
Seismogenic Faulting of the 2016 Mw
6.0 Hutubi Earthquake in the Northern
Tien Shan Region: Constraints From
Near-Field Borehole Strain Step
Observations and Numerical
Simulations
Yujiang Li1*, Huiping Zhang2*, Lei Tang1, Lianwang Chen1 and Yan Jing1

1National Institute of Natural Hazards, Ministry of Emergency Management, Beijing, China, 2State Key Laboratory of Earthquake
Dynamics, Institute of Geology, China Earthquake Administration, Beijing, China

Constraining the seismotectonic faulting that occurred as a result of the 2016 Mw 6.0
Hutubi earthquake provides valuable information about the deformation in the northern
Tien Shan region. However, due to the lack of surface rupturing and high quality near-field
teleseismic data, the exact nature of the faulting remains controversial. In our study, we
analyze the coseismic strain time series of the Mw 6.0 Hutubi earthquake using strain data
collected from nearby borehole stations. The tensile and compressive coseismic strain
steps account for most of the recorded borehole data in this region. Employing a numerical
model that is based on elastic dislocation theory, we reproduce the observed tensile and
compressive coseismic strain steps using source parameters that were generated through
seismic wave inversion, seismic reflection data, and aftershock relocation. By conducting a
comparative analysis between the predicted and observed coseismic strain steps, we
study the seismogenic faulting of the Mw 6.0 Hutubi earthquake. The results indicate that
when the source parameters are 292°/62°/80° (strike/dip/rake), the predicted tensile and
compressive characteristics for 13/16 channels are consistent with the observational data.
Based on these results, we infer that the seismogenic faulting, which is located near the
Horgos-Manas-Tugulu fault, can be characterized as a high-angle blind back-thrust fault
with a north-dipping fault plane. Providing constraints on the seismogenic faulting
associated with the 2016 Mw 6.0 Hutubi earthquake also yields to understand the
mechanism of the overall deformation pattern in the northern Tien Shan region.

Keywords: northern Tien Shan, coseismic strain step, seismogenic faulting, elastic dislocation theory, Mw6.0 Hutubi
earthquake

INTRODUCTION

On December 8, 2016, the Mw 6.0 Hutubi earthquake occurred within the active fold-and-thrust
belts of the northern Tien Shan foreland basin, northwestern China (Li et al., 2018; Lu et al., 2018).
However, as the absence of coseismic surface rupturing and high-quality far-field seismic observation
record, the seismogenic faulting of this earthquake remains controversial.
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In previous work, this earthquake fault has been described as
either a low-angle south-dipping thrust fault or a high-angle
north-dipping back-thrust fault (Liu et al., 2017; Liu et al., 2018;
Lu et al., 2018; Gong et al., 2019; Wang et al., 2019; Xu et al., 2019;
Yang et al., 2019). From seismic reflection data and seismic wave
inversion results, it is postulated that the mainshock is controlled
by a large-scale south-dipping thrust fault, while the aftershocks
relocation results indicate the presence of a secondary back-thrust
fault (Lu et al., 2018; Yang et al., 2018). However, the aftershock
relocation suggests that this seismogenic faulting is a north-
dipping secondary fault (Liu et al., 2018; Xu et al., 2019).

Earthquakes transfer stress to the surrounding rock, which can
cause observable changes in geodetic data (Nykolaishen et al.,
2015). Borehole strain observations record robust coseismic
deformation information that not only provide constraints for
the tensile and compressive coseismic stress and strains (Gladwin
et al., 1994; Linde et al., 1996; Qiu and Shi, 2003; Johnston et al.,
2006; Qiu et al., 2013; Barbour et al., 2015; Gong et al., 2019), but
they can also act as parameters in numerical simulations of fault
geometry. Using the observed four-component borehole strain
data at the Changping station, Qiu and Shi (2003) analyzed the
coseismic strain steps and estimated the corresponding stress

changes induced by two Zhangbei earthquakes. By quantifying
spatial differences in the borehole strain data that captured
changes created by the 2004 Kii peninsular earthquakes, Asai
et al. (2005) determined the coseismic strain steps in the Nankai
Trough. Barbour et al. (2015) employed the data recorded on nine
borehole strainmeters to characterize the coseismic strain caused
by earthquakes with a range of magnitudes and distances. Based
on the static-dynamic strain response of the area affected by the
Mw 6.0 Hutubi earthquake, Gong et al. (2019) identified four
stations where the borehole data capture resolvable static strain
changes.

In order to analyze and characterize the coseismic strain step
that was created by the Mw 6.0 Hutubi earthquake, we collected
data from four near-field four-component borehole strainmeters
that reside in observational stations located throughout the
northern Tien Shan region. Based on elastic dislocation theory
(Okada, 1985), we calculated the coseismic stress field using the
different sets of source parameters that were inferred via seismic
wave inversion, seismic reflection data, and aftershock relocation.
After using these source parameters to generate synthetic strain
step data, we then constrained the seismogenic faulting of theMw
6.0 Hutubi earthquake by identifying the source parameters that

FIGURE 1 | Tectonic setting and borehole station locations. Structural features: HMTA, Horgos-Manas-Tugulu Anticline; DAA, Dushanzi-Anjihai Anticline; QA, Qigu
Anticline. F1. Yamata fault; F2, Junggar southern margin fault; F3, Horgos-Manas-Tugulu fault. Borehole stations: BLT, Baluntai; QEG, Queergou; SC, Shichang; YSG,
Yushugou. GPS velocities are relative to the stable Eurasia plate (Wang and Shen, 2020). The black beach balls show the historic M ≥ 5.0 earthquakes since 1976 (Data
Source: Global CMT). The black circles represent the relocated aftershock of the Mw 6.0 Hutubi earthquake.
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minimized the difference between the predicted and observed
tensile and compressive coseismic strain steps.

TECTONIC SETTING

The Tien Shan orogenic belt is bounded by the Tarim Basin to the
south and the Junggar Basin to the north (Figure 1) (Zhang et al.,
2003). As one of the largest orogenic belts within the Asian
continent, this region was formed by multiple instances of plate
collision and subduction (Xiao et al., 2004; Charvet et al., 2011;
Chen et al., 2014; Qiu et al., 2019). Since the Cenozoic, the Tien
Shan tectonic zone has experienced strong shortening and uplift
due to continued convergence between the Indian and Eurasian
plates (Molnar and Tapponnier, 1975; Allen et al., 1999; Qiu et al.,
2019; Zhou et al., 2020); this ongoing collision has both created
new faults and reactivated old faults (Yin et al., 1998). GPS data
indicates that the crustal shortening rate in the Tien Shan tectonic
zone increases from ∼5–10 mm/yr in the east to ∼20 mm/yr in the
west (Yang et al., 2008; Liu et al., 2016). Deep seismic reflection
profiles have revealed the thin-skinned tectonics of the crust
beneath the northern Tien Shan piedmont, which consists of

(from south to north) the piedmont Qigu fold-and-thrust zone,
the Horgos-Manas-Tugulu active fold-and-thrust zone, and the
Dushanzi-Anjihai active fold-and-thrust zone (Zhang et al., 1994;
Yang et al., 2013; Gong et al., 2019). These active reverse fault-fold
zones are the primary causes of the frequent seismicity in this
region (Avouac et al., 1993; Zhang et al., 1996; Deng et al., 2000;
Wang et al., 2004).

In 2016, the Mw 6.0 Hutubi earthquake occurred in the active
fold-and-thrust belt of the northern Tien Shan foreland basin.
This region has accommodated ∼50% of the predicted crustal
shortening (Yin et al., 1998; Zubovich et al., 2010; Yang et al.,
2019). Seismic reflection profiles indicated that the seismogenic
faulting created by the Mw 6.0 Hutubi earthquake is closely

TABLE 1 | Basic data of the borehole stations

Stat. Lon/° Lat/° Borehole depth /m Lithology Fault

QEG 86.49 43.82 122 Sandstone Southern Junggar fault
SC 85.67 43.93 84 Glutenite Southern Junggar fault
BLT 86.66 42.94 157 Sandstone Borokonu fault
YSG 87.70 43.78 35 Sandstone Northern Bogda fault

FIGURE 2 | Coseismic strain step curves recorded on four-component borehole strainmeters located at four borehole stations. Si (i � 1, 2, 3, 4) represents a
component of the borehole strainmeter.
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related to the south-dipping Horgos-Manas-Hutubi fault (Lu
et al., 2018). However, an aftershock relocation analysis
provides support for the hypothesis that this earthquake
occurred on a north-dipping back-thrust fault that
exhibits the ‘y-type’ distribution with the main rupture
plane of the 1906 Manas earthquake (Lu et al., 2018). If
this is true, then this fold-type earthquake was caused by the
continuous stress accumulation that arose during the
ongoing collision between the Tien Shan region and the
Junggar Basin (Liu et al., 2018).

DATA

It has been repeatedly demonstrated that four-component
borehole strainmeters yield high-quality and high-precision
(10–10) recordings of the static and dynamic strains caused by
earthquakes (Qiu and Shi, 2003; Ouyang et al., 2004; Qiu et al.,
2013; Gong et al., 2019). To better monitor the ongoing crustal
deformation in this area and to explore the relationship between
borehole coseismic strain steps and strong earthquakes, we
deployed eleven RZB-type four-component borehole
strainmeters in the northern Tien Shan region since 2015.

In this paper, we analyzed the tensile and compressive
coseismic strain steps recorded at stations QEG, SC, BLT, and
YSG. All four strainmeters were installed directly into the bedrock
of the southern Junggar thrust fault, the Borokonu strike-slip
fault, and thrust fault located along the northern margin of Bogda
Mountain at depths of 35–157 m (Table 1).

The coseismic strain steps and subsequent changes recorded at
stations QEG, SC, BLT, and YSG are shown in Figure 2.
According to the definition of a tensional or compressional
coseismic strain step (Qiu and Shi, 2003), the coseismic strain
step is tensional when the step change△ε＞ 0, as shown in the S1

component of the QEG observation station (Figure 2). The
maximum tensile and compressive changes of the coseismic
strain steps observed at stations QEG, SC, BLT, and YSG
reach values of 1.6 × 10–8, −3.4 × 10–8, 2.5 × 10–8, and −3.6 ×
10–9, respectively (Figure 2; Table 2).

TABLE 2 | Observed coseismic strain step characteristics

Stat. Epicenter
distance/km

Component azimuth/° Coseismic strain step /10–10 extension or compression

1 2 3 4 1 2 3 4 1 2 3 4

QEG 11 21 66 111 156 164 24 −89 84 + + − +
SC 54 −7 38 83 128 −235 56 −145 −341 − + − −
BLT 107 −1 44 89 134 178 −124 −42 245 + − − +
YSG 110 4 49 94 139 −18 −36 7 16 − − + +

In the table, the azimuth of component is defined as zero in the north direction, and the clockwise rotation is positive; 1 to 4 represent the four components; ‘+’ and ‘–’ represent tensile and
compressive strain, respectively, and tensile strain is considered as positive.

TABLE 3 | Compilation of the source parameters of the Mw 6.0 Hutubi earthquake from different data types

Source* Epicenter (°) Focal mechanism solution Depth (km) Sets

Lon. Lat. Strike (°) Dip (°) Rake (°)

Fault dipping: South
Lu et al. (2018) 86.350 43.830 91 22 90 16 Model 1
Yang et al. (2018) 86.380 43.770 113 26 77 15.2

Fault dipping: North
Xu et al. (2019) 86.350 43.830 271 64 90 21 Model 2
Yang et al. (2019) 86.345 43.823 264 28.8 90 17
Liu et al. (2018) 86.363 43.776 292 62 80 17 Model 3

FIGURE 3 | Parameters of the stratified medium model. Vp represents
the P-wave seismic velocity, Vs represents the S-wave velocity, ρ represents
the lithospheric density.
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MODELS AND METHODS

The source parameters of theMw 6.0 Hutubi earthquake, according
to the published seismic wave, artificial seismic reflection profiles,
and aftershocks relocation studies are summarized in Table 3.
Where there is a consensus on the strike and rake of the
seismogenic fault (all are oriented nearly E-W), there are
contradictory characterizations of the fault’s dip angle as either a
south-dipping large-scale thrust fault or a north-dipping secondary
back-thrust fault (Liu et al., 2018; Lu et al., 2018; Xu et al., 2019).

For the slip model, InSAR observations reveal that the slip
distributions are dominated by a nearly pure-thrust fault with no
apparent surface rupture, a rupture length of 20 km, and peak slip
values ranging from ∼0.1 m to 0.56 m at depths of 12–18 km (Liu
et al., 2017;Wang et al., 2019; Yang et al., 2019). According to these
published inversion results, we determined that the rupture length,
rupture width, and average slip magnitude are 20 km, 15 km, and
0.1 m, respectively. Furthermore, we characterized the seismogenic
fault as a blind thrust fault (Lu et al., 2018; Wang et al., 2019; Yang
et al., 2019) with a fault tipline at a depth of 7.5 km.

FIGURE 4 | Coseismic principal stress fields for the different sets of source parameters in (A)model 1, (B)model 2, and (C) model 3; (D) Schematic diagram of a
standard borehole strainmeter, ε1 and ε2 represent the maximum and minimum principal strains, respectively. The red line in the beach ball denotes the fault plane.

TABLE 4 | Comparison of the predicted and observed tensile and compressive characteristics of the coseismic strain steps

Station

Characteristics

BLT SC QEG YSG Consistency

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Observed + − − + − + − − + + − + − − + +
Model 1 + − − + − − − − + + + − + − − + 11/16
Model 2 + − − + − − − − − − − + − + − − 10/16
Model 3 + − − + − − − − + − + + − − + + 13/16

‘+’ and ‘–’ represent tensile and compressive coseismic strain steps, respectively.
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Based on the depth profiles of converted waves from
earthquakes in the northern Tien Shan region (Shao et al.,
1996), we determined the parameters necessary for our
stratified model (Figure 3). By employing PSGRN/PSCMP
(Wang et al., 2006), a program that consists of a dislocation
source model embedded in a mixed elastic/inelastic layered half-
space, we generated six independent stress tensors based on the
three different sets of source parameter values for the fault strike,
dip, and rake (Table 3). Then we calculated the principal stresses
and the direction cosines from the eigenvalues and the
eigenvectors of the stress tensors, respectively. From this data,
we quantified the stress fields at the four borehole stations.

RESULTS

Characteristics of the Coseismic Principal
Stress Field
Figure 4 shows the characteristic coseismic principal stress
field for the three different sets of source parameters. In
model 1, the orientations of the maximum horizontal

principal compressive stress at the QEG, SC, YSG, and
BLT observation stations are NW-SE, NW-SE, NEE-SWW,
and NEE-SWW, respectively. In model 2, the orientations of
the maximum horizontal principal compressive stress at the
QEG, SC, YSG, and BLT observation stations are NWW-SEE,
nearly E-W, NW-SE, and NEE-SWW, respectively. In model
3, the orientations of the maximum horizontal principal
compressive stress at the QEG, SC, YSG, and BLT
observation stations are NE-SW, nearly E-W, NNE-SSW,
and NEE-SWW, respectively.

Characteristics of the Coseismic Strain
Field
By combining the maximum coseismic principal stress field and
the known azimuths of the four components of the borehole
strainmeters (Table 2), we quantified the tensile and compressive

FIGURE 5 | Vertical coseismic displacement field for different sets of source parameters. The red line in the beach ball denotes the fault plane.

FIGURE 6 | The coseismic maximum principal stress field. Positive
values represent tensile stresses, and negative values represent compressive
stresses. The red line in the beach ball denotes the fault plane.

FIGURE 7 | Coseismic Coulomb stress change for the best-fit source
parameters of 292°/62°/80° (strike/dip/rake). The frictional coefficient is
assumed to be 0.4 (King et al., 1994). Fault labels are the same as in Figure 1.
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characteristics of the coseismic strain steps (Table 4) and
compared those results to the coseismic steps recorded at the
borehole stations (Table 2). In model 1, the predicted tensile and
compressive step characteristics match the observed step
characteristics on 11/16 channels. In model 2, the predicted
tensile and compressive step characteristics match the
observed step characteristics on 10/16 channels. In model 3,
the predicted tensile and compressive characteristics match the
observed step characteristics on 13/16 channels (Table 4). Based
on our analysis, we conclude source parameters of 292°/62°/80°

(strike/dip/rake) best reproduce the observed strain steps,
suggesting that the Mw 6.0 Hutubi earthquake seismogenic
fault is a north-dipping high-angle blind thrust fault.

DISCUSSION

Near-field geodetic observations provide the basic data necessary
to characterize coseismic deformation (Johnston et al., 2006;
Nykolaishen et al., 2015) and numerically simulate both the
fault rupture plane and earthquake-induced deformation (Shen
et al., 2009; Jiang et al., 2020).

Reliability Analysis of the Results
Our observed tensile and compressive coseismic strain steps are
consistent with those in published studies (Gong et al., 2019). To
validate the reliability of our simulation results, we calculated the
coseismic vertical displacement field, the maximum principal

FIGURE 8 | Schematic model of the impact of fault systems on the vertical surface deformation. (A) The 2D elastic finite element model. (B) The projected vertical
surface deformation with only the large-scale thrust fault included. (C) The projected vertical surface deformation where both fault systems are included. The fault has
Young’s modulus (E) of 0.5 × 1010 Pa and Poisson ratio (ν) of 0.3.
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stress field at the surface, and relations between the Coulomb
stress change caused by the mainshock for the best-fit source
parameters and aftershocks distribution. The coseismic vertical
displacement field shows that when the seismogenic fault
experienced bilateral rupturing, the hanging wall exhibited
coseismic vertical uplift while the footwall exhibited coseismic
subsidence (Figure 5). The projected hanging wall displacement
is greater than that of the footwall (Figure 5A); these
displacement patterns are consistent with those inferred from
cross-fault profiles based on InSAR observations (Wang et al.,
2019; Yang et al., 2019). When the fault plane dips to the south,
the modeled vertical coseismic displacement is a poor fit for the
InSAR observations (Figure 5B). From these results, we conclude
that the seismogenic fault is a north-dipping thrust fault.

The maximum principal stress field shows that the coseismic
stress changes are relatively large at stations QEG, SC, and BLT,
while the changes recorded at station YSG are relatively small
(Figure 6). These coseismic stress changes are consistent with the
observed coseismic strain steps (Table 2), and we attribute the
spatial variation in the observed borehole strains to the
heterogeneity of the coseismic stress changes.

Using the aftershocks relocation depths (Xu et al., 2019) in
conjunction with the best-fit source parameters, we determined
that the static coseismic Coulomb stress change at the two ends of
the rupture plane at a depth of 9 km exceeds 0.01 MPa, suggesting
that the mainshock hastens or triggers the aftershocks (Figure 7).
However, for some aftershocks that occurred on or near the
rupture plane, this seemingly contradictory relation may be
driven by afterslip (Ross et al., 2017; Perfettini et al., 2019).
This observation is consistent with the findings of Wang et al.
(2019) and provides further support for the theory that the
seismogenic fault generated by the Mw 6.0 Hutubi earthquake
is a north-dipping blind thrust fault.

Tectonic Implications
Due to compression caused by the collision of the NS-trending
Indian plate and the rigid Junggar Basin, the zone between the

northern Tien Shan and the Junggar Basin contains many fold-
and-thrust structures (Burchfiel et al., 1999; Deng et al., 1999),
including listric south-dipping thrust faults and a set of north-
dipping high-angle back-thrust faults at the Frontier of the
nappe (Liu et al., 2007; Guan et al., 2016). Similar to the
categorization of the seismogenic Horgos-Manas-Tugulu fault
of the 1906 Mw 7.7 Manas earthquake as a large-scale listric
thrust fault (Zhang et al., 1994; Wang et al., 2004), structural
studies indicate that the back-thrust faults related to the
anticline located in the fold belts near the Hutubi earthquake
epicenter are all blind thrust faults (Chen et al., 2007; Lu et al.,
2018). Modeling results indicate that the continued India-
Eurasia collision resulted in the reactivation of the Tien Shan
mountain range and its related fault system (Neil and
Houseman, 1997; Li et al., 2018); the Mw 6.0 Hutubi
earthquake occurred on a reactivated rift-related structure
that is connected to the Horgos-Manas-Tugulu thrust fault.

Double-difference relocation of the aftershocks demonstrate
that the Hutubi earthquake seismogenic fault, as a north-dipping
blind back-thrust fault that has a thrust direction that opposes the
general sense of thrust in the piedmont thrust nappe of the
northern Tien Shan, is located near the Horgos-Manas-Tugulu
fault (Liu et al., 2018; Xu et al., 2019). This analysis is essentially
consistent with our findings where the north-dipping fault plane
generates a coseismic principal stress field that generates the
observed changes in the near-field coseismic tensile and
compressive strain steps. Thus, it is likely that the Hutubi
earthquake seismogenic fault is a high-angle blind back-thrust
fault with a north-dipping fault plane.

A back-thrust fault, which can rupture independently
(Chuang et al., 2014; He et al., 2018), is regarded as a
secondary structure in the thrust nappe tectonic belt
(Stagpoole and Nicol, 2008; Xu et al., 2015; Zelilidis et al.,
2016; Martinod et al., 2020). Based on the occurrence of the
1906 Mw 7.7 Manas earthquake and the 2016 Mw 6.0 Hutubi
earthquake, we conclude that the Late Cenozoic crustal
deformation caused by the continuous collision between

FIGURE 9 | Impact of fault dipping angle change on the vertical surface deformation. The red line in the upper panel represents the same vertical displacement as in
Figure 8C.
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Indian and Eurasia plates was accommodated by slip on the
Horgos-Manas-Tugulu thrust fault and also on the secondary
back-thrust faults.

In order to analyze the influence of the secondary back-thrust
fault on crustal deformation, we employ the ANSYS commercial
software to construct a two-dimensional elastic finite element
model (Figure 8A). The model includes the lateral heterogeneity,
the large-scale thrust fault, and the secondary back-thrust fault.
The fault geometry and regional properties are referred to the
previous studies (Wang et al., 2004; Liu et al., 2018). First, we
model the vertical deformation with only the large-scale fault
included (Figure 8B); then we analyze the influence of the back-
thrust fault on vertical deformation. As shown by the modeled
vertical surface displacement in Figure 8C, this back-thrust fault
contributes to the significant uplift observed in this region.

Furthermore, with the dip angle of the large-scale thrust fault
increasing from the deep to the shallow, this geometry change
inhibits the slip on the thrust fault (Bilham and England, 2001)
and benefits the strain energy accumulation on the back-thrust
faults (Figure 9) (Xu et al., 2015; Zhang et al., 2019), although this
process is influenced by other factors such as confining pressure,
fault frictional coefficient and rheological property (Neil and
Houseman, 1997; Collettini et al., 2019). The two fault systems
jointly absorbed or facilitated the crustal shortening (Zubovich
et al., 2010; Poblet and Lisle, 2011) and are responsible for the
present-day uplift of the northern Tien Shan region that
expressed as a ‘pop-up’ structure.

CONCLUSION

In this paper, we used the near-field borehole data to analyze the
tensile and compressive characteristics of the coseismic strain
steps for the Mw 6.0 Hutubi earthquake. After constructing a
model based on elastic dislocation theory, we simulated the
coseismic strain step characteristics for three different sets of
source parameters. Our model results indicate that when the
seismogenic fault source parameters are 292°/62°/80° (strike/dip/
slip), the predicted and observed tensile and compressive
characteristics of the coseismic strain steps are fairly consistent
with one another. With these source parameters, the Hutubi
earthquake is likely a high-angle blind back-thrust fault with a
north-dipping fault plane. Based on additional data, we inferred

that this seismogenic fault is located near the Horgos-Manas-
Tugulu thrust fault, which is the seismogenic fault of the 1906Mw
7.7 Manas earthquake.

Our results, which are informed by both near-field borehole
strain observational data and numerical simulations, provide new
insight into the analysis of the geometry of seismogenic fault.
With more high-quality geodetic and seismic data, it may be
possible to elucidate the seismotectonic and tectonic deformation
of the northern Tien Shan region using high-resolution three-
dimensional models.
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