yt) � 1
n − 1

∑n
t�j+1

(yt − y)2 (5)

In Eqs. 4 and 5, y is the mean of yt , and 5 is just the special case of
4 in which j � 0. The empirical autocorrelation function (ACF) is
ρ̂(j) defined in Eq. 3, computed in the data as a function of the
lag j.

Moreover, another way to characterize the relationship
between

∣∣∣∣{yt} and its lagged values is by the partial
autocorrelation function, or PACF. The partial autocorrelation
coefficient of order j, ρ(j)j measures the effect (linear dependence)
of yt on yt−j after removing the effect of yt−1, yt−2, . . . yt−j−1 on both
yt and yt−j. Each partial autocorrelation can be obtained as a series
of regressions of the form:

yt � c(j) + ρ(j)1 yt−1 + . . . + ρ(j)j yt−j + ϵt (6)

The empirical PACF of order J is computed by running 6 for
j � 1, . . . , J and retaining only the estimate ρ

(j)
j for each j. The

shape of both the sample ACF and PACF provides a way to see
which is the pattern of serial dependence, and it may help to
suggest which kind of stochastic process would fit well
the data.

If {yt} presents long-range memory, the correlation function 3
decays hyperbolically showing a power law distribution (Höll
et al., 2019). Clauset et al. (2009) give an overview of the statistical
methods that can be used to detect and characterize power law
distribution in empirical data.

2.3. The Hurst Coefficient and the Rescaled
Range (R/S) Method
The Hurst exponent (H) is an index of long-termmemory of time
series {yt} originally developed for hydrological data (Hurst, 1950;
Hurst et al., 1965). It is defined in asymptotic terms of the rescaled
range as E[R(n)/S(n)] � CnH as n→∞, where n is the number
of data points in a time series, E is the expected value, C is a
constant, R(n) is the range of the first n cumulative deviations
from the mean, and S(n) is their standard deviation.

We consider the rescaled range (R/S) method to estimate H
(Mandelbrot and Wallis, 1968; Mandelbrot and Wallis, 1969).

Given yt , the mean is computed (m � 1
n∑n

i�1yi) and the
mean adjusted series xt � yt −m for t � 1, 2, . . . , n. Then,
the cumulative series is zt � ∑ t

i�1xi, and the range series is
Rt � max(z1, z2, . . . , zt) −min(z1, z2, . . . , zt) for t � 1, 2, . . . , n.
A standard deviation series S is computes as St ����������������

1
t∑ t

i�1(yi −m(t))2
√

where m(t) is the mean for the time series

values through time t. The following series of the ratio is
considered (Rt/St) for t � 1, 2, . . . , n.

The Hurst exponent is estimated as the slope of the line
between log[Rt/St] and logt. The long memory structure exists
when 0<H < 1. If H ≥ 1, the process has infinite variance and is
nonstationary. If 0<H < 0.5, an antipersistence structure exists;
if 0.5<H < 1 the series is persistence, instead when H � 0.5, the
process is a white noise. Other methods have been proposed in
the literature to detect the presence of long-range temporal
correlations in the presence of nonstationary in the data, that
is, the detrended fluctuation analysis (Höll et al., 2019).

2.4. Autoregressive Fractionally Integrated
Moving Average Model
Environmental data, and also radon measurements, can exhibit
characteristics consistent with long-range memory in time series
(Donner et al., 2015). Such characteristics consist in a specific
structure of the autocorrelation function of the process.

If {yt} presents long-range memory, correlation function 3
decays hyperbolically, rather than showing the exponential decay
that is a characteristic of an ARIMA(p, 0, q) process. A way to
characterize long-range dependence in observational data is by
fitting autoregressive fractionally integrated moving average
(ARFIMA(p, d, q)) models, which are a natural extension of
the classic ARIMA(p, d, q) models (Hosking, 1981). The
ARFIMA models allow for handling explicitly both the short-
term and the long-term correlation structures of a series. Let {yt}
be a stationary process, an ARFIMA(p, d, q) process where p and
q are integers and d is real, represented as

ϕ(B)∇d(yt − xtβ) � θ(B)ϵt t � 1, . . . ,T , [7]

where ∇d is the fractional differencing operator

∇d � (1 − B)d � ∑ ∞
k�0( d

k
)(−B)k, B is the backward shift

operator defined by Byt � yt−1, and {ϵt} is a white noise with
variance σ2ϵ . ϕ(B) � 1−ϕ1B− . . .−ϕpBp and θ(B)�1−θ1B−...−θqBq

are the autoregressive and the moving average operators,
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respectively. Note that the binomial coefficient can be defined for

real values of d, (d
k
)�d(d−1)(d−2)...(d−k+1)

k(k−1)(k−2)...1 for k∈N and an

arbitrary d.
The row vector xt contains the exogenous variables, and in our

analysis, they are harmonic terms used to describe the seasonality
in the radon time series. The parameter d in Eq. 7 describes the
high-lag correlation structure of a time series, while the p and q
parameters are chosen to describe the low-lag correlation
structure.

An important aspect to assess in a time series is its stationarity;
a process is defined as stationary when its mean, variance, or
autocorrelation structure remains constant over time. For
stationary series, d ∈(−0.5, 0.5), and the Hurst exponent
associated with the process is given by H � (2d + 1)/2.
Consequently, long-range memory is present for d ∈ (0, 0.5),
while d ∈ (−0.5, 0) indicates antipersistent fluctuations. When
|d|> 0.5, the process is nonstationary and its variance is infinite.
The process exhibits short memory for d � 0, corresponding to

stationary and invertible ARMA (autoregressive moving average)
model. Instead, the arbitrary restriction of d to integer values
corresponds to the standard autoregressive integrated moving
average (ARIMA)model, and in this case, the variable is I(d), and
it becomes stationary after d differences and it is nonstationary
after day 1 differences. For instance, an I(1) variable can have a
linear trend but no quadratic trend, and it can be transformed
into a stationary series with the first-order differences. If a series
exhibits long memory, it is neither stationary (I(0)) nor it is a unit
root process (I(1)); it is an I(d) process, with d a real number.

There are statistical tests to check stationarity, named unit
root tests. The results are traditionally interpreted as that the
effects of one-time shocks to the series are either transitory (if
the series is stationary), or permanent (if the series is not
stationary). The Dickey–Fuller test (DF) (Dickey and Fuller,
1979) tests the null hypothesis that the series is nonstationary;
however, DF only considers the dichotomy between stationarity
and nonstationarity. The rejection of the null provides evidence
for a stationary series, then the ARMA model can be directly

FIGURE 2 | (Left)Wavelet power spectrum of daily radon series in time–frequency domain with the CWTmethod. The black contour indicates the significant period
with 90% confidence level. The lighter shade is the regions influenced by edge effects. (Central) The corresponding global power spectrum density marginalizing over
time. The horizontal lines are for 180- and 365-day periods. (Right) The gray line is the observed time series, and the black curve is the fitted linear regression model with
respect to harmonic terms to describe the 1-year periodicity.

FIGURE 1 | (Left) Data, mean daily radon observations in Bq/m3 at Pietralunga (Umbria, Italy). The red vertical line separates the training set and the remaining 5%
of the test set. (Central) Autocorrelation coefficient and (right) partial autocorrelation coefficient of the time series.
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TABLE 1 | Estimates of ARFIMA models with different orders where the response variable is the average daily radon measurements in Figure 1.

Models

ARFIMA (p,d,q)

(0,d,0) (1,0,0) (1,d,0) (1,1,0)

(a) (b) (c) (d)

ϕ1 — 0.687*** (0.023) 0.347*** (0.056) −0.164*** (0.031)
d 0.488*** (0.014) — 0.278*** (0.045) —

β1 −42.570*** (11.336) −40.101*** (5.007) −40.966*** (7.293) −52.456 (82.747)
β2 34.138*** (11.256) 30.380*** (4.908) 31.942*** (7.183) 33.731 (84.475)
Intercept 139.986 (118.533) 140.042*** (3.519) 141.287*** (11.828) −0.046 (1.020)
Observations 985 985 985 985
Log likelihood −3,490.32 −3,484.35 −3,467.65 −3,550.49
AIC 6,990.635 6,978.698 6,947.309 7,110.988
σ2 1,192.12 1,182.27 1,143.44 1,362.99
Range res [−127.690; 204.301] [−108.365; 207.550] [−104.312; 204.553] [−135.772; 214.456]
RMSE1lag 44.214 44.626 44.511 49.921
RMSE5lag 51.719 49.087 49.838 66.994

Model (a) is a fractional model without autoregressive and moving average terms. Model (b) is an autoregressive model [AR(1)], with d fixed to 0. Model (c) is a fractional autoregressive
model. Model (d) is an integrated moving averagemodel with order of integration equals to 1 (d � 1). ϕ1 is the estimate of the autoregressive coefficient inEq. 7. β1 and β2 are associated to
the harmonic terms (sin(2πtω) and cos(2πtω), where t is the time and ω � 1/365) introduced in the model 7 as external variables xt to describe the observed seasonality at 365-day. The
log-likelihood, the Akaike Information Criterion and the range of the model residuals are shown. The root mean square errors (RMSE) for the rolling forecasts at 1- and 5-lag are reported.
The significance of the estimates is in terms of p-value.*p < 0.1; **p < 0.05; ***p < 0.01.

FIGURE 3 | Residual time series for the estimated Models (A–D) as labeled in Table 1.
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applied. Instead, if the null hypothesis is accepted, the series needs
to be made stationary through differencing.

The model in Eq. 7 is estimated with exact maximum
likelihood estimation explained in Veenstra (2013) using
arfima package of R statistical software (Team, 2005). Usually,
the model selection is performed evaluating simultaneously the
goodness of fit and the forecast performances. The assessment of
the goodness of fit can be done using the Akaike Information
Criteria, AIC � 2k − 2ln(L), where k is the number of estimated
parameters in the model Eq. 7 and L is the maximized value of the
likelihood function for the estimated model, and the model with
the smallest AIC value is preferred. Moreover, the assumptions of
the model on the random component (ϵt) are checked assessing
the constant variability, the normality assumption, and the
absence of correlation structure in the model residuals (̂ϵt).

The model family in Eq. 7 is fitted to time series data both to
understand the data and to forecast (to predict future points in the
series). Forecast evaluation can be done when the observed values
are available. Usually, the observed data are divided into training
and test samples. The model is fitted to the training sample, and
then its k-step ahead forecast performance is evaluated on the test
one. The root mean square errors (RMSEs) are used to check the

forecast accuracy of the estimated models; it is given by

RMSE �
��������������∑n

i�1(yi − ~yi)2n−1
√

, where yi is the observed value for
the ith observation and ~yi is the predicted one.

3. RESULTS

3.1. Data
The analyzed radon time series is recorded at Pietralunga (PTRL,
Italy, lat 43.44 N and long 12.44 E) between 28/09/2012 and 01/
08/2015 for a total of 1,038 days. The PTRL station is in a
framework of near real-time monitoring of soil radon
emission to study earthquake preparatory processes, the Italian
radon monitoring network (IRON) (Cannelli et al., 2018). The
selected station is equipped with a Lucas cell, an alpha
scintillation detector with an acquisition window of about 2 h
(115 min of data acquisition followed by a 5-min standby time).
In detail, the Lucas cell consists of a flask in which the inner
surface is coated with silver-activated zinc sulfide (ZnS). It
integrates a front-end electronics and measures radon
concentration by counting the radon decay signals in the
given acquisition window. The radon detector is located in a

FIGURE 4 | Autocorrelation coefficients of the residuals of the estimated Models (A–D) as labeled in Table 1. The horizontal lines indicate the confidence interval at
95% for not significant correlation coefficient.
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small room of a school basement, not disturbed by anthropogenic
influences and without any kind of opening and/or aeration
system. However, the pressure and the temperature could
affect the radon measures. The PTRL site is characterized by a
contained seasonal variability also if compared with other sites of
the same network, even equipped with a borehole probe which
should be more immune from such effects (c.f. Figure 2 in Siino
et al. (2019b)). The radon concentration is measured in Bq/m3,
becquerel per cubic meter.

The raw time series of the mean daily concentrations is shown
in Figure 1; the measured values range between 20.35 Bq/m3 and
377.86 Bq/m3, and they show a clear seasonal signal connected
with the temperature (Cannelli et al., 2018; Siino et al., 2019b),
and the higher values are during the summer period.

The 0.87% of the daily data are missing. Generally, it is a
challenge to handle missing values, especially for time series data.
Two possible ways to deal with the incomplete data can be to omit
the entire record that contains information or impute the missing
values. However, since a small percentage of the analyzed data
presents missing values, they are filled by the weighted moving
average method with a semi-adaptive window of 4 days.

Weighted moving averages assign a linear weighting to the
data points used to perform the imputation.

The data are divided into two subsets: the training set used to
do the main analysis and to fit the stochastic models, and the test
set (5% of the data identified by a vertical line in Figure 1) used to
compare the models in terms of forecasts.

3.2. Seasonality, Stationarity, and
Long-Memory Detection
We report the main results about the seasonality detection, the
autocorrelation, and the long-memory analysis of the observed
series. For the study of the dynamical and seasonal behaviors of the
observed radon concentrations, we compute the spectral density
analysis in the time–frequency domain based on the continuous
wavelet transformation. The wavelet power spectrum is shown in
Figure 2 where the period ranges from 16 to 512 days. The
time–frequency regions with warm colors are characterized by
high power, and the black lines indicate the significant maxima of
the undulations of the wavelet power spectrum, and they give an
indication of the permanent cycle period. The thick black contour

FIGURE 5 | Partial autocorrelation coefficients of the estimated Models (A–D) as labeled in Table 1. The horizontal lines indicate the 95% confidence bounds for
strict white noise.
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indicates the 90% confidence level, and the lighter shade indicates
regions inside the cone of influence due to the border effect.

Clearly, the series exhibits transient dynamics and the
magnitude of the WPS is not constant over time fixing a
specific frequency. We can observe a high value of the
spectral power density at about 1-year periodicity that is
persistently significant. Other high-power periodicities are
present, even though not continuous over the entire period.
A medium-power, ∼180-day cycle is recognizable in the first
half of the series, and a ∼22-day cycle characterized by high-
power appears around summer 2014. These cycles can be also
observed in Figure 2 which shows the global wavelet power
spectrum; the horizontal lines provide a reference at 180 and
365 days. The series show a clear 1-year periodicity and
subordinate periodicities at about 180 days and three weeks.
The longer cycles are probably related to the annual and
semiannual cycles of the climatic variables (temperature,
pressure, and rainfall), while the ∼22-day cycle is likely
ascribable to the lunisolar gravitational influence which
results in a tide effect on the flux or radon [see Siino et al.
(2019b)]. This descriptive analysis is preparatory to decide
which seasonality terms include in the model formulation
for the explanatory variables (xt in Eq. 7). In particular, we

consider harmonic terms to describe the 1-year periodicity that
is the only one persistent with a constant power over time.
Figure 2 shows the estimated curves considering a regression
linear model fitted on the data with harmonic terms for a 365-
day period (with R2 coefficient equals to 0.34).

The shapes of the correlogram and the partial correlogram
provide indication about the properties of the time series and
could indicate a plausible structure of the stochastic model in
Eq. 7. In Figure 1, the estimated autocorrelation up to 400 lags
seems to decay slower than an exponential one. Also from the
autocorrelation, it is clear that the data exhibit a prevalent seasonal
cycle which dominates the dependence structure. The partial
autocorrelation coefficient is defined as the autocorrelation at
each lag after controlling for the autocorrelation due to all
preceding lags. It helps determine how many AR terms
(i.e., lagged observations as predictors) should be included in Eq.
7. If there is a sharp drop in the PACF after p lags, then the previous
p-values are responsible for the autocorrelation in the series, and the
model should include p autoregressive terms. In our case, the
highest and also significant value is at lag 1, with a value of the
correlation equals to 0.792, and in the following lags (p> 1), the
autocorrelation coefficients are close to zero. It indicates that an
autocorrelation term (p � 1) can be included in the model.

FIGURE 6 | Q-Q norm of the residuals time series for the estimated Models (A–D) as labeled in Table 1 to check the normality assumption.
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The estimate of the Hurst exponent (H) with the rescaled
range analysis (Section 2.3) is used to assess the presence of
long memory. The obtained value is 0.785 indicating that the
mean daily measurements have a persistent long-memory
structure since 0.5<H < 1. In the literature, there are several
results consistent with our analysis. For instance, in Cuculeanu
et al. (1996), the determined values of Hurst’s coefficient
(0.809) highlight a persistent behavior of the gas. Also,
Nikolopoulos et al. (2018) compute the rescaled range
analysis for several time intervals obtaining a persistent
Hurst exponent between 0.7 and 0.9 and in some periods
between 0.9 and 1.

The Dickey–Fuller test is used to check the null hypothesis that
the series is nonstationary, and thus, the rejection of the null
provides evidence for a stationary series. The value of the test on
the data in Figure 1 is −5.285, and the value of the p-value
(1.53e−07) is lower than the significant level α � 0.05, and we can
reject the null hypothesis that the series has a unit root and hence
is not stationary. According to this result, for our data, integration
(first-order differences) is not necessary.

3.3. Modeling Results
The obtained results indicate that the studied radon
concentrations present persistent long-memory structure, 1-
year seasonality, and an absence of a trend. Also, according to

the PACF, an autoregressive term can be appropriate to describe
the short-term correlation.

Starting from these evidences, four models are estimated and
compared, and all of them have the harmonic terms (sin(2πtω)
and cos(2πtω)) as external covariates to describe the seasonality.
Four candidate models are estimated:

• Model (a) is a fractional model with p � q � 0,
ARIMA(0, d, 0)

∇d(yt − xtβ) � ϵt t � 1, . . . ,T

• Model (b) is an ARMA(1, 0), so it is an autoregressive
model of order 1 without differencing (also it can be
indicated as an ARIMA (1,0,0) model)

(1 − ϕ1B)(yt − xtβ) � ϵt t � 1, . . . ,T

• Model (c) is an ARFIMA(1, d, 0) model

(1 − ϕ1B)∇d(yt − xtβ) � ϵt t � 1, . . . ,T

• Model (d) is ARIMA(1, 1, 0) model with order of
integration equal to d � 1

FIGURE 7 | Prediction at 1-lag and observed radon measurements for the estimated Models (A–D) as labeled in Table 1.
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(1 − ϕ1B)∇1(yt − xtβ) � ϵt t � 1, . . . ,T

TheModels (b), (c), and (d) have an autoregressive term (p � 1)
since doing several comparisons, a parsimoniousmodel is obtained
without moving average terms (q � 0). Only in the Models (a) and
(c), the fractional integration parameter is freely estimated. The
estimated parameters, their standard errors, and significance are
reported in Table 1. Also, additional information for each model
such as the log-likelihood, the AIC, the range of the residuals, and
the RMSE at 1- and 5-lag are shown.

The results of the estimate models suggest that for all of them,
the coefficients associated to the harmonic terms are significant,
and the comparison with the models without the external
covariates are worse (the results are not shown).

Examining the results of Models (a) and (c) where the
parameter d is estimated varying in the real values, the
fractional parameter for both models is between 0 and 1, thus
allowing us to reject both the case of pure stationarity (I � 0) and
the unit root model (I � 1). The estimated parameters are
statistically significant at the 1% level and lie within the
interval (0, 0.5). The confidence intervals for the estimated
fractional-integration parameters are relatively narrow and
always in the positive range of persistent long-memory.

The results show that Model (c) is the best model in terms of
fitting since it has the lowest AIC and the shorter range of the
residuals. For the RMSE at 1- and 5-lag forecast, Model (a)
performs slightly better than Model (c); however, the fractional
model has too simple parametrization, and it is not able to
describe the autocorrelation dynamic in the data (see the
residuals time series in Figure 3 and the diagnostics on the
residuals Figures 4, 5).

For all the estimated models, the assumption of constant
variability along time appears respected (Figure 3), and there
is not a marked pattern in the residuals, in particular the
seasonality behavior in the original data is not present
(Figure 1). The residual ACF (Figure 4) and PACF (Figure 5)
of the fittedModels (a), (b), and (d) show that there are significant
estimated correlation coefficients at short lags; therefore, these
models are not adequate. Instead, for the Model (c), the residual
ACF and PACF are not significant. The Ljung–Box test from 1 to
10 lags is computed to assess the absence of serial autocorrelation
in the residuals. For the model (c), the null hypothesis is not
rejected for all the considered lags. The q-q plot of the residuals is
used to assess the normality assumption of the considered
models. In Figure 6, for all the four models, there is a slight
departure from the normality in the tails. Finally, the plots of

FIGURE 8 | Prediction at 5-lag and observed radon measurements for the estimated Models (A–D) as labeled in Table 1.
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observed and estimated values obtained with the four model at 1-
and 5-lags are shown in Figures 7, 8 respectively.

4 DISCUSSION AND CONCLUSIONS

Being sensitive to crustal stress, the soil radon discharge is widely
considered as a promising earthquake precursor. Because of the
influence of several environmental factors and local geological
conditions, pre-seismic radon anomalies cannot be easily
detected with conventional statistical methodologies.

The general approach is to model the observation and
highlight the anomalies. This study tests a radon concentration
time series, covering almost 3 years, for the presence of
nonstationarity (seasonality and trend) and long memory.
Overall, our results indicate that the radon series are better
characterized as being stationary in the trend, but with
persistent long-memory and 1-year seasonality. It is widely
accepted that the periodic annual component in radon
concentration time series is correlated to the climatic variables
as temperature, atmospheric pressure, and rainfall (Siino et al.,
2019a; Siino et al., 2019b; D’Alessandro et al., 2020).

The class of the ARFIMA model presented here provides a
general framework for representing radon time series that
display both short- and long-term persistence. The analysis
of daily radon shows that the ARFIMA approach provides a
better representation of the observed data with respect to the
traditional ARMA and ARIMA models. More specifically,
according to the model comparison, an ARFIMA model with
an autoregressive term has a better fitting to the data. The
estimated fractional integration parameters of this ARFIMA
model is positive and smaller than 0.5 (d � 0.278). It
corresponds to a Hurst’s coefficient of H�0.778 that is
consistent with the results obtained with the rescaled range
analysis and in general with other literature results (Cuculeanu
et al., 1996; Nikolopoulos et al., 2018). The proposed model has
been also assessed in terms of its predictive capacity, however
the performances are quite poor especially increasing the lag of
prediction (moving from 1-day forecast to 5-day forecast).

The occurrence of long-range correlation in the time series has
been also tested by the application of Detrended Fluctuation
Analysis (DFA) (Höll et al., 2019). Also, this method indicates
that the radon concentration can be considered as coming from a
fractional Gaussian noise (fGn).

It is widely recognized that radon time series are strongly
controlled by the combination between site-specific factors and
large-scale variations (i.e., astronomical cycles) (Schery et al.,
1984; Schumann et al., 1988; Aumento, 2002; Piersanti et al.,
2015; Crockett et al., 2018). It is note worth that the proposed
approach (based only on radon measurements) is able to describe
with good reliability the data and also to perform short-term
forecasts when accurate radon measurements are taken for a
reasonably long time span.

Model residuals could be retrospectively compared with external
evidence of transitory phenomena in the study area (seismic,

meteorological, etc.). Having available the seismic catalogue of
the area, we make an attempt to find the relationship between
the found anomalies in the radon time series and the earthquakes.
In this case study, there is no evidence between the residuals of the
fitted model and the seismicity in the study area. However, it should
be considered the absence of any relevant earthquakes during the
observation period but only the occurrence of background
seismicity. In fact, in spite of the well-known seismicity of the
area, the larger recorded event was a Mw � 3.9 located at 9.5 km
from the radon monitoring site.

In conclusion, our findings on the long-memory nature of
radon measurements have important implications that can be
useful for further analysis. The long-memory structure is the
result of a long-lasting and aperiodic process such as a weather
episode and changes in the circulation of geofluids, ground
sealing. However, at this stage (i.e., a single time series), it is
not possible to propose a comprehensive physical/geological or
physical/meteorological mechanism that could account for the
long memory in radon concentration time series; moreover, it
would also be out of the purpose of this work. The extension of
this methodology by applying the ARFIMA models to longer
radon time series, or to series with a different measurement range,
or recorded in other monitoring sites, could provide the
missing hints.

The proposed approach represents an effective tool to analyze
radon signals, and in particular to detect long-range memory in the
times series, which are the necessary preliminary steps to explore
the relationship between radon anomalies and seismic activity.
Finally, it would be interesting for further analysis, to compare the
forecast of radon observations, or the identification of preseismic
anomalies with those obtained with other methods such as the
linear regression analysis (Stojanovska et al., 2017), the artificial
neural network approach (Pasini and Ameli, 2003), or the decision
tree method (Zhang et al., 2020). It would also be interesting to
consider other external covariates in the model formulation Eq. 7,
such as weather variables (Stránský and Thinová, 2017).
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